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• Success with restricted circuits

[Furst Saxe Sipser, Ajtai, Yao, Hastad, Razborov, Smolensky,…]

• Theorem[Razborov ’87] Majority ∉∉∉∉ AC0[⊕]

Majority(x) = 1 ⇔ ∑ xi > |x|/2

AC0[⊕] = ⊕ = parity
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Circuit lower bounds
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• Little progress for general circuit models

• Natural Proofs [Razborov Rudich] + [Naor Reingold]:

Standard techniques cannot prove lower bounds for

circuit classes that can compute Majority

• “ We have lower bounds for AC0[⊕]

because      Majority ∉∉∉∉ AC0[⊕] ”

Natural proofs barrier



• Definition: f : {0,1}n → {0,1} (1/2 − ε)-hard for class C :

for every M ∈ C  :  Prx[f(x) ≠ M(x)] ≥ 1/2 − ε

• E.g. C = general circuits of size nlog n, AC0[⊕], …

• Strong average-case hardness: 1/2 – ε = 1/2 – 1/nω(1)

Need for cryptography

pseudorandom generators    [Nisan Wigderson,…]

lower bounds [Hajnal Maass Pudlak Szegedy Turan,…]

Average-case hardness



•

• Usually black-box, i.e. code-theoretic

Enc(f) = Encoding of (truth-table of) f

Proof of correctness = decoding algorithm in C

• Results hold when C = general circuits

Hardness amplification
[Y,GL,L,BF,BFL,BFNW,I,GNW,FL,IW,CPS,STV,TV,SU,T,O,V,HVV,GK,IJK,…]

Hardness
amplification

against C

f ∉∉∉∉ C

(lower
bound)

Enc(f)  (1/2 − ε)-hard for C

(average-case
hardness)



• Known hardness amplifications fail

against any class C for which have lower bounds

•

• Conjecture[V. ‘04]: Black-box hardness amplification

against class C ⇒⇒⇒⇒ Majority ∈∈∈∈ C

The problem we study

Hardness

amplification

against AC0[⊕]

Have

f ∉∉∉∉ AC0[⊕]

Open

f :(1/2 − 1/n)-hard

for AC0[⊕] ?

?



Our results

• Theorem[This work] Black-box (non-adaptive)

(1/2 − ε)-hardness amplification against class C ⇒⇒⇒⇒

(i)  C ∈ C computes majority on 1/ε bits

(ii) C ∈ C makes ≥ n/ε2 queries

• Generalizes to δ → (1/2 − ε)-hardness amplification

• Both tight

(i) [Impagliazzo, Goldwasser Gutfreund Healy Kaufman Rothblum] 

(ii) [Impagliazzo, Klivans Servedio]



Our results + [Razborov Rudich] + [Naor Reingold]

Majority

Power

of CCannot prove

lower bounds
[RR] + [NR]

Cannot prove

hardness 

amplification

[this work]

“You can only amplify the hardness you don’t know”

“Lose-lose” reach of standard techniques:



• Boolean vs. non-Boolean hardness amplification

Enc(f)(x) ∈ {0,1} requires majority

Enc(f)(x) ∈ {0,1}t does not [Impagliazzo Jaiswal 
Kabanets Wigderson]

• Loss in circuit size: Lower bound for size s

⇒ (1/2 − ε)-hard for size s⋅ε2/n

• Decoding is more difficult than encoding

Encoding: Parity (⊕)
Decoding: Majority

Other consequences of our results



Outline

• Overview and our results

• Formal statement of our results

• Proof



Black-box hardness amplification

• In short: ∀ ∀ ∀ ∀ f ∀∀∀∀ h ≈ Enc(f) ⇒ ∃ ∃ ∃ ∃ C ∈∈∈∈ C : Ch = f

• Rationale: f ∉∉∉∉ C ⇒ Enc(f) (1/2 − ε)-hard for C

0 1 0 1 0 1 0 1 0 L 1

0 1 1 1 0 1 0 0 1 0 1 1 0 0 0 1 0   L 0

0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0   L 0

queries (non-adaptive)

arbitrary

f =

Enc(f) =

h = 

(1/2 – ε errors)

Ch(x) = f(x)



Our results

• Theorem

h

x

f(x)

∀ ∀ ∀ ∀ f, h ≈ Enc(f)

∃ ∃ ∃ ∃ C ∈ C : Ch = f
h

y

majority(y)

|y| = 1/ε

Black-box non-adaptive 

(1/2 − ε)-hardness 
amplification against C

∃ M ∈∈∈∈ C computes 

majority on 1/ε bits



Outline

• Overview and our results

• Formal statement of our results

• Proof



Proof

• Recall Theorem: Black-box (non-adaptive)

