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Computation

 Efficient computation is fundamental to Science

Increasingly important to many fields

. ‘)‘34, o © .
biology / *- ol physics
economics iﬁw‘ mathematics

LTI —

« Goal: understand efficient computation



Lower Bounds

Goal: Show that natural problems cannot be solved
with limited resources (e.g., time, memory,...)

E.g.: Cannot factor n-digit number in time n?
Fundamental enterprise, basis of cryptography
Widespread belief: very challenging area

This talk: Lower bounds for various resources
surprising connections



Communication complexity
[Yao, Chandra Furst Lipton ‘83]

Task: Compute function f ;| input — {0,1}

Input distributed among %
collaborating players

il o

Cost = how many bits players must broadcast ﬁ ﬁ ﬁ

E.g.: For 2 players computing “x =? y” costs O(|x|)



Application: CHIP design

[..., Lipton Sedgewick ‘81]

» Task: Design CHIP for f : {0,1}" — {0,1)

Side length measure: 5

X —X,—®
wire width sideld | & "
X, !
Wires carry 1 bit _| output : X;—

per time step “ “

« 2-players simulate CHIP sending [side| bits per step

* Theorem: |side| x time > 2-player cost of f



Pointer chasing

 |nput: directed depth-k graph
Output: node reached from source

« k players speak in turn;i-th knows all but depth-i edges

@, O/O @,
Player 1: o? Player 2: g?
@,

« High cost for log(|graph|) players = breakthrough
Question[<1996]: 4 players?



Our results
[V. Wigderson; FOCS "07 special issue]

« Theorem[VW] To chase a pointer in graph of depth k
k players must communicate > |graph|'k bits

— Handle up to k = log(|graph|)'/3

« Applications:
round hierarchy for communication
multiple-pass streaming algorithms



Proof Idea

Induction on depth = number of players

Assume 1 chasing o/'l

o]

= 100 chasings <

O—

4

= 1 chasing o/

O—

high cost for k players

high cost for k players
for most graphs

high cost for k+1 players
New player's message
won't help

Q.e.d.



Outline

« Communication complexity
 Circuit complexity

« Randomness vs. time



Circuits

: ™~
Gates: arbltrgry
fan-in
A =AND > Depth
V = OR ; (V)
— = NOT AN ~

Resource: size = number of gates
Poly-size constant-depth = constant parallel time

Theorem[Yao, Beigel Tarui, Hastad Goldman]

Communication lower bound (polylog players)
—> circuit lower bound (small-depth, Mod gates)



Error correcting codes

Message

0100100 |mmp

1111110

~

0100100

0000111
L/

Codeword

Encoder == 101101011010011010

—

List
Decoder

€= 111000011111001100

List contains message

Recelved word

 Question: Complexity of encoder, decoder?
Motivation: average-case complexity



Our results: Encoding needs parity
[V.; J. Comp. Complexity]

Message Codeword
0100100 |—> Encoder _b 101101011010011010

« Parity ®(x4,...,X,) =1 & 2. x; odd
sufficient for encoding (e.g., linear codes)

 Theorem[V]:
Cannot encode with small size,
small depth, —, v, A gates.
Parity is necessary  Message




Our results: Decoding needs majority
[Shaltiel V.; STOC ‘08]

~N

1111110

List
0100100 | ¢ 1 coder =] 111000011111001100

0000111 y Received word

« Often more involved than encoding

1111110 || A1D0O100

e Theorem[SV]: ZO>
Cannot decode with small size, "@4@@@&
ETIE

small depth —, v, A, © gates. =T SZ
Majority is necessary Received word




Proof idea: Decoding needs majority

* Repetition code:

0 Jm=b| Encoder fsh|000000000000000000

1 b/ Encoder bl 111111111111111111

I
—h

« Decoder: Majority(|101010111010101001 |)

» Theorem[SV]: This happens in every code
— Acknowledgment: Madhu Sudan

« Main difficulty: Large lists. Use information theory.



Outline

« Communication complexity
 Circuit complexity

« Randomness vs. time



Randomness vs. Time

» Probabilistic Time: for every x, Pr [ M(x) errs | < 1%

» Deterministic simulation?
Brute force: probabilistic time t < deterministic time 2!
Belief: probabilistic time t < deterministic time t°(1)

» Surprise: Belief < circuit lower bounds
by Babai Fortnow Kabanets Impagliazzo Nisan Wigderson...



Our Results
[V.; SIAM J. Comp., SIAM student paper prize 2006]

Theorem[V]: Poly(n)-size probabilistic constant-depth
circuits with —, v, A, log(n) parity gates

c Deterministic Time(2n%) ( trivial Time(2n°"))

Richest probabilistic circuit class in Time(2™)

Proof: Lower bound = pseudorandom generator



Our Results
[Bogdanov V.; FOCS '07 special issue]

stretch
A

* 011010 —>|Generator—> 1011010110100110

Output “looks random” to polynomials, e.g. X;-X5 + X3

* Theorem[Bogdanov V.] Optimal stretch generator
(I) Unconditionally: for degree 2,3
(Il) Under conjecture: for any degree

 Theorem [Green Tao, Lovett Meshulam Samorodnitsky]:
Conjecture false



Our latest result
[V.; CCC ‘08]

* Theorem[V.]: Optimal stretch generator
for any degree d.

