Pseudorandomness: New Results and Applications

Emanuele Viola

May 2007

Randomness in Computation

- Useful throughout Computer Science
 - Algorithms
 - Cryptography
 - Complexity Theory
- Question: Is "true" randomness necessary?

Pseudorandomness

 Goal: low-entropy distributions that ``look random''

- Why study pseudorandomness?
- Basis for most cryptography [S 49]
- Algorithmic breakthroughs:
 Connectivity in logarithmic space [R 04]
 Primality in polynomial time [AKS 02]

Pseudorandom Generator (PRG) [BM,Y]

- Poly(n)-time Computable
- Stretch $s(n) \ge 1$ (e.g., s(n) = 1, $s(n) = n^2$)
- Output ``looks random''

Outline

Overview of pseudorandomness

- Cryptographic pseudorandom generators
 - Complexity vs. stretch

- Specialized pseudorandom generators
 - Constant-depth, with application to NP
 - Polynomials

Cryptographic PRG

- "Looks random": \forall efficient adversary $A:\{0,1\}^{n+s(n)} \rightarrow \{0,1\}$ $Pr_{U}[A(U)=1] \approx Pr_{X}[A(PRG(X))=1]$
- Cryptography: sym. encryption(m) := m ⊕ G(X) [S49]
 need big stretch s >> n
- PRG ⇔ One-Way Functions (OWF) [BM,Y,GL,...,HILL]
 - OWF: easy to compute but hard to invert

Standard Constructions w/ big stretch

- STEP 1: OWF $f \Rightarrow G^f : \{0,1\}^n \rightarrow \{0,1\}^{n+1}$ Think e.g. $f : \{0,1\}^{n^a} \rightarrow \{0,1\}^{n^b}$
- STEP 2: G^f ⇒ PRG with stretch s(n) = poly(n) [GM]

- Stretch $s \Rightarrow s$ adaptive queries to $f \Rightarrow circuit depth <math>\geq s$
- Question [this work]: stretch s vs. adaptivity & depth?
 E.g., can have s = n, circuit depth O(log n)?

Previous Results

• [AIK] Log-depth OWF/PRG \Rightarrow O(1)-depth PRG (!!!) However, any stretch \Rightarrow stretch s = 1

[GT] s vs. number q of queries to OWF (Thm: q ≥ s)
 [This work] s vs. adaptivity & circuit depth

[...,IN,NR] O(1)-depth PRG from specific assumptions
 [We ask] general assumptions

Our Model of PRG construction

• Parallel PRG $G^f: \{0,1\}^n \rightarrow \{0,1\}^{n+s(n)}$ from OWF f

Our Results on PRG Constructions

• Theorem [V] Parallel G^f : $\{0,1\}^n \rightarrow \{0,1\}^{n+s(n)}$ from OWF (e.g. f : $\{0,1\}^{n^a} \rightarrow \{0,1\}^{n^b}$) must have:

	f arbitrary	f one-to-one	f permutation
Neg.	$s(n) \leq o(n)$	$s(n) \leq o(n)$?
Pos.	?	$s(n) \geq 1$	$s(n) \geq 1$

Proof of positive result

Setting: $f = permutation \pi$, want stretch s = 1

[GL]
$$G^f(x,r) := \pi(x), r, \langle x, r \rangle$$
 $(\langle x, r \rangle := \sum_i x_i r_i)$

Problem: can't compute <x,r> in constant-depth [GNR]

Solution: don't have to! $G^f(x,r) := \pi(x), r', \langle x, r' \rangle$

Easier: generate random $(r', Parity(r') := \sum_i r_i)$:

Technique gives <x,r'>, extractors, etc.

