
Lower Bounds

Emanuele Viola

Columbia University

February 2008



• Efficient computation is fundamental to Science

Increasingly important to many fields

biology physics

economics mathematics

• Goal: understand efficient computation

Computation



• Goal: Show that natural problems cannot be solved

with limited resources (e.g., time, memory,…)

E.g.: Cannot factor n-digit number in time n2

• Fundamental enterprise, basis of cryptography

• Widespread belief: very challenging area

• This talk: Lower bounds for various resources

surprising connections

Lower Bounds



• Task: Compute function f :                    → {0,1} 

• Input distributed among

collaborating players

• Cost = how many bits players must broadcast

• E.g.: For 2 players computing “x =? y” costs Θ(|x|)

Communication complexity
[Yao, Chandra Furst Lipton ‘83]

input

input

0101



• Task: Design CHIP for f : {0,1}n → {0,1} 

Side length measure:

wire width

Wires carry 1 bit

per time step

• 2-players simulate CHIP sending |side| bits per step

• Theorem: |side| x time > 2-player cost of f

Application: CHIP design
[…, Lipton Sedgewick ‘81]

X1

X2

X3

X4output

|side|



• Input: directed depth-k graph

Output: node reached from source

• k players speak in turn; i-th knows all but depth-i edges

Player 1:  Player 2:

• High cost for log(|graph|) players ⇒ breakthrough 

Question[<1996]: 4 players?

Pointer chasing

? ?



Our results
[V. Wigderson; FOCS ’07 special issue]

• Theorem[VW] To chase a pointer in graph of depth k

k players must communicate ≥ |graph|1/k bits

– Handle up to k = log(|graph|)1/3

• Applications:

round hierarchy for communication

multiple-pass streaming algorithms



• Induction on depth = number of players

• Assume 1 chasing high cost for k players

• ⇒ 100 chasings

• ⇒ 1 chasing 

Q.e.d.

Proof Idea

…
high cost for k players

for most graphs

…

high cost for k+1 players 
New player’s message 
won’t help



Outline

• Communication complexity

• Circuit complexity

• Randomness vs. time



Circuits

• Gates:

∧ = AND

V = OR

¬ = NOT

• Resource: size = number of gates

• Poly-size constant-depth = constant parallel time

• Theorem[Yao, Beigel Tarui, Hastad Goldman]

Communication lower bound (polylog players)   
⇒ circuit lower bound          (small-depth, Mod gates)

Input

Depth

V ¬¬¬¬ V V V V ¬¬¬¬ V

V

/\ ¬¬¬¬ /\ /\ /\ /\

arbitrary

fan-in



Error correcting codes

Encoder0100100 101101011010011010

List
Decoder

0000111

111000011111001100

Noise at rate 49%1111110

0100100

Message Codeword

Received word

List contains message

• Question: Complexity of encoder, decoder?  

Motivation: average-case complexity



101101011010011010

Our results: Encoding needs parity
[V.; J. Comp. Complexity]

Encoder0100100 101101011010011010

Message Codeword

• Parity ⊕(x1,…,xn) := 1 ⇔ ∑i xi odd

sufficient for encoding (e.g., linear codes)

• Theorem[V]:

Cannot encode with small size,

small depth, ¬, ∨, ∧ gates.

Parity is necessary Message

V ¬ V V V V V ¬

/\ /\ /\ /\ /\ /\



0100100

Our results: Decoding needs majority
[Shaltiel V.; STOC ‘08]

• Often more involved than encoding

• Theorem[SV]:

Cannot decode with small size,

small depth ¬, ∨, ∧, ⊕ gates.

Majority is necessary Received word

List
Decoder

0000111

111000011111001100

1111110

0100100

Received word

V ¬ V V V ¬

/\ ⊕⊕⊕⊕ /\ /\ /\

1111110

⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕⊕



Proof idea: Decoding needs majority

• Repetition code:

• Decoder:  Majority(                                   ) = 

• Theorem[SV]: This happens in every code

– Acknowledgment: Madhu Sudan

• Main difficulty: Large lists. Use information theory.

