Bit-probe lower bounds for succinct data structures

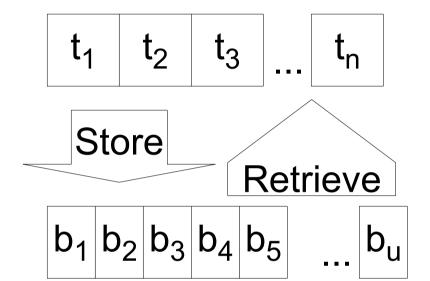
Emanuele Viola

Northeastern University

June 2009

Bits vs. trits

• Store n "trits" $t_1, t_2, ..., t_n \in \{0, 1, 2\}$



In u bits $b_1, b_2, ..., b_u \in \{0,1\}$

Want:

Small space u (optimal = $\lceil n \lg_2 3 \rceil$)

Fast retrieval: Get t by probing few bits (optimal = 2)

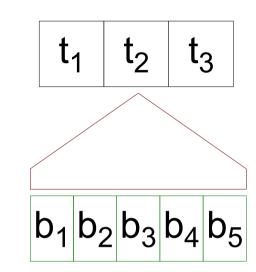
Two solutions

Arithmetic coding:

Store bits of
$$(t_1, ..., t_n) \in \{0, 1, ..., 3^n - 1\}$$

Optimal space: $\lceil n \lg_2 3 \rceil \approx n \cdot 1.584$

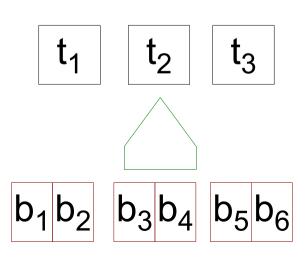
Bad retrieval: To get t_i probe all > n bits



Two bits per trit

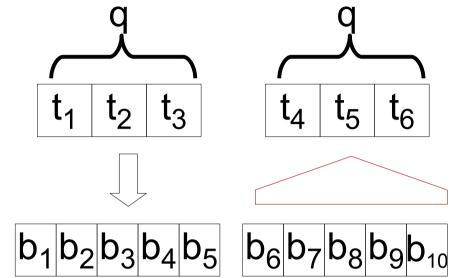
Bad space n 2

Optimal retrieval: Probe 2 bits



Polynomial tradeoff

• Divide n trits $t_1, ..., t_n \in \{0,1,2\}$ in blocks of q



Arithmetic-code each block

Space:
$$[q lg_2 3] n/q < (q lg_2 3 + 1) n/q$$

= $n lg_2 3 + n/q$

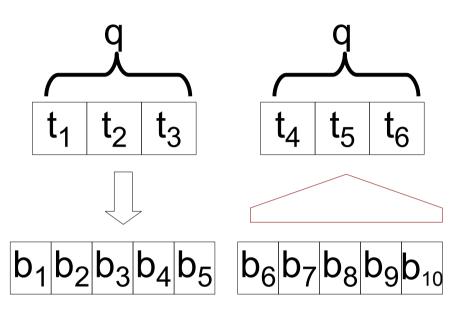
Retrieval: Probe O(q) bits

polynomial tradeoff between redundancy, probes

Polynomial tradeoff

• Divide n trits $t_1, ..., t_n \in \{0,1,2\}$ in blocks of q

Arithmetic-code each block



Space:
$$[q lg_2 3] n/q = (q lg_2 3 + 1/q^{\Theta(1)}) n/q$$

= $n lg_2 3 + n/q^{\Theta(1)}$

Retrieval: Probe O(q) bits

polynomial tradeoff between redundancy, probes

Logarithmic forms

Exponential tradeoff

Breakthrough [Pătraşcu '08, later + Thorup]

Space: n $\lg_2 3 + n/2^{\Omega(q)}$

Retrieval: Probe q bits

exponential tradeoff between redundancy, probes

• E.g., optimal space [n lg₂ 3], probe O(lg n)

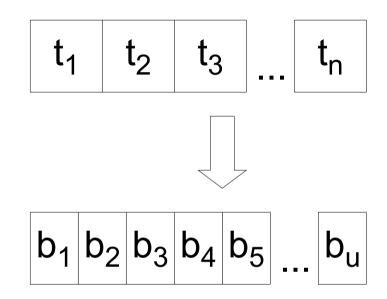
Our results

• Theorem[this work]:

Store n trits
$$t_1, ..., t_n \in \{0,1,2\}$$

in u bits $b_1, ..., b_u \in \{0,1\}$.

If get t_i by probing q bits then space $u > n \lg_2 3 + n/2^{O(q)}$.



