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New paradigm
[V FOCS 2010; SIAM J. Computing]

Classical: Efficient Computation
f: INPUT — OUTPUT

New: Efficient Sampling
f: RANDOM BITS — OUTPUT DISTRIBUTION

Uncharted territory

Progress on long-standing problems
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Randomness extractors

 Randomness useful in computation, crucial in crypto
— Monte-Carlo, passwords, ...

« But available sources weak: (correlation, bias, ...)
— Thermal noise, Keystroke statistics, ...

+ Want: weak source Iy

Extractor

m) good

=~ uniform



Von Neumann extractor '51

Source: n bits Y4 Yo ... Y,

independent, identical, unknown bias: Pr[ Y;=1]=p

Extractor(Y4 Yo ... Y,) =uniform

Pair bits: 01 — 1, }P 11 = PHOT = o(1
10 —>O, r[]_ I’[]—p( 'p)

00, 11 — skip

Intel 80802 Firmware Hub chip



Randomness extractors

How to handle more general sources?

In practice: Crypto Hash Functions (e.g. SHA-2)
No provable guarantee

Major line of research in theoretical computer science
['85 - present]

Led to goal: extract from sources sampled efficiently

“reasonable model for sources arising in nature”
[Trevisan Vadhan 2000]



Our extractor for small-depth circuits
[V; FOCS 2011]

\/ =or

~ Sma” \ = and
depth - = not
Source y n output bits

« Theorem From n bits with entropy k: Extract k(k/n)

 First extractor for circuits; generalizes previous models



Key proof idea

. Extractor <  sampling is difficult

E:{0,1}" - {0,1} _ circuits cannot sample E -1(0)
(balanced) (uniformly, given random bits)

« To extract, use (and extend) techniques for sampling
[V], [Lovett V]



Key proof idea

. Extractor < Cirguit lowerfBound for sampling

E: {01\ _, :
gom bits)

es for sampling
[V], [Lovett V]



Uniform input

Source

- Want: extract randomness fromy. y,y,

- We reduce to source: each y.depends on one x,
then apply extractor from literature



Uniform input

Source

. Step 1: Fix (Condition) few random x;



Proof

0 ||x ||X 1 X, Uniform input

Y. Y, [V Source

. Step 1: Fix (Condition) few random x;

[Hastad] Source turns local: y; depends on few X;

[V] No entropy loss (Noise isoperimetric inequality)



Proof

0 ||x ||X 1 X, Uniform input

Y. Y, [V Source

« Step 2: (lteratively)
[V] Pick high-entropy y;.

Local O some X; high influence. Fix relevant rest

[ y; depends on X; only, and retains entropy



Proof

Uniform input

Y,

Y

Ys

Source

- Now each y; depends on one x,

* Apply extractor from literature
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Bits vs. trits

- Store n “trits” t,, t,, ..., t 0{0,1,2} ty oty s t,

Store /\
| Retrieve

Inubits b, b,, ..., b, 0{0,1}  bybybzbsbs b,

« Want:
Small space u (optimal = [ Ig, 30)

Fast retrieval: Get t, by probing few bits (optimal = 2)



Two solutions

* Arithmetic coding: ty b t3
Store bits of (t,, ..., t)0{0,1, ..., 3"-1} /\
Optimal space: [0 lg, 30= n-1.584 b1byb3b, b5

Bad retrieval: To get t probe all > n bits

« Two bits per trit t,

Bad space: n-2 &

Optimal retrieval: Probe 2 bits b,b, bsb, bsbg




Polynomial tradeoft

g q
« Dividentritst, ..., t [1{0,1,2} ,_H ,_H
in blocks of g ty t, ts ty ts t5
L /\

* Arithmetic-code each block

byb,bsbsbs bgbzbgbgb;,

Space: [q Ig, 30n/q < (q1g, 3 + 1) n/qg p?rlggggc:cal
= nlgz3+n/g between
probes,

Retrieval: Probe O(q) bits redundancy



Polynomial tradeoft

 Divide ntritst,, ..., t [0{0,1,2} ,_L ,_L
in blocks of q ty 3 ty t5 tg
L /\

* Arithmetic-code each block

byb,bsbsbs bgb7bgbgb;,

Space: [q Ig, 300n/q = (q 1g, 3 + 1/9°") n/q polynomial
tradeoff
=nlg,3 +n/q”" between
probes,

Retrieval: Probe O(q) bits redundancy

[V] logarithmic forms




Exponential tradeoff

- [Patrascu Thorup 08] exponential
Space: n Ig, 3 + n/2%9 tradeoff
Retrieval: Probe q bits between

probes,
redundancy

- E.g., optimal space [h Ig, 30] probe O(lg n)

« Exponential tradeoff tight?
“beyond the scope of current techniques”



Our results

[V; STOC 2009 Special Issue, SIAM J. Computing]

« Theorem: Tradeoff tight tf b t3 t,
Store n trits t,, ..., t 1{0,1,2} JL
In u bits b1, ""bu D{O,1} b1 b2b3b4b5 bu

Retrieval: probe q bits [1 spaceu>nlg, 3 + /299,

* Matches [Patrascu Thorup]: space < n Ig, 3 + n/2%



Proof via sampling

 Store ntritsinu=nlgy 3 +r bits b Ltz 1,

get trit by probing q bits _—

!

