Pseudorandom bits for polynomials

Emanuele Viola

&

Andrej Bogdanov

Columbia University work done while at IAS

ITCS, Tsinghua University work done while at DIMACS

October 2007

Pseudorandom generator

[Blum Micali; Yao; Nisan Wigderson]

- Efficient
- Short seed s(n) << n
- Output ``looks random''

Want to fool polynomials

"Looks random":

fools degree-d n-variate polynomials over field {0,1}

E.g.,
$$p = x_1 + x_5 + x_7$$
 degree $d = 1$
 $p = x_1 \cdot x_2 + x_3$ degree $d = 2$

Want: ∀ p of degree d

$$| Pr_{X \in \{0,1\}^n}[p(X) = 0] - Pr_{S \in \{0,1\}^S}[p(Gen(S)) = 0] | \le \epsilon$$

Fundamental model: coding theory, lower bounds, etc.

Previous results

- Th.[Naor & Naor '90]: Fools linear, seed = O(log n/ε)
 - Applications: derandomization, PCP, expanders, learning...
- Th.[Luby Velickovic Wigderson '93]:
 Fools constant degree, seed = exp(√log n/ε)
 - [V] gives modular proof of more general result
- Th.[Bogdanov '05]: Any degree, but over large fields

Over small fields such as {0,1}:
 no progress since 1993, even for degree d=2

Our results

New approach based on "Gowers norm"

Theorem[This work]:

Unconditionally:

Fool degree d=2 with seed = $2 \cdot \log(n) + \log(1/\epsilon)$

Fool degree d=3 with seed = $3 \cdot \log(n) + f(\epsilon)$

Theorem[This work]:

Under "d vs. d-1 Gowers inverse conjecture": Fool any degree d with seed = $d \cdot log(n) + f(d,\epsilon)$

Results apply to any prime field.
 Focus on {0,1} for simplicity

[Green & Tao] + Our results

Breaking news[Green & Tao; very recently]:
 The "d vs. d-1 Gowers inverse conjecture" is true

Corollary [Green & Tao] + [This work]:
 Fool any degree d with seed = d·log(n) + f(d,ε)

Our generator

Generator that fools degree d:
 Let L ∈ {0,1}ⁿ fool linear polynomials [NN] bit-wise XOR d independent copies of L:

Generator := $L^1 + ... + L^d$

Seed length d·log(n) + f(d,ε) optimal for fixed d, ε
 ⇒ XORing d-1 copies is not enough.

Other recent development

After this work
 Th.[Lovett]: The XOR of 2^d generators for degree 1 fools degree d, without using Gowers norm.

• Recall our generator: XOR d copies, seed length d·log(n) + f(d, ϵ) Better seed for fixed degree d, error ϵ worse dependency on ϵ

Outline

Overview

Our results

Gowers norm

Proof

Gowers norm

[Gowers '98; Alon Kaufman Krivelevich Litsyn Ron '03]

- Measure closeness to degree-d polynomials: check if random d-th derivative is biased
- Derivative in direction $y \in \{0,1\}^n : D_y p(x) := p(x+y) p(x) E.g. D_{y_1,y_2,y_3}(x_1,x_2+x_3) = y_1x_2 + x_1y_2 + y_1y_2 + y_3$
- Norm $N_d(p) := E_{Y^1...Y^d \in \{0,1\}^n} \operatorname{Bias}_X[D_{Y^1...Y^d} p(X)] \in [0,1]$ (Bias [Z] := | Pr[Z = 0] Pr[Z = 1] |)
 - $N_d(p) = 1 \Leftrightarrow p \text{ has degree d}$
- From combinatorics [Gowers; Green Tao], to PCP [Samorodnitsky Trevisan], lower bounds [V. Wigderson], ...

Proof idea

- Recall: want to fool degree-d polynomial p
- Case analysis based on closeness of p to degree d-1 polynomials, measured by Gowers norm N_{d-1}(p)
- Case $N_{d-1}(p)$ small \Rightarrow directly fool p
- Case $N_{d-1}(p)$ large \Rightarrow reduce to fooling degree-(d-1), induction.

Case N_{d-1}(p) small

- Recall: L¹, ..., L^d fool linear polynomials Goal: Bias $[p(X)] \approx \text{Bias} [p(L^1 + ... + L^d)] \approx 0$
- Lemma[Gowers]: Bias $[p(X)] \le N_{d-1}(p) \approx 0$
- Lemma[This work]: Bias $[p(L^1 + ... + L^d)] \le N_{d-1}(p) \approx 0$
- Proof: Bias [$p(L^1 + ... + L^d)$] $\leq E_{L^1 ... L^{d-1}} \operatorname{Bias}_X [D_{L^1 ... L^{d-1}} p(X)]$ $\approx E_{Y^1 ... Y^{d-1}} \operatorname{Bias}_X [D_{Y^1 ... Y^{d-1}} p(X)] = N_{d-1}(p)$ (linear in each Y^i) Q.F

Case N_{d-1}(p) large

N_{d-1}(p) large

Gowers inverse theorem [Green & Tao; Samorodnitsky]

p barely close to degree d-1 polynomial

(51 %)

Self-correction

[This work]

 p very close to (function of) degree d-1 polynomials (99 %)

Apply induction

Conclusion

- New approach to fooling degree-d polynomials
 - Fool degree d = 2,3 with seed O(log n)
 - Using recent results [Green & Tao]
 fool any degree d with seed O(log n)
- Proof: case analysis based on Gowers norm Recurrent theme in combinatorics

Open problem: Power of our generator?