Lower bounds for
succinct data structures

Emanuele Viola

Northeastern University

December 2009

Bits vs. trits

e Store n “trits t,, t,, ..., t [1{0,1,2} th b t3 ot

Store /\
| Retrieve

Inubits b, b,, ..., b, 0{0,1) b1 by by by bs D,

» Want:
Small space u (optimal = [h Ig, 30)
Fast retrieval: Get t. by probing few bits (optimal = 2)

Two solutions

* Arithmetic coding:

Store bits of (t,, ..., t) {0, 1, ..., 3" -1}

Optimal space: [hlg, 3[]= n-1.584
Bad retrieval: To get t. probe all > n bits

* Two bits per trit

Bad space: n-2
Optimal retrieval: Probe 2 bits

Polynomial tradeoft
q g
 Dividentritst,, ..., t 11{0,1,2} f \ / ‘
in blocks of q bt 1 4 ts T
L /\

* Arithmetic-code each block
b1byb3bybs bgbzbgbgb,,

Space: [qlg,3n/q<(qlg,3+ 1) n/q polynomial
= nlas3 +n/ tradeoff
92 a between
redundancy,
Retrieval: Probe O(q) bits probes

Polynomial tradeoff

q g
e Divide ntritst,, ..., t 0{0,1,2} ! o ‘
bttt st

In blocks of g

e Arithmetic-code each block

L

b4bybsbsbs bgbzbgbgb,,

Space: [q g, 30n/q =(qlg, 3 + 1/9*") n/q polynomial

=nlg,3 + n/g®"

Retrieval: Probe O(q) bits

tradeoftf
between
redundancy,
probes

Logarithmic forms

Exponential tradeoff

 Breakthrough [Patrascu '08, later + Thorup]

. + /o) exponential
Space: nlg, 3 +n/2 radeoff
between

Retrieval: Probe q bits redundancy,
probes

« E.g., optimal space [Ig, 3] probe O(Ig n)

Our results

* Theorem[V.]: ty L t3 t,
Store ntritst,, ..., t 11{0,1,2}
inu bits b, ..., b, 11{0,1}. @
bibs bab, b b
If get t. by probing q bits 1727374 75 ..

then space u > n Ig, 3 + n/2°9.

+ Matches [Patrascu Thorup]: space < n Ig, 3 + n/2°%

Bits vs. trits

Proof bits vs. trits

Bits vs. sets

Cells vs. prefix sums

Outline

Recall our results

 Theorem: £t |t
Store ntritst,, ..., t 1J{0,1,2} 112153
In u bits b1, . bu [] {0,1} Store
N o
If get t by probing q bits b, by by b, bs

then space u > n Ig, 3 + n/2°9.

* For now, assume non-adaptive probes:
t = d; (byy, by, ..., By)

Proof idea

* tl = dl (bi1’ b|2’ ’ b|q) t1 ti tn
Store q
. Uniform (t,, ..., t) 0{0,1,2}n /7
Let (b,, ..., b,) := Store(t,, ..., t) b1 biybipbiq by

« Space u =optimal O (b,, ..., b,) 0{0,1}4 = uniform [

1/3=Pr[t=2]=Pr[d, (b, ... b,)=2]=A/29% 1/3

Contradiction, so space u >> optimal

Q.e.d.

Information-theory lemma
[Edmonds Rudich Impagliazzo Sgall, Raz, Shaltiel V.]

Lemma: Random (b,, ..., b,) uniform in B 1 {0,1}!

IB| = 2v 0 there is large set G LI [u] :

foreveryi,, ..., i, 0G: (bi1, ..., b.) = uniform in {0,1}9

q

Proof: |B|=2u U H(b,, ..., b,) large
[H(b.| b,, ..., b, ,) large for many i (LU G)

Closeness| (b, .., b,), uniform 12H@,, ..., b)

q

> H(biq | b,, ..., biq_1) +...+H(b, | by ...,b 4), large Qed.

Proof

* Argument OK if probes in G

t t t,
- t=d (bw by, -, biq)
d.
e Uniform (t1, e tn) [] {O,1,2}n b1 bi1 bi2 biq bu

[]
uniform (b,, ..., b,) U B = {Store(t) | t T {0,1,2}"}

Bl =3n=2u0 (Lemma) O (b, ..., b)=uniform [J

113=Pr[t=2]=Pr[d, (b, ... b,)=2]1=A/29 #£1/3

Probes notin G

If every t probes bits not in G

Argue as in [Shaltiel V.]:

Condition on heavy bits := probed by many t.