- Matches [Pătraşcu Thorup]: space < n $\lg_2 3 + n/2^{\Omega(q)}$
- Holds even for adaptive probes

Outline

• Bits vs. trits

• Bits vs. sets

Proof

Bits vs. sets

• Store $S \subseteq \{1, 2, ..., n\}$ of size |S| = k

01001001101011

In u bits $b_1, ..., b_n \in \{0,1\}$

$$b_1 b_2 b_3 b_4 b_5 \dots b_u$$

Want:

Small space u (optimal = $\lceil \lg_2 (n \text{ choose k}) \rceil$)

Answer "i ∈ S?" by probing few bits (optimal = 1)

Previous results

- Store S ⊆ {1, 2, ..., n}, |S| = k in bits, answer "i ∈ S?"
 - [Minsky Papert '69] Average-case study
 - [Buhrman Miltersen Radhakrishnan Venkatesh; Pagh '00]

Space O(optimal), probe O(lg(n/k))

Lower bounds for $k < n^{1-\epsilon}$

• No lower bound was known for $k = \Omega(n)$

Our results

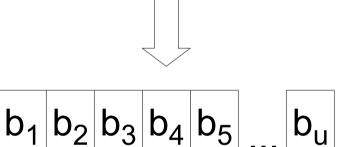
Theorem[this work]:

Store
$$S \subseteq \{1, 2, ..., n\}, |S| = n/3$$

in u bits $b_1, ..., b_u \in \{0, 1\}$

If answer " $i \in S$?" probing q bits then space u > optimal + $n/2^{O(q)}$.

01001001101011



- First lower bound for $|S| = \Omega(n)$
- Holds even for adaptive probes

Outline

• Bits vs. trits

• Bits vs. sets

Proof

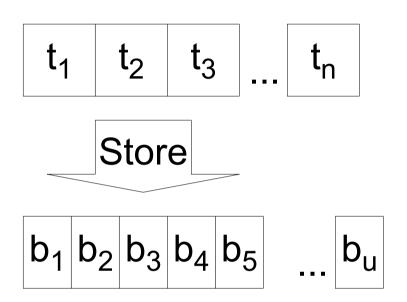
Recall our results

Theorem:

Store n trits
$$t_1, ..., t_n \in \{0,1,2\}$$

in u bits $b_1, ..., b_u \in \{0,1\}$.

If get t_i by probing q bits then space $u > n \lg_2 3 + n/2^{O(q)}$.



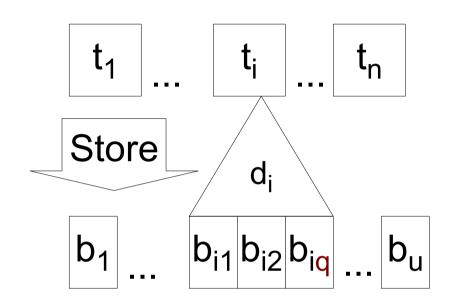
For now, assume non-adaptive probes:

$$t_i = d_i (b_{i1}, b_{i2}, ..., b_{iq})$$

Proof idea

•
$$t_i = d_i (b_{i1}, b_{i2}, ..., b_{iq})$$

• Uniform $(t_1, ..., t_n) \in \{0,1,2\}^n$ Let $(b_1, ..., b_u) := Store(t_1, ..., t_n)$



• Space $u \approx \text{optimal} \Rightarrow (b_1, ..., b_u) \in \{0,1\}^u \approx \text{uniform} \Rightarrow$

$$1/3 = Pr[t_i = 2] = Pr[d_i(b_{i1}, ..., b_{iq}) = 2] \approx A/2q \neq 1/3$$

Contradiction, so space u >> optimal

Q.e.d.

Handling adaptivity

• So far $t_i = d_i (b_{i1}, b_{i2}, ..., b_{iq})$

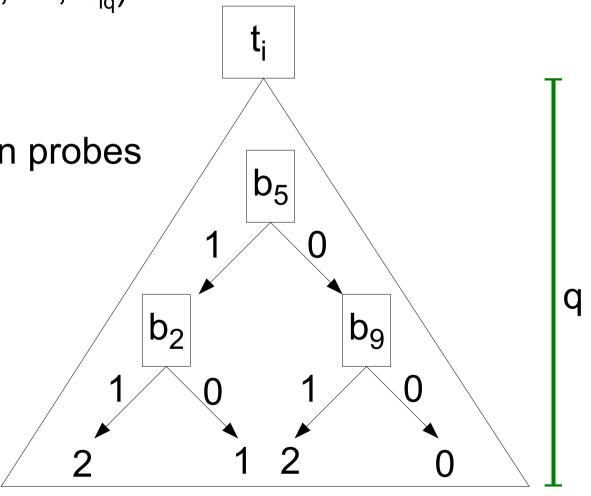
In general,

q adaptively chosen probes

= decision tree

2q bits

depth q



$$1/3 = Pr[t_i = 2] = Pr[d_i(b_{i1}, ..., b_{i2q}) = 2] \approx A/2q \neq 1/3$$

Remarks on proof

 Use ideas from lower bounds for locally decodable codes [Shaltiel V.]

New approach to data structures lower bounds

Conclusion

• Thm: Store n trits $t_1, ..., t_n \in \{0,1,2\}$.

Get t_i by probing q bits \Rightarrow space > optimal + $n/2^{O(q)}$

Matches [Pătraşcu Thorup]: space < optimal + $n/2^{\Omega(q)}$

• Thm: Store $S \subseteq \{1, 2, ..., n\}, |S| = n/3$.

Answer "i∈ S?" probing q bits ⇒ space > optimal + n/2^{O(q)}

First lower bound for $|S| = \Omega(n)$

New approach to lower bounds for basic data structures