(Despite the conjecture being false)

* Improves on [Bogdanov V.] and [Lovett]

 Also simpler proof



BPP vs. Poly-time Hierarchy
Probabilistic Polynomial Time (BPP):

for every x, Pr[ M(x) errs | < 1%

Recall belief: BPP =P
Still open: BPP c NP ?

Theorem([Sipser Gacs, Lautemann ‘83]: BPP c X, P

Recall NP=%X,P — 3JyMxy)
>, P — dyVvz M(xy,z)



The Problem We Study

* More precisely [Sipser Gacs, Lautemann] give
BPTime(t) c X, Time( t?)

« Question: Is quadratic slow-down necessary?

 Motivation: Lower bounds

Know X, Time(n) # Time(n) on some models
[Paul Pippenger Szemeredi Trotter, Fortnow, ...]

Technique: speed-up computation with quantifiers

For X, Time(n) # BPTime(n) can’t afford X, Time( t?)



Approximate Majority

. Input:R=101111011011101011
. Task: Tell Pr,[R = 1] >99% from Pr[R =1]< 1%

Do not care if Pr,[ Ry = 1] ~ 50% (approximate)

* Model: Depth-3 circuit W) ~

AP
2| <5
R=101111011011101011

> Depth




The connection
[Furst Saxe Sipser ‘83]

M(x:r) € BPTime(t) =) R-11011011101011
RI=2 SR = M(x;)
Compute M(x):
Tell Pr[M(xir) = 1]>99% mm) Compute Appr-Maj
from Pr[M(x;r) = 1] < 1%

BPTime(t) c L,Time(t) =
_ 3V Time(t)

101111011011101011

Running time t’ # Bottom fan-inf=1t"/ t
— run M at most t'/t times



Our Results
'V.; CCC ’07]

Theorem[V] : Small depth-3 circuits for Approximate
Majority on N bits have bottom fan-in Q(log N)
— Tight [Ajtai]

Corollary: Quadratic slow-down necessary for
black-box techniques:

BPTime A (1) X Z,Time A (t'-%9)

Theorem[Diehl van Melkebeek, V]:
BPTime (t) c X;Time (t-log°t)

For time, the level is the third



Our Negative Result

» Theorem[V]: 2N"-size depth-3 circuits for Approximate
Majority on N bits have bottom fan-in f > (log N)/10

« Note: 22(N) bound = bound for log-depth circuits

[Valiant]
* Recall:

R=f01111011011101011] |R|=N

tells Re YES :={R:Pr.[R = 1] > 99% }
fromRe NO ={R:Pr[R=1]<1%}




Proof

Circuit: OR B

= (X VX, VXg) A(—X ) A(Xs VX))
of s=2N°CNF ¢C,C,-- C, - veTe

Y
clause size = fan-in

By definition of OR :
Re YES = some C, (R) =1
Re NO =al G (R)=0

By averaging, fix C = C; s.t.
PFREYES [C (X)=1 ]21/S=1/2N8
VReNO = C(R)=0

Claim: Impossible if C has clause size < (log N)/10



Either Prg _ ves [C(X)=1] <1/2Nor 3R € NO : C(x) = 1

Proof Outline

 Definition: S < {X{,X,,...,XN} IS @ covering if every
clause has a variable in S

E.g.: S={X3,X4} C=(X{VX,Vax3) A (mX,) A (X5VX5)

* Proof idea: Consider smallest covering S
Case |S|BIG:Prg_yvgs [C(X)=1]<1/2V

Case |S| tiny : Fix few variables and repeat




Either Prg . ves [C(X)=1] <1/2¥or 3R € NO : C(x) =

Case |S| BIG

* |S| > N°= have N°/log N disjoint clauses I
— Can find I'; greedily

* Pracves [C(R)=1] <Pr[ Vi, T}(R) = 1]
=L P (R) = 1] (independence)

< H 1-1/100 IogN/10) H (1 _1/N1/2)
- (1 - 1/N1/2)(N5/|og N) < {/ONE \/




Either Prg _ ves [C(X)=1] <1/2Nor 3R € NO : C(x) = 1

Case [S]| tiny

« |S|<N° = FixvariablesinS
— Maximize Prg _ vegs [C(Xx)=1]

* Note: S covering = clauses shrink

Example
Xq ¢ 0
(X1 VX VX5 )A(T X3)A(X5V =1 %) X, 1 > (X1 VX5 )A(X5)

* Repeat
Consider smallest covering S’, etc.




Either Prg _ ves [C(X)=1] <1/2Nor 3R € NO : C(x) = 1

Finish up

» Recall: Repeat = shrink clauses
So repeat at most (log N)/10 times

* When you stop:
Either smallest covering size > N3/
OrC=1
Fixed < N° (log N) /10 << N vars.

Setrestto0 =R e NO:C(R) =1 \/
Q.e.d.




Conclusion

Lower bounds: rich area, surprising connections

Communication complexity, pointer chasing [VW]

Circuit complexity, encoding vs. decoding [V,SV]
Time vs. Randomness

Constant-depth circuits, polynomials [V,.BV,V]
BPP vs. poly-time hierarchy [V
Circuit lower bound for approximate majority