Can find t = uniform in {0,1,2}, all probes in G

Handling adaptivity

» Sofart =d, (b, by, ..., by)

* In general,
g adaptively chosen probes
= decision tree D5
29 bits 1 0
depth g b, b q
2 1 2 0

1/3=Pr[t=2]=Pr[d,(b,, ..., b.,q) =2]=A/29 #1/3

Bits vs. trits

Proof bits vs. trits

Bits vs. sets

Cells vs. prefix sums

Outline

Bits vs. sets

e StoreSUU{1, 2, ...,ntofsize [S|=k 01001001101011

Inubits b, ..., b, 0{0,1} b4 by b3 by bs

* Want:
Small space u (optimal = [g, (n choose k)0

Answer “i 0 S?” by probing few bits (optimal = 1)

Previous results

¢ Store S {1, 2, ..., n}, |S| =k in bits, answer “i L1 S?”
« [Minsky Papert '69] Average-case study

 [Buhrman Miltersen Radhakrishnan Venkatesh; Pagh '00]
Space O(optimal), probe O(lg(n/k))

Lower bounds for k < n'¢

* No lower bound was known for k = Q(n)

Our results

 Theorem[V.].
Store S [1{1, 2, ..., n}, |S| =n/3
inubitsb,, ..., b, 0{0,1}

If answer “I [S?” probing g bits

then space u > optimal + n/2°9

* First lower bound for |S| = Q(n)

01001001101011

Bits vs. trits

Proof bits vs. trits

Bits vs. sets

Cells vs. prefix sums

Outline

Cell-probe model

e So far: g = number of bit probes

« Cell model: g = number of probes in cells of Ig(n) bits

Data
Store
— R
Ci G ~ Cungn
¥ ¥
Ign Ign Ign

* Relationship: q bit J g cell U g Ig(n) bit

Results in cell-probe model

e Cells vs. trits:
q = O(1), optimal space = [Ilg, 3[] [Patrascu Thorup]
q=110 space >nlg, 3 + n/lg°"n [this work]

o Cells vs. sets:
q probes, space = optimal + n / Ig®@n [Pagh, Patrascu]
Lower bounds?

Bits vs. trits

Proof bits vs. trits

Bits vs. sets

Cells vs. prefix sums

Outline

Prefix sums

« Store n bits x,, x,, ..., x, 11{0,1}

in memory cells X1 X2 X3 X4 X5 =~ Xp
Store
e Want: ~

Memory cells
Small space

Fast answer prefix sum (a.k.a. Rank) queries:

Sum(|) .= ZKSi Xk {O, 1, 2, - n}

History

Fundamental problem: succinct trees, sets, ...

Trivial Space =nlgn
Time =1 cell probe

[Jacobson '89] Space =n+ O(n/Ign)
Time = O(1) cell probes

[Patrascu '08] Space=n+n/lgn
Time = O(q) cell probes

Our results

 Theorem[Patrascu V.]:
Store n bits in memory

If answer Sum(i) := >, -i X, queries

by probing g cells then space > n+ n/ig®¥n.

* Matches [Patrascu]: space <n+n/ IgQ(Q) n

Proof idea

* Efficient data structure I Break queries' correlations

* Fori<j,A{0,1}n

0 = Pry,pa [Sum(i) > t AND Sum(j) < 1]

= Pryoa [Sum(i) > t] Pryoa[Sum(j) <{]

> (1/10) (1/10) >> ()

« Contradiction, so data structure cannot be efficient

Proof idea

0 = Pry,pa [Sum(i) > t AND Sum(j) <]

= Pryga [Sum(i) > t] Pr,ga[Sum(j) <] (1)

> (1/10) (1/10) (2)

* Reasoning:
Fix heavy cells. Then Ui, j s.t. Sum(i) and Sum(j):

(1) depend on disjoint, nearly uniform cells [independent
(2) have high entropy

Balanced brackets

« Store n balanced brackets (()OO))
et Store
Small space

Fast answer match queries:

Y
Memory cells

. | ,0)
Theorem[V.]: space > optimal + n/lg n.

for non-adaptive g probes

* [Patrascu]: space < optimal + n/ IgQ(q) n non-adaptive

Summary

* New lower bounds for basic data structures:

Representing trits, sets, prefix sums, balanced brackets
using space = optimal + redundancy

« Sometimes matching [Patrascul]
 Open problems: storing sets:

2 cell probes and optimal space?
Bit-probe lower bounds for set-size n/4 ? (have n/3)

Future directions

* Lower bounds for generating distributions

* Example: f:{0,1}7 - {0,1} "
each bit f; depends on < q input bits
prove f(uniform) far from uniform on sets of size n/4

* Known[V.]: distance = 1/2°9

* Open: distance =21 - 0(1)
[1 Lower bound for storing sets of size n/4

* STVnOODOODO0O00 00 < O<0MQoPeyd -
o £=