Outline

Overview of pseudorandomness

- Cryptographic pseudorandom generators
 - Complexity vs. stretch
- Specialized pseudorandom generators
 - Constant-depth, with application to NP
 - Polynomials

Specialized PRG

• "looks random": \forall restricted A: $\{0,1\}^{n+s(n)} \rightarrow \{0,1\}$

$$Pr_{U}[A(U) = 1] \approx Pr_{X}[A(PRG(X)) = 1]$$

Sometimes known unconditionally!

PRG for Constant-Depth Circuits

Constant-depth circuit:

• Theorem [N '91]: PRG with stretch $s(n) = 2^{n^{\Omega(1)}}$ output looks random to constant-depth circuits

Application: Avg-Case Hardness of NP

- Study hardness of NP on random instances
 - Natural question, essential for cryptography
- Currently cannot relate to P ≠ NP [FF,BT,V]
- Hardness amplification

Definition: $f: \{0,1\}^n \rightarrow \{0,1\}$ is ε -hard if

 \forall efficient algorithm M : $Pr_x[M(x) \neq f(x)] \geq 1/2 - \epsilon$

f
$$\longrightarrow$$
 Hardness \longrightarrow f '
Amplification ϵ -hard

Previous Results

• Yao's XOR Lemma: $f'(x_1,...,x_n) := f(x_1) \oplus \cdots \oplus f(x_n)$ $f' \approx 2^{-n}$ -hard, almost optimal

Cannot use XOR in NP: f ∈ NP ⇒ f ′ ∈ NP

- Idea: $f'(x_1,...,x_n) = C(f(x_1),...,f(x_n))$, C monotone - e.g. $f(x_1) \land (f(x_2) \lor f(x_3))$. $f \in NP \Rightarrow f' \in NP$
- Theorem [O'D]: There is C s.t. f ' ≈ (1/n)-hard
- Barrier: No monotone C can do better!

Our Result on Hardness Amplification

- Theorem [HVV]: Amplification in NP up to ≈ 2⁻ⁿ
 - Matches the XOR Lemma

Technique: Pseudorandomness!
 Intuitively, f' := C(f(x₁),..., f(x_n), ... f(x₂ⁿ))

f' (1/2ⁿ)-hard by previous result

Problem: Input length = 2ⁿ

Note C is constant-depth

Use PRG: input length \rightarrow n, keep hardness

Previous Results

Recall Theorem [N]:

PRG with stretch $s(n) = 2^{n^{\Omega(1)}}$

- But constant-depth circuits are weak:
 - Cannot compute Majority $(x_1,...,x_n) := \sum_i x_i > n/2$?
- Theorem [LVW]:

PRG with stretch $s(n) = n^{\log n}$

PRG's for incomparable classes

Our New PRG

- Constant-depth circuits with few Majority gates
- Theorem [V]:
 PRG with s(n) = n^{log n}

- Improves on [LVW]; worse stretch than [N] Richest class for which PRG is known
- Techniques: Communication complexity + switching lemma [BNS,HG,H,HM,CH]

Outline

Overview of pseudorandomness

- Cryptographic pseudorandom generators
 - Complexity vs. stretch

- Specialized pseudorandom generators
 - Constant-depth, with application to NP
 - Polynomials

F₂ polynomials

- Field $F_2 = GF(2) = \{0,1\}$
- F₂-polynomial p : F₂ⁿ→F₂ of degree d

E.g.,
$$p = x_1 + x_5 + x_7$$
 $d = 1$
 $p = x_1 \cdot x_2 + x_3$ $d = 2$

- Theorem[NN90]: PRG for d=1 with stretch s(n)=2^{Ω(n)}
 - Applications to algorithm design, PCP's,...

