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● f : {0,1}n → {0,1}  d-local :
output depends on d input bits

● Fact: Parity(x) = 1 ⇔ ∑ xi = 1 mod 2
         is not n-1 local

● Proof: Flip any input bit ⇒ output flips ♦

Local functions     (a.k.a. Junta, NC0)
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● Theorem [Babai '87; Boppana Lagarias '87]

There is f : {0,1}n → {0,1}n+1 , each bit 2-local 
Distribution f(X) ≡ ( Y, parity(Y) )     (X, Y ∈ {0,1}n  uniform)

Local generation of ( Y, parity(Y) )
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● Complexity theory of distributions  (as opposed to functions)

How hard is it to generate (a.k.a. sample)
                                          distribution D given random bits ?

E.g., D = ( Y, parity(Y) ),     D = Wk := uniform n-bit with k 1's

Our message



  

● In addition to previous example:

● Generate Random Factored Numbers       [Bach '85, Kalai]

● On the Implementation of Huge Random Objects
                                   [Goldreich Goldwasser Nussboim '03]

● The Equivalence of Sampling and Searching [Aaronson '10]
                             (Given x, sample Dx)

● This work: first negative results (a.k.a. lower bounds)
                 new connections

Is message new?



  

● Generating Wk := uniform n-bit with k 1's

– Local

– Decision tree

● Results for ( Y, b(Y) )

● Bounded-depth circuit model

Outline of talk



  

● Theorem
f : {0,1}n→{0,1}n        0.1 log n - local

⇓

        f(X) at Statistical Distance > 1 - n-Ω(1)

from Wn/2 = uniform w/ weight n/2

● Tight up to Ω():   f(x) = x

● Extends to Wk, k≠n/2, tight?

Our results: local



  

● Problem:
Store S ⊆ {1, 2, …, n}, |S| fixed
in u = optimal + r bits,
answer “i ∈ S?” probing d bits.

   

● Connection:
Solution ⇒ generate W|S|  d-local, Stat. Distance < 1- 2-r  

● Corollary: Need r > Ω(log n)  if d = 0.1 log n
First lower bound for |S| = n/2, n/4, ...

Our results: succinct data structures

01001001101011

b1 b2 b3 bu...

Store



  

● Theorem:      Let f : {0,1}n → {0,1}n  :       d= 0.1 log n-local.

There is T ⊆ {0,1}n  : | Pr[f(x)∈T] – Pr[Wn/2∈T] | > 1 - n-Ω(1) 

● Warm-up scenarios:

● f(x) = 000111    Low-entropy            T := { 000111 }      

  | Pr[ f(x) ∈ T] – Pr[Wn/2 ∈ T] | = |1  – |T| / (n choose n/2) |

● f(x) = x       “Anti-concentration”       T := { z : ∑i
 zi = n/2 }

                    | Pr[ f(x) ∈ T] – Pr[Wn/2 ∈ T] | = |Θ(1)/√n  – 1 |

Proof



  

● Partition input bits X = (X1 , X2 , … , Xs , H)

● Fix H. Output block Bi depends only on bit Xi

● Many Bi constant ( Bi(0,H) = Bi(1,H) ) ⇒ low-entropy

● Many Bi  depend on Xi  ( Bi(0,H) ≠ Bi(1,H) )   
Idea: Independent ⇒ anti-concentration: can't sum to n/2

Proof
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● If many Bi(0,H) , Bi(1,H) have different sum of bits, use 

Anti-concentration Lemma [ Littlewood Offord ]

For a1, a2, ..., as  ≠ 0, any c, PrX∈{0,1}s [∑i
 ai Xi = c] < 1/√n

● Problem: Bi(0,H) = 100, Bi(1,H) = 010
high entropy but no anti-concentration

● Fix: want many blocks 000, so high entropy ⇒ different sum
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● Test T ⊆ {0,1}n  : Pr[f(X1,...,Xs,H)∈T] ≈ 1 ;  Pr[Wn/2∈T] ≈ 0

z ∈T ⇔

∃ H : ∃ X1,...,Xs w/ many blocks Bi fixed : f(X1,...,Xs,H) = z
   OR
Few blocks z|Bi are 000
  OR

∑i
 zi ≠ n/2

X1

B1

X2 Xs H

O(d)

B2

O(d)

Bs

O(d)

BH

...



  

● Generating Wk := uniform n-bit with k 1's

– Local

– Decision tree

● Results for ( Y, b(Y) )

● Bounded-depth circuit model

Outline of talk



  

● f : {0,1}m → {0,1}n  depth-d
each output bit fi  
is depth-d decision tree

• d adaptive bit-probes

Decision tree model

fi (b1   ....  bm)
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● Depth d  ⊆  2d local



  

● Theorem   f : {0,1}* → {0,1}n  : depth < 0.1 log n 

                   Distance( f(X), Wn/2 ) > n-Ω(1) 

● Worse than 1 - n-Ω(1)   lower bound for local

● Theorem building on [Czumaj Kanarek Lorys Kutyłowski]
∃ f : depth O(log n)   and   Distance(f(X), Wn/2 ) < 1/n

Our results: decision trees



  

● Central limit theorem:

x
1 
, x

2 
, ..., x

n  
independent ⇒ ∑x

i 
≈ normal

● Bounded-independence central limit theorem
[Diakonikolas Gopalan Jaiswal Servedio V. ]

x
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, ..., x

n   
k-wise independent ⇒ ∑x

i   
≈  normal

∀ t   | Pr[∑x
i 
< t] - Pr[normal < t] |  <  1/√k

Tool for lower bound proof



  

● Theorem   f : {0,1}* → {0,1}n  : each bit depth < 0.1 log n

                     Distance( f(X), Wn/2 ) > n-Ω(1) 

● Proof: Is output distribution f(X) (k = 10)-wise independent?