Encoder0 000000000000000000

Encoder1 111111111111111111

101010111010101001 1



Outline

• Communication complexity

• Circuit complexity

• Randomness vs. time



• Probabilistic Time: for every x, Pr [ M(x) errs ] < 1%

• Deterministic simulation?

Brute force: probabilistic time t ⊆ deterministic time 2t

Belief: probabilistic time t ⊆ deterministic time tO(1)

• Surprise: Belief ⇔ circuit lower bounds

by Babai Fortnow Kabanets Impagliazzo Nisan Wigderson…

Randomness vs. Time



• Theorem[V]: Poly(n)-size probabilistic constant-depth 
circuits with ¬, ∨, ∧, log(n) parity gates

⊆ Deterministic Time(2nε
) (⊂ trivial Time(2nΟ(1)

))

• Richest probabilistic circuit class in Time(2nε
)

• Proof: Lower bound ⇒ pseudorandom generator

Our Results
[V.; SIAM J. Comp., SIAM student paper prize 2006]

Input Random Bits

V ¬ V V ¬ V

/\ /\ /\ /\/\

V

⊕⊕⊕⊕

⊕⊕⊕⊕

⊕⊕⊕⊕



•

Output “looks random” to polynomials, e.g. x1·x2 + x3

• Theorem[Bogdanov V.] Optimal stretch generator

(I) Unconditionally: for degree 2,3

(II) Under conjecture: for any degree

• Theorem [Green Tao, Lovett Meshulam Samorodnitsky]:

Conjecture false

Our Results
[Bogdanov V.; FOCS ’07 special issue]

Generator 1011010110100110011010

stretch



Our latest result
[V.; CCC ‘08]

• Theorem[V.]: Optimal stretch generator

for any degree d.

(Despite the conjecture being false)

• Improves on [Bogdanov V.] and [Lovett]

• Also simpler proof



• Probabilistic Polynomial Time (BPP):

for every x, Pr [ M(x) errs ] < 1%

• Recall belief: BPP = P

Still open: BPP ⊆ NP ?

• Theorem[Sipser Gács, Lautemann ‘83]: BPP ⊆ Σ2 P

• Recall NP = Σ1 P → ∃ y M(x,y)

Σ2 P → ∃ y ∀ z  M(x,y,z)

BPP vs. Poly-time Hierarchy



• More precisely [Sipser Gács, Lautemann] give

BPTime(t) ⊆ Σ2Time( t2 )

• Question: Is quadratic slow-down necessary?

• Motivation: Lower bounds

Know Σ1Time(n) ≠ Time(n) on some models
[Paul Pippenger Szemeredi Trotter, Fortnow, …]

Technique: speed-up computation with quantifiers

For Σ1Time(n) ≠ BPTime(n) can’t afford Σ2Time( t2 )

The Problem We Study  



R = 101111011011101011

• Input: R = 101111011011101011

• Task: Tell Pri [ Ri = 1] > 99%  from   Pri [ Ri = 1] < 1%

Do not care if Pri [ Ri = 1] ~ 50%  (approximate)

• Model: Depth-3 circuit 

Approximate Majority

V V V ¬ V V ¬ V

/\ /\ /\ /\ /\ /\

V

Depth



M(x;r) ∈ BPTime(t) R = 11011011101011

Compute M(x):

Tell Prr[M(x;r) = 1] > 99% Compute Appr-Maj
from Prr[M(x;r) = 1] < 1%

BPTime(t) ⊆ Σ2Time(t’)

= ∃ ∀ Time(t’)

Running time t’ Bottom fan-in f = t’ / t
– run M at most t’/t times

The connection
[Furst Saxe Sipser ‘83]

V V V V V V V V

/\ /\ /\ /\ /\ /\

V

L f L

|R| = 2t Ri = M(x;i)

101111011011101011



• Theorem[V] :  Small depth-3 circuits for Approximate 
Majority on N bits have bottom fan-in Ω(log N)
– Tight [Ajtai]

• Corollary: Quadratic slow-down necessary for     
black-box techniques:

BPTime A (t) ⊆ Σ2Time A (t1.99)

