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| ocal functions

* f:{0,1}" - {0,1} d-local : Input x

output depends on d input bits y

o Fact: Parity(x) =1 < > x.=1 mod 2
IS not n-1 local

* Proof: Flip any input bit L output flips ¢



Local generation of (Y, parity(Y) )

 Theorem [Babai '87; Boppana Lagarias '87/]
There is f: {0,1}" = {0,1}"*1 each bit is 2-local
Distribution f(X) = (Y, parity(Y) ) (X, Y O{0,1}" uniform)

Y.= || V,= y,= y = parity(y) =
.

n




Message

« Complexity theory of distributions (as opposed to functions)
How hard is it to generate distribution D given random bits ?

E.g., D=(Y, parity(Y) ), D =Wk := uniform n-bit with k 1's



Rest of this talk

Connection with succinct data structures

Lower bound for locally generating Wp/2 = n-bit with n/2 1's

Decision tree model

Bounded-depth circuit model (with Shachar Lovett)



Succinct data structures for sets

e Store SUU{1, 2, ...,ntofsize [S|=k [01001001101011
Store
v
In u bits b,, ..., b, 0{0,1} D4{b2|b3|D4[bs5|  {by

e \Want:

Small space u (optimal = [g, (n choose k)0

Answer “i 0 S?” by probing few bits (optimal = 1)

 |[n combinatorics: Nesetril Pultr, ..., Korner Monti




Previous results

e Store SU{1, 2, ..., n}, |S| =k, in bits, answer “i L1 S?”

* [Minsky Papert '69, Buhrman Miltersen Radhakrishnan
Venkatesh; Pagh; ...; Patrascu; V. '09]

e Surprising upper bounds
space = optimal + o(n), probe O(log n)

* No lower bounds for k = n / 22



General connection

* Claim: If store S {1, 2, ..., n}, |S| = k inu = optimal + r bits
answer “i L1 S?” by (non-adaptively) probing d bits.

Then Of : {0,1}¥ - {0,1}" , d-local
Distance( f(X), Wk = uniform set of size k) <1 - 2

( Distance(A, B) := maxyt ‘ PrfAO T] - Pr[B O T] ‘ )

e Proof: fj:=“1038?"
f(X) = Wk with probability (n choose k) / 2Y =21 «



Our result

* Theorem[V] f : {0,1}0ptimal + o) _rq 410 (d < ¢ log n)-local.

Distance(f(X), Wk = uniform set of size k= ©(n)) > 1 - n'Q(l)

* Tight up to Q() if k = n/2: f(x) = X, (n choose n/2) =0O(2"/V/n)

* Corollary: Tostore SO{1,2, ...,n}, |S|=k=n/22
answer “i 0 S?” probing d < € log(n) bits:
Need space > optimal + Q(log n)
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Our result

* Theorem[V]: Let f: {0,1}" = {0,1}" : (d=O(1))-local.
There is T 0{0,1}" : | Prf(x)0T] = PrWn20T] | > 1 - @0

 \Warm-up scenarios:

 f(x) =000111 Low-entropy T:={000111}
| Prif(x) O T1= PriWn2 O T1 | = |1 = |T|/ (n choose n/2) |

e f(X) =X “Anti-concentration” T:={z: Zi Z = n/2}

| Prif(x) 0T = PrWn2 OT1 | = [1vn = 1]



Proof

e Partition input bits X = (X1, X2, ..., Xs, H)

O(d o
B4 Bo Bs By

« Fix H. Output block Bj depends only on bit X

 Many Bj constant ( Bj(0,H) = Bj(1,H) ) LU low-entropy

 Many B depend on X ( Bj(0,H) # Bj(1,H) )
ldea: Independent 1 anti-concentration: can't sum to n/2



B4 Bo Bs By

 |If many Bj(0,H), Bi(1,H) have different sum of bits, use

Anti-concentration Lemma [ Littlewood Offord |

For at, a2, ..., as #0,any ¢, Pry o 4 [>.a X;=c]<1/n

e Problem: Bj(0,H) = 100, Bj(1,H) = 010
high entropy but no anti-concentration

* Fix: want many blocks 000, so high entropy LI different sum



B4 Bo Bs By

Test T O{0,1}" : Prif(Xy,.... X, H)OT] = 1; Pr[Wn/20T] =0

z UT =

[IH : UX4,...,Xg W/ many blocks B, fixed : f(Xy,...,Xs,H) =z
OR
Few blocks z|g; are 000

OR
. Z #ni2
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Decision tree model

* £:{0,1}M - {0,1}" depth-d
each output bit f;
Is depth-d decision tree

* Depthd O 29 local




Our result for decision trees

* Theorem[V] f:{0,1}* - {0,1}" : each bit depth < 0.1 log n
Distance( f(X), Wp/2 )> n @

* Worse than 1 - n™*Y) pound for O(1)-local functions

 Theorem[Czumaj Kanarek Lorys Kutytowski, V.]