(1/2 − ε)-hardness amplification against class C ⇒⇒⇒⇒

(i)  C ∈ C computes majority on 1/ε bits

(ii) C ∈ C makes q ≥ n/ε2 queries

• We show hypot. ⇒ C ∈ C : tells Noise 1/2 from 1/2 – ε

(D) | Pr[C(N1/2,…,N1/2)=1] - Pr[C(N1/2-ε,…,N1/2-ε)=1] | >0.1

• (i) ⇐ (D) + manipulations Ack: Madhu Sudan 

(ii) ⇐ (D) + tigthness of Chernoff bound

q q



Warm-up: uniform reduction

• Want: non-uniform reductions (∀ f,h ∃ C)

For every f ,h : Pry[Enc(f)(y) ≠ h(y)] < 1/2-ε

there is circuit C ∈ C : Ch(x) = f(x)   ∀ x

• Warm-up: uniform reductions (∃ C ∀ f,h )

There is circuit C ∈ C : 

For every f, h : Pry[Enc(f)(y) ≠ h(y)] < 1/2-ε

Ch(x) = f(x)   ∀ x



Proof in uniform case

• Random F : {0,1}k → {0,1}, X ∈ {0,1}k

Consider C(X) with oracle access to Enc(F)(y) ⊕ H(y)

H(y) ~ N1/2 ⇒ CEnc(F) ⊕ H(X) = CH(X) ≠ F(X) w.h.p.

C has no information about F

H(y) ~ N1/2-ε ⇒ CEnc(F) ⊕ H(X) = F(X) always 

Enc(F) ⊕ H is (1/2-ε)-close to Enc(F)

• To tell z ~ Noise 1/2 from z ~ Noise 1/2 – ε, |z| = q

Run C(X); answer i-th query yi with Enc(F)(yi) ⊕ zi

Q.e.d.



Proof outline in non-uniform case

• Non-uniform: C depends on F and H (∀∀∀∀ f,h ∃∃∃∃ C)

• Proof outline:

1) Fix C to C’ that works for many f,h

Condition F’ := F | C’, H’ := H | C’

2) Information-theoretic lemma

There is good set G ⊆ {0,1}n s.t.   if all yi ∈ G :

Enc(F’) ⊕ H’ (y1,…,yq) ≈ Enc(F) ⊕ H (y1,…,yq)

Can argue as for uniform case if all yi ∈ G

3) Deal with queries yi not in G



Fixing C

• Random F : {0,1}k → {0,1}, H (x) ~ N1/2 - ε

• Enc(F)⊕H is (1/2-ε)-close to Enc(F). We have (∀f,h∃C)

With probability 1 over F,H there is C ∈ C :

C Enc(F) ⊕ H (x) = F(x)   ∀ x

• ⇒ there is C’ ∈ C : with probability 1/|C| over F,H

C’ Enc(F) ⊕ H (x) = F(x)   ∀ x

• Note: C = all circuits of size poly(k), 1/|C| = 2-poly(k)



The information-theoretic lemma
• Lemma

Let V1,…,Vt i.i.d., V1’,…,Vt’ := V1,…,Vt | E

E noticeable ⇒ there is large good set G ⊆ [t] :

for every i1,…,iq ∈ G : (V’i1
,…,V’iq

) ≈ (Vi1
,…,Viq

)

• Proof:  E noticeable ⇒ H(V1’,…,Vt’) large

⇒ H(V’i |V’1,…,V’i -1) large for many i (∈ G)

Closeness[(Vi1
,…,Viq

),(V’i1
,…,V’iq

)] ≥ H(V’i1
,…,V’iq

)

≥ H(V’iq
| V’1,…,V’iq -1

) +…+ H(V’i1
| V’1 ,…,V’i1-1) large   

Q.e.d.

• Also in [Edmonds Rudich Impagliazzo Sgall, Raz]



Applying the lemma

• Vx = H(x) ~ Noise 1/2-ε

• E := { H : C’ Enc(F) ⊕ H(x) = F(x)  ∀ x},  Pr[E] ≥ 1/|C|

H’ = H | E =

C’ Enc(F’) ⊕ H’ (x) ≈ C’ Enc(F) ⊕ H (x)

• All queries in G ⇒ proof for uniform case goes thru

0 1 1 1 0 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0   L 0

Gq queries



Handling bad queries

• Problem: C(x) may query bad y ∈ {0,1}n not in G

• Idea: Fix bad query. Queries either in G or fixed ⇒

proof for uniform case goes thru

• Delicate argument:

Fixing bad query H(y) creates new bad queries

Instead, fix heavy queries: asked by C(x) for many x’s 

OK because new bad queries are light, affect few x’s



• This work: Black-box (non-adaptive)

hardness amplification against C ⇒ Majority ∈∈∈∈ C

• Reach of standard techniques
[This work] + [Razborov Rudich] + [Naor Reingold]

“Can amplify hardness ⇔ cannot prove lower bound”

• Open problems

Adaptivity?   (OK in special cases [V., Gutfreund Rothblum])

1/3-pseudorandom construction ⇒ majority?

Conclusion


