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Randomness in Computation

(error probability 1%)

» Useful throughout Computer Science
— Algorithms
— Cryptography
— Complexity Theory

 Question: Is “true” randomness necessary?



Pseudorandomness

Goal: low-entropy distributions
that look random”

Why study pseudorandomness?
Basis for most cryptography [S 49]

Algorithmic breakthroughs:
Connectivity in logarithmic space [R 04]
Primality in polynomial time [AKS 02]



Pseudorandom Generator (PRG) Bm,v;
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» Poly(n)-time Computable
« Stretch s(n) > 1 (e.g., s(n) =1, s(n) = n?)

* Output looks random”



Outline

* Overview of pseudorandomness

» Cryptographic pseudorandom generators
— Complexity vs. stretch

» Specialized pseudorandom generators
— Constant-depth, with application to NP
— Polynomials



Cryptographic PRG
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« “Looks random”: V efficient adversary A : {0,1}»sm — {0,1}
Pri[A(U) = 1] = Pry[A(PRG(X)) = 1]

« Cryptography: sym. encryption(m) := m & G(X) [S49]

need big stretch s >> n

 PRG < One-Way Functions (OWF) [BM,Y,GL,...,HILL]
— OWF: easy to compute but hard to invert



Standard Constructions w/ big stretch

STEP 1: OWF = G': (0,1)" - (0,1} =[gr
— Think e.g. f : {0,1}n° s {0,1}"®

STEP 2: G' = PRG with stretch s(n) = poly(n) [GM]
Input X E@E o =R ==Rcll==Nc

Stretch s = s adaptive queries to f = circuit depth > s

Question [this work]: stretch s vs. adaptivity & depth?
E.g., can have s = n, circuit depth O(log n)?



Previous Results

AIK] Log-depth OWF/PRG = O(1)-depth PRG (!!1)

However, any stretch = stretch s =1

GT] s vs. number g of queries to OWF (Thm: q > s)

‘This work] s vs. adaptivity & circuit depth

...,IN,NR] O(1)-depth PRG from specific assumptions

We ask]| general assumptions



Our Model of PRG construction
« Parallel PRG G': {0,1}" — {0,1}"+s(n) from OWF f

Input X, |X| =n
Nonadaptive
Queries to f
Constant
Depth < QNS es
Circuit QLIQIQIIQ
PPPOORRE

Output, n+s( ) b|ts



Our Results on PRG Constructions

« Theorem [V] Parallel G': {0,1}" — {0,1}n+s(n)
from OWF ( e.g. f :{0,1}"® — {0,1}"° ) must have:

f arbitrary f one-to-one |f permutation
Neg. | s(n) <o(n) s(n) < o(n) ?
Pos. ? s(n) > 1 s(n) > 1




Proof of positive result

Setting: f = permutation &, want stretch s = 1

[GL] Gi(x,r) := mt(X),r,<X,r> (<X,r> =2, X 1;)

Problem: can’t compute <x,r> in constant-depth [GNR]
Solution: don’t have to! Gi(x,r) := n(x),r’,<x,r'>

Easier: generate random (r',Parity(r’) := 2. r,) :

I PO P
ryr,rg ... r, Parity(r)

Technique gives <x,I'>, extractors, etc. Q.E.D.
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Specialized PRG

n n+s(n)
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» “looks random”: V restricted A : {0,1}"+s(M—{0,1}

Prj[A(U) = 1] = Pr JA(PRG(X)) = 1]

« Sometimes known unconditionally!



PRG for Constant-Depth Circuits

» Constant-depth circuit:

ng@lﬁ@@ _ Depth

- Theorem [N ‘91]: PRG with stretch s(n) = 2n™"
output looks random to constant-depth circuits



Application: Avg-Case Hardness of NP

« Study hardness of NP on random instances
— Natural question, essential for cryptography

« Currently cannot relate to P # NP [FF,BT,V]

« Hardness amplification
Definition: f : {0,1}" — {0,1} is e-hard If
V efficient algorithm M : Pr,[M(x) = f(x)] > 1/2 - ¢

F ey Har_d_nes_s > T’
0.1-hard Amplification e-hard




Previous Results
Yao’'s XOR Lemma: f(x4,..., X,)) == f(xq) & --- & f(X,)
f’~ 2"-hard, almost optimal

Cannot use XOR In NP:fe NP =% f’e NP

Idea: f'(X4,..., xn) = C( f(x4),..., f(x,) ), G monotone

—e.g.f(x) A (f(x,) V f(xs)).T€ NP = f’c NP

Theorem [O'D]: There is C s.t. f’ =~ (1/n)-hard

Barrier: No monotone C can do better!