NO : Wn/2  ≈ k-wise independent 

       Distance(those k bits, uniform on {0,1}k) > 2-k(0.1 log n)

       (granularity of decision tree probability)

YES : by prev. theorem ∑f(X)
i  
≈  normal                                

       so often ∑f(X)
i 
≠ n/2                         ♦

Proof
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● Results so far: Distribution = Wn/2
             below: Distribution = ( Y, b(Y) ),   b boolean

● Theorem: f : {0,1}n→{0,1}n+1    

o(log n)-local ⇒ Distance( f(X) , (Y, (Y mod p)>p/2) ) > 0.49

o(log n)-depth ⇒ Distance( f(X) , (Y, majority Y)) > n-Ω(1) 

Our results for ( Y, b(Y) )



  

● Generating Wk := uniform n-bit with k 1's

– Local
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● Results for ( Y, b(Y) )

● Bounded-depth circuit model

Outline of talk



  

● More general model: small bounded-depth circuits (AC0) 

● Theorem building on [Matias Vishkin, Hagerup; '91]
Can generate ( Y, majority(Y) ),       error 2-|Y|

● Challenge: error 0?

Bounded-depth circuits
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● Theorem[Lovett V.] Cannot generate error-correcting code

● Code C ⊆ {0,1}n of size |C| = 2k =Ω(n)

          x ≠ y ∈ C ⇒  x, y far : hamming distance Ω(n)

● f : {0,1}* → {0,1}n , f ∈ AC0

Distance(f(X), uniform over C) > 1 - n-Ω(1)

Our lower bound for codes



  

● Fact: f : {0,1}k → {0,1}n , f ∈ AC0

f cannot compute encoding function of C,

mapping message m ∈ {0,1}k to codeword

● Proof:

● [Linial Mansour Nisan '93, Boppana] low sensitivity of AC0:
   m, m' random at hamming distance 1
   ⇒ f(m), f(m') close in hamming distance.

● But f(m) ≠ f(m') ∈ C ⇒  far in hamming distance     ♦

Warm-up



  

● Theorem [Lovett V.]  f : {0,1}L >> k → {0,1}n , f ∈ AC0

Distance(f(X), uniform over C) > 1 - n-Ω(1)

Problem: f needs not compute encoding function.
Input length >> message length

● Idea: Input {0,1}L  to f partitioned
                                    in |C| sets

● Isoperimetric inequality [Harper, Hart]:
Random m, m' at distance 1 often in ≠ sets ⇒ low sensitivity

Lower bound for codes

●m

●m'



  

● Theorem [Lovett V.]  f : {0,1}L >> k → {0,1}n , f ∈ AC0

Distance(f(X), uniform over C) > 1 - n-Ω(1)

● Note: to get 
Need isoperimetric inequality for m, m' at distance >> 1

Fact[thanks to Samorodnitsky] ∀ A ⊆ {0,1}L of density α
random m,  m' obtained flipping bits w/ probability p :

α2 ≤ Pr[both m ∈ A and m' ∈ A] ≤ α1/(1-p)

Lower bound for codes



  

● Complexity of distributions = uncharted territory

● Lower bounds for generating Wk  locally
     ⇒ lower bound for storing sets of size n/2, n/4, …

● More lower bounds:
decision trees,  generating (Y, b(Y)),  AC0

● Tools: Anti-concentration,
          bounded-independence central limit theorem,
          isoperimetric inequalities, ...

Summary



  

● Note ∃ 2-local f : {0,1}2n → {0,1}n

Distance( f(X), Wn/4 = uniform w/ weight n/4) = 1 - Θ(1)/√n
● Challenge: Distance 1 - 2-Ω(n)   input length = H(1/4)n+o(n)

● Recall:  AC0  can generate ( Y, majority(Y) ),    error 2-|Y|

Challenge: error 0?

● Related [Lovett V.] Any bijection

{0,1}n  =            →               =  {x ∈ {0,1}n+1 : ∑ xi ≥ n/2 }

has large expected hamming distortion?           (n even)

Two open problems



  

● ∑∏√∩∉∪⊃⊇⊄⊂⊆∈⇓⇒⇑⇐⇔∨∧≥≤∀∃Ωαβεγδ→
● ≠≈ΤΑΘ

●

● Recall: edit style changes ALL settings.
● Click on “line” for just the one you highlight



  

● More uses of generating Wk := uniform n-bit string with k 1's

● McEliece cryptosystem

● Switching networks, …

More connections



  

● Store S ⊆ {1, 2, … , n}, |S| = k, in bits, answer “i ∈ S?” 

● [Minsky Papert '69] Average-case study

● [Buhrman Miltersen Radhakrishnan Venkatesh; Pagh  '00]

    Space O(optimal), probe O(1)    when k = Θ(n) 

    Lower bounds for k < n1-ε

● [..., Pagh, Pătraşcu] space = optimal + o(n), probe O(log n)

● [V. '09] lower bounds for k = Ω(n), except  k = n / 2a 

Previous results