« Sample trits from bits, locality g

distance < 1 — 2T from uniform

Proof: With prob. > 2" uniform over trits' encodings ¢

* [ Otrit = uniform. Impossible: 1/3 # INTEGER/ZU‘



Cell-probe model

« So far: g = number of bit probes

Data |
« Cell model: |
q = number of probes EOEL
in cells of log(n) bits C+ ‘ Co ~ |Cuntog n
y—"—v Y
logn logn logn

« Think of cell as long in C language



Our results
[Patrascu V; SODA 2010]

 “Bread and butter” of data structures:
Store n bits x,, X,, ..., X, in cells

Retrieve PrefixSum(i) := %, .; x, 0U{0,1,2, ..., n}

Space Probes
n log(n) 1

n n/log(n)
Patrascu] <n+n/l OgQ(q) e
Patrascu V] sn+n/ IogO(q) n 0
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Pseudorandom generator

01011 =—>|Generator|—> 001110100101011100....

« Stretch short seed into output that “looks random”
« Uses: Monte Carlo, cryptography, ...

« Simple yet unexplored connection to sampling:
only care about output distribution



Pseudorandom generators

Type Looks random to:
In practice ?
Cryptographic Efficient test

Based on unproven assumptions

Unconditional

Small-depth [Nisan] [V]

Central limit [DGJSV]
Polynomials [Bogdanov V] [Lovett] [V]




Pseudorandom generators

Type Looks random to:

In practice ?

Cryptographic Efficient test
Based on unproven assumptions

Unconditional Small-depth [Nisan] [V]

Central limit [DGJSV]
Next |
Polynomials [Bogdanov V] [Lovett] [V]




[Diakonikolas Gopalan Jaiswal Servedio V
FOCS '09, SIAM J. Comp.]

- Central-limit theorem:
X, X, ..., X independent O inznormal :

17727

« Bounded-independence Central limit Theorem:

X, s Xy ey X K-wise independent L[] in =~ normal

t | Pr[3x <t]-Pr[normal <t] | < 1/Vk



[Bogdanov V FOCS 2007 Special Issue, SIAM J. Comp.]
[V 2008. Best Paper Award, J. Comp. Complexity]

 Theorem:
Pseudorandom generator for low-degree polynomials

01011 ——|Generator(— 0011101001010111011....

I\

XD, + X

* Open for 15 years

* Led to progress on Gowers' norm [Green Tao]



Proof idea

* For degree d:

Let L look random to degree 1  [Naor Naor]

bit-wise XOR d independent copies of L.

Generator .= L'+ ... + |




Proof idea

 Induction: Assume for degree d,
prove for degree-(d+1) polynomial p

Inductive step: Case-analysis based on
Bias(p) := | Prob, ... x [P(X)=1]—Prob ...« [P(X)=0] |

* Bias(p) small O Pseudorandom bias small
use expander graph given by extra generator

* Bias(p) large [
(1) self-correct: p close to degree-d polynomial
This result used in [Green Tao]
(2) apply induction
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Error-correcting codes

 To communicate over noisy channel

: £d
[El_f Meii\ge Meiigge =
Codeword sl Received word

* Need compact, fast, low-energy codes for:
Portable communication electronics
Micro/nano systems

Error-correction within chips



Codes, parameters

k-bit Message

» Focus on complexity of encoding l

n-bit Codeword

« Asymptotically good:
code length n = O(k) (rate Q(1))

minimum distance Q(n) (Q(n) adversarial errors)

» Alphabet = {0,1}



 Linear codes
Wires O(n?)

o [Spielman 95]

Wires O(n)

Previous codes

Depth 1

Depth O(log n) <

(fan-in 2)

e ~——

CRECICIONE:

P D@e@

S —

n-bit Codeword

* Can we have both wires = n and depth O(1)?



Our results
[Gal Hansen Koucky Pudlak V; 2011]

* Wires O(n log2n) Depth2 <

n-bit Codeword

* Also new circuit lower bound beating Q(n log3/2 n)
(Pudlak Rod! '96]

* Open prob: explicit construction, efficient decoding, ...



Proof idea

* Just sample uniform bit from message weight w > 0

* |-th middle block (i < log k)
Balanced if w = ©(k/2')

k-bit Message

OCOMOOOC

Each gate k / w wires to “hit”
log (K,,) gates to union bound

Wires in block: (k/w) log (K,) < nlogn

« Each output: XOR one bit per block



Conclusion

New paradigm: Sample, not compute

Randomness extractor Circuit sources

Data structure Storing trits, prefix sums
Pseudorandom generator Central limit; Polynomials
Error-correcting code Quasi-linear size, depth 2

Many new directions and open problems!
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Proof outline

e Circuit source

1 [Lovett V]

 |local source Y = f(X) Each output bit of f(X)
depends on few input bits

1 NEXT SLIDE

. Bit-source Y = Y1 0 Y2 0 Y2 1 1 Y3 Y1 0
PIY; = 1] = %

1 Previous extractors
e Uniform




L ocal — bit source

Y I |Y, [ |Yal||Y,|]|Ys| noutputbits

Entropy Y high U Oy with high variance (~unbiased)
Locality + Isoperimetry L] |:|xj with high influence
Set uniformly N(N(xj)) \ {xj} (N(v) = neighbors of v)
with high prob. N(xj) non-constant, depends on X only

[1 bit-source

Repeat
¢