Hardness for F₂ polynomials

- Want: explicit f: {0,1}ⁿ→{0,1} ε-hard for degree d: ∀ p of degree d: Pr[f(x) ≠ p(x)] ≥ ½ - ε
 ε = ε(n,d) small
- Implies PRG with s=1. G(X) := X f(X)
- Interesting beyond PRG
 - Coding theory
 - d = log n, ε = $1/n^{10}$ ⇒ complexity breakthrough

Previous Results

 Want: explicit f: {0,1}ⁿ→{0,1} ε-hard for degree d: ∀ p of degree d: Pr[f(x) ≠ p(x)] ≥ ½ - ε
ε = ε(n,d) small

• [Razborov 1987] Majority: (1/n)-hard $(d \le polylog(n))$

[Babai et al. 1992] Explicit f: exp(-n/d·2d)-hard

- [Bourgain 2005] Mod 3: exp(-n/8^d)-hard
 - Mod 3 $(x_1,...,x_n) := 1$ iff 3 $| \sum_i x_i |$

Our Results

- New approach based on ``Gowers uniformity''
- Theorem [V,VW]:

```
Explicit f: exp(-n/2d)-hard ([BNS] exp(-n/d·2d))
```

```
Mod 3: exp(-n/4^d)-hard ([Bou] exp(-n/8^d))
```

Also arguably simpler proof

- Theorem [BV, unpublished] : PRG with stretch $s(n) = 2^{\Omega(n)}$ for d = 2,3
 - For any d under "Gowers inverse conjecture"
 - Even for d=2, previous best was $s(n) = n^{\log n} [LVW '93]$

Gowers uniformity

- Idea: Measure closeness to degree-d polynomials by checking if d-th derivative vanishes
 - [G98] combinat., [A+,J+,...] testing
- Derivative $D_y p(x) := p(x+y) + p(x)$
 - E.g. $D_y (x_1x_2 + x_3) = (y_1+x_1)(y_2+x_2)+(x_3+y_3)+x_1x_2+x_3$ = $y_1x_2 + x_1y_2 + y_1y_2 + y_3$
 - p degree $d \Rightarrow D_v p(x)$ degree d-1
 - Iterate: $D_{y,y'} p(x) := D_y(D_{y'} p(x))$
- d-th Gowers uniformity of f:

$$U_{d}(f) := E_{x,y^{1},...,y^{d}}[e(D_{y^{1},...,y^{d}} f(x))] \qquad (e(X):=(-1)^{X})$$

- $U_d(p) = 1$ if p degree d

Main lemma

- Lemma [Gow,GT]:
 - Hardness of f for degree-d polynomials $\leq U_d(f)^{1/2^{\alpha}}$
 - Property of f only!
- Proof sketch: Let p have degree d.
 Hardness of f for p
 - $= | Pr[f(x) = p(x)] Pr[f(x) \neq p(x)] |$
 - $= E_X[e(f(x)+p(x))] = U_0(f+p)$
 - $\leq U_1(f+p)^{1/2} \leq \ldots \leq U_d(f+p)^{1/2^d}$ (Cauchy-Schwartz)
 - $= U_d(f)^{1/2^d} (d-th derivative of p = 1)$

Establishing hardness

- Consider $f := x_1 \cdots x_{d+1} + x_{d+2} \cdots x_{2d+2} + \cdots$
 - not best parameters, but best to illustrate
- Theorem [V] f is exp(-n/c^d)-hard for degree d

Proof:

Hardness of $f \leq U_d(f)^{1/2^d}$ (by lemma) = $U_d(x_1 \cdots x_{d+1} + x_{d+2} \cdots x_{2d+2} + \cdots)^{1/2^d}$ = $U_d(x_1 \cdots x_{d+1})^{n/(d+1)2^d}$ (by property of U) = $\exp(-n/c^d)$ (by calculation)

Conclusion

- Pseudorandom generators (PRG's): powerful tool
- Cryptographic PRG's
 - Tradeoff between stretch and parallel complexity [V]
- Specialized PRG's
 - Application: Hardness Amplification in NP [HVV]
 - PRG for const.-depth circuits with few Maj gates [V]
 - PRG for low-degree polynomials over F₂
 using Gowers uniformity [V, VW,BV]

Thank you!