0f : {0,1}* = {0,1}" : each bit depth O(log n)
Distance(f(X), Wn/2 ) < 1/n



Tool for lower bound proof

e Central limit theorem:

X, X, ..., X_independent O] inz normal

 Bounded-independence central limit theorem
[Diakonikolas Gopalan Jaiswal Servedio V. ]

X, X, ..., X_k-wise independent [ in ~ normal

* Note: For next result, Paley—Zygmund inequality enough



Proof

* Theorem[V] f:{0,1}* - {0,1}" : each bit depth < 0.1 log n
Distance( f(X), Wp/2 )> n

* Proof: Is output distribution f(X) (k = 10)-wise independent?

NO O Wp/2 = k-wise independent

Distance(those k bits, uniform on {0,1}K) > 2-k(0.1log n)
(granularity of decision tree probability)

YES O by prev. theorem  f(X) = normal
so often ) f(X) # n/2 ¢
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Bounded-depth circuits

More general model: small bounded-depth circuits (ACO)

VOV N
x

Challenge: Lexplicit boolean f : cannot generate (Y, f(Y) ) ?

\/ =or
bounded /\ = and
>~ depth - = not

Theorem[Matias Vishkin, Hagerup, Czumaj Kanarek Lorys Kutytowski, V.]
Can generate ( Y, majority(Y) ) (exp. small error)

Theorem [Lovett V.] Cannot generate error-correcting code



Lower bound for codes

* Code C 0{0,1}" of size |C| = 2K ("
x#Zy O C O x,yfar: hamming distance Q(n)

* Theorem [Lovett V.] f: {0,1}* S {0,113 f O ACO

Distance(f(X), uniform over C) > 1 - n (D)

« Consequences for data structures for codewords,
complexity of pseudorand. generators against ACO [Nisan]



Warm-up

Fact: f: {0,13¢  {0,1)", f 0 ACO
f cannot compute encoding function of C,

mapping message m [ {0,1}k to codeword
Proof:

[Linial Mansour Nisan, Boppana] low sensitivity of ACO:
m, m' random at hamming distance 1

I f(m), f(m') close in hamming distance.

But f(m) #f(m') J C U far in hamming distance ¢



Lower bound for codes

* Theorem [Lovett V] f:{0,1}-"" K _ {0,13" O ACO

Distance(f(X), uniform over C) > 1 - n (1)

Problem: f needs not compute encoding function.
Input length >> message length

* |dea: Input {0,1}" to f partitioned "
in |C| sets .

* |soperimetric inequality [Harper, Hart]:
Random m, m' at distance 1 often in # sets [J low sensitivity




Lower bound for codes

* Theorem [Lovett V] f:{0,1}-"" K _ {0,13" 0 ACO

Distance(f(X), uniform over C) > 1 - n

. Note: to get /

-Q(1)

Need isoperimetric inequality for m, m' at distance >> 1

Fact[thanks to Samorodnitsky] L A [J {O,1}L of density o
random m, m' obtained flipping bits w/ probability p :

a® < Pr[both m

Aand m'

Al < 0(1/(1-p)



Complexity of generators against AcY

 Pseudorandom generator against circuit of depth d
(want: reduce randomness w/ minimum overhead)

* Direct implementation of Nisan's generator takes depth = d
(circuit + generator — depth 2d)

e [Lovett V.] Generating output distribution of Nisan's

generator takes depth > d
(for some choice of designs)

* [V.] Generator in depth 2 (circuit + generator — depth d+1)
[Braverman] + [Guruswami Umans Vadhan]



Conclusion

Complexity of distributions = uncharted territory

Lower bound for generating W locally
[ lower bound for succinct data structures for storing

sets of size n / 2°2
Lower bound for decision trees

Lower bound for bounded-depth circuits (ACO)
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More connections

« More uses of generating Wk := uniform n-bit string with k 1's

 McEliece cryptosystem

e Switching networks, ...



Previous results
¢ Store SU{1, 2, ..., n}, |S| =Kk, in bits, answer “i L1 S?”
« [Minsky Papert '69] Average-case study

 [Buhrman Miltersen Radhakrishnan Venkatesh; Pagh '00]
Space O(optimal), probe O(1) when k = ©(n)

Lower bounds fork < n'¢

 [..., Pagh, Patrascu] space = optimal + o(n), probe O(log n)

* [V.'09] lower bounds for k = Q(n), except k=n /22