Our Result on Hardness Amplification

Theorem [HVV]: Amplification in NP up to ~ 27"
— Matches the XOR Lemma

Technique: Pseudorandomness!
Intuitively, " := G( f(x4),..., f(X,), .. ... f(Xon) )
f* (1/2" )-hard by previous result

Problem: Input length = 2"

Note C is constant-depth C
F(X1);e e s F(X ), -en onn F(XN)

Use PRG: input length — n, keep hardness



Previous Results

Recall Theorem [N]:
PRG with stretch s(n) = 20"

Theorem [LVW]:
PRG with stretch s(n) = nlogn

PRG’s for incomparable classes



Our New PRG

Constant-depth circuits
with few Majority gates

Theorem [V] :
PRG with s(n) = nlogn

Improves on [LVW]; worse stretch than [N]
Richest class for which PRG is known

Techniques: Communication complexity +
switching lemma [BNS,HG,H,HM,CH]
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F, polynomials
- Field F, = GF(2) ={0,1}
* F,-polynomial p : F,"—F, of degree d

d="1
d=2

« Theorem[NN90]: PRG for d=1 with stretch s(n)=2¢"
— Applications to algorithm design, PCP’s,...



Hardness for F, polynomials

- Want: explicit f : {0,1}"—{0,1} e-hard for degree d-
V p of degree d : Pr[f(x) = p(x)] > V2 -¢
¢ = ¢(n,d) small

+ Implies PRG with s=1. G(X) := X f(X)

* Interesting beyond PRG
— Coding theory
— d =log n, € = 1/n'% = complexity breakthrough



Previous Results

Want: explicit f : {0,1}"—{0,1} e-hard for degree d:
V p of degree d : Pr[f(x) # p(x)] > V2-¢
¢ = ¢(n,d) small

[Razborov 1987] Majority: (1/n)-hard (d < polylog(n) )
[Babai et al. 1992] Explicit f: exp(-n/d-29)-hard

[Bourgain 2005] Mod 3: exp(-n/89)-hard
— Mod 3 (X4,...,X,) == 11iff 3| 2 X,



Our Results

» New approach based on "~ Gowers uniformity”

 Theorem [V,VW]:
Explicit f: exp(-n/29)-hard ([BNS] exp(-n/d-29) )

Mod 3: exp(-n/49)-hard ([Bou] exp(-n/89))
— Also arguably simpler proof

» Theorem [BV, unpublished] :
PRG with stretch s(n) = 29" ford = 2,3
— For any d under “Gowers inverse conjecture”
— Even for d=2, previous best was s(n) = n'°9 "[LVW ‘93]



Gowers uniformity

 |dea: Measure closeness to degree-d polynomials
by checking if d-th derivative vanishes

— [G98] combinat., [A+,J+,...] testing

» Derivative D, p(x) := p(x+y) + p(x)
— E.9. Dy (X X5 + X3) = (Y1+X1)(Y2+Xp)+(Xg+Y3) +X1 Xo+X3
=Y1Xo + X4¥o + V1Yo + Y3
— p degree d = D, p(x) degree d-1
— lterate: D, p(x) := D,( D, p(x))

« d-th Gowers uniformity of f:

Ud(f) = EX,y1 ..... yd[e(Dy1

— Uy(p) = 1 if p degree d

,,,,,



Main lemma

Lemma [Gow,GT]:
Hardness of f for degree-d polynomials < Ud(f)1/2d
— Property of f only!

Proof sketch: Let p have degree d.
Hardness of f for p

= | Prlf(x) = p(x)] -Pr[f(x) = p(x)] |
= Ex[e(f(x)+p(x))] = Uy(f+p)
<U,f+p)12 < ... < Ud(f+p)1/20I (Cauchy-Schwartz)

= U, (f)12 (d-th derivative of p = 1)
Q.E.D.



Establishing hardness

Consider f := X;---Xq,1 + Xgy0 - Xogso + =
— not best parameters, but best to illustrate

Theorem [V] f is exp(-n/c9)-hard for degree d

Proof:
Hardness of f < U4(f)2 (by lemma)

_ ) 1720
= Ug(Xy-Xgy1 + Xgio " Xogeo + )

Ug(Xq-+Xg,q) @927 (by property of U)

= exp(-n/c9) (by calculation)

Q.E.D.



Conclusion

* Pseudorandom generators (PRG’s): powerful tool

« Cryptographic PRG’s
— Tradeoff between stretch and parallel complexity [V]

» Specialized PRG’s
— Application: Hardness Amplification in NP [HVV]
— PRG for const.-depth circuits with few Maj gates [V]
— PRG for low-degree polynomials over F,
using Gowers uniformity [V, VW,BV]



Thank you!