• Theorem[Diehl van Melkebeek, V]:

BPTime (t) ⊆ Σ3Time (t⋅log5 t)

• For time, the level is the third

Our Results
[V.; CCC ’07]



• Theorem[V]: 2Nε
-size depth-3 circuits for Approximate 

Majority on N bits have bottom fan-in f > (log N)/10

• Note: 2Ω(N) bound ⇒ bound for log-depth circuits
[Valiant]

• Recall:

tells R ∈ YES := { R : Pri [ Ri = 1] > 99% }

from R ∈ NO := { R : Pri [ Ri = 1] < 1% }

Our Negative Result

V V V V V V V V

/\ /\ /\ /\ /\ /\

V

L f L
R = 101111011011101011       |R| = N



• Circuit: OR

of s=2Nε
CNF

• By definition of OR :

R ∈ YES ⇒ some Ci (R) = 1

R ∈ NO ⇒ all Ci (R) = 0

• By averaging, fix C = Ci s.t. 

PrR ∈ YES [C (x) = 1 ] ≥ 1/s = 1/2Nε

∀ R ∈ NO  ⇒ C (R) = 0

• Claim: Impossible if C has clause size < (log N)/10

Proof

V

C1 C2 L Cs

Ci = (x1Vx2V¬x3)∧∧∧∧(¬x4)∧∧∧∧(x5Vx3)

clause size = fan-in



• Definition: S ⊆ {x1,x2,…,xN} is a covering if every 
clause has a variable in S

E.g.:  S = {x3,x4}  C = (x1Vx2V¬x3 ) ∧ ∧ ∧ ∧ (¬x4) ∧ ∧ ∧ ∧ (x5Vx3) 

• Proof idea: Consider smallest covering S

Case |S| BIG : PrR ∈ YES [C (x) = 1 ] < 1 / 2Nε

Case |S| tiny : Fix few variables and repeat

Proof Outline

Either PrR ∈ YES [C(x)=1] <1/2Nε
or ∃ R ∈ NO : C(x) = 1



• |S| ≥ Nδ ⇒ have Nδ / log N disjoint clauses Γi

– Can find Γi greedily

• PrR ∈ YES [C(R) = 1] ≤ Pr [ ∀ i, Γi(R) = 1 ]

= ∏i Pr[ Γi(R) = 1] (independence)

≤≤≤≤ ∏i (1 – 1/100 (log N)/10 ) ≤≤≤≤ ∏i (1 – 1/N1/2)

= (1 – 1/N1/2)(Nδ/log N) ≤ 1/2Nε

Case |S| BIG

Either PrR ∈ YES [C(x)=1] <1/2Nε
or ∃ R ∈ NO : C(x) = 1



• |S| < Nδ ⇒ Fix variables in S
– Maximize PrR ∈ YES [C(x)=1]

• Note: S covering ⇒ clauses shrink

Example

(x1Vx2Vx3 )∧∧∧∧(¬ x3)∧∧∧∧(x5V ¬ x4)                    (x1Vx2 )∧∧∧∧(x5)

• Repeat

Consider smallest covering S’, etc.

Case |S| tiny

x3 ← 0

x4 ← 1

Either PrR ∈ YES [C(x)=1] <1/2Nε
or ∃ R ∈ NO : C(x) = 1



• Recall: Repeat ⇒ shrink clauses

So repeat at most (log N)/10 times

• When you stop:

Either smallest covering size > Nδ

Or C = 1 

Fixed ≤ Nδ (log N) /10  << N vars.

Set rest to 0 ⇒ R ∈ NO : C(R) = 1
Q.e.d.

Finish up

Either PrR ∈ YES [C(x)=1] <1/2Nε
or ∃ R ∈ NO : C(x) = 1



• Lower bounds: rich area, surprising connections

• Communication complexity, pointer chasing [VW]

• Circuit complexity, encoding vs. decoding [V,SV]

• Time vs. Randomness

Constant-depth circuits, polynomials [V,BV,V]

BPP vs. poly-time hierarchy [V]

Circuit lower bound for approximate majority

Conclusion


