The complexity of sampling:

a new paradigm in theoretical computer science

Emanuele Viola

Northeastern University

Fall 2011

New paradigm [V FOCS 2010; SIAM J. Computing]

Classical: Efficient Computation

f: INPUT → OUTPUT

New: Efficient Sampling

f: RANDOM BITS → OUTPUT DISTRIBUTION

Uncharted territory

Progress on long-standing problems

Outline

Randomness extractors

Data structures

Pseudorandom generators

Error-correcting codes

Randomness extractors

- Randomness useful in computation, crucial in crypto
 - Monte-Carlo, passwords, ...

- But available sources weak: (correlation, bias, ...)
 - Thermal noise, Keystroke statistics, ...

• Want: weak source Extractor good

≈ uniform

Von Neumann extractor '51

Source: n bits Y₁ Y₂ ... Y_n
 independent, identical, unknown bias: Pr [Y_i = 1] = p

```
• Extractor(Y_1 Y_2 ... Y_n) \approx uniform
```

Pair bits: 01
$$\to 1$$
,
10 $\to 0$,
00, 11 \to skip

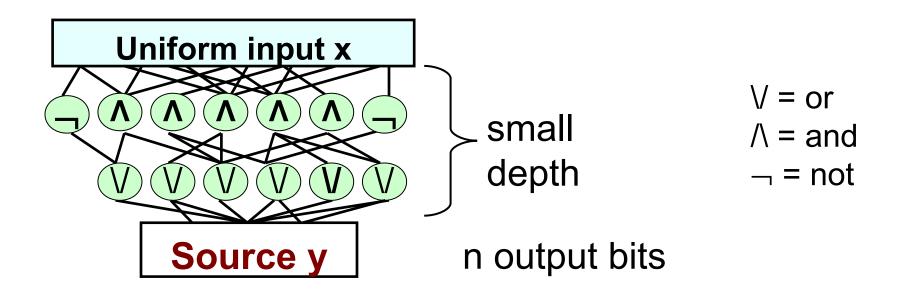
Intel 80802 Firmware Hub chip

Randomness extractors

- How to handle more general sources?
- In practice: Crypto Hash Functions (e.g. SHA-2)
 No provable guarantee
- Major line of research in theoretical computer science
 ['85 present]
- Led to goal: extract from sources sampled efficiently "reasonable model for sources arising in nature"

 [Trevisan Vadhan 2000]

Our extractor for small-depth circuits [V; FOCS 2011]



- Theorem From n bits with entropy k: Extract k(k/n)
- First extractor for circuits; generalizes previous models

Key proof idea

Extractor ⇔ sampling is difficult

E:
$$\{0,1\}^n \rightarrow \{0,1\} \Leftrightarrow \text{ circuits cannot sample E}^{-1}(0)$$
 (balanced) (uniformly, given random bits)

To extract, use (and extend) techniques for sampling
 [V], [Lovett V]

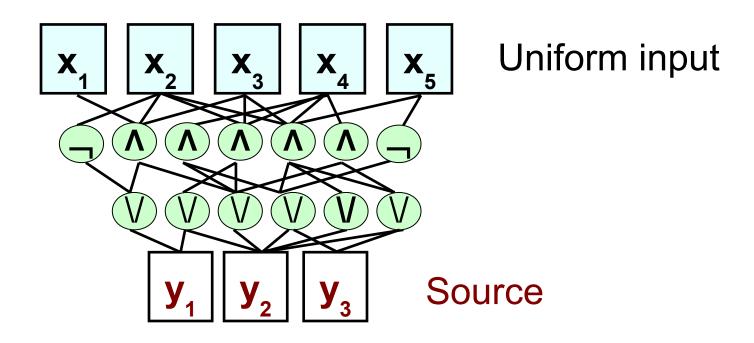
Key proof idea

⇔ Circuit lower bound for sampling Extractor

```
E: \{0,1\}^n \rightarrow \{0,1\} circuits cannot sample E^{-1}(0) (uniformly, given random bits)

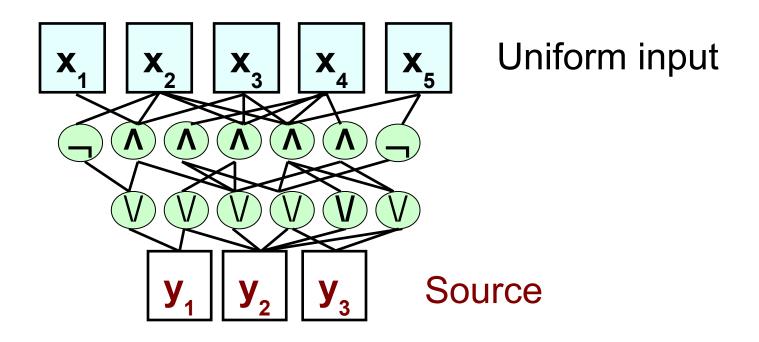
New approach!
```

 To extract, use (and extend) techniques for sampling [V], [Lovett V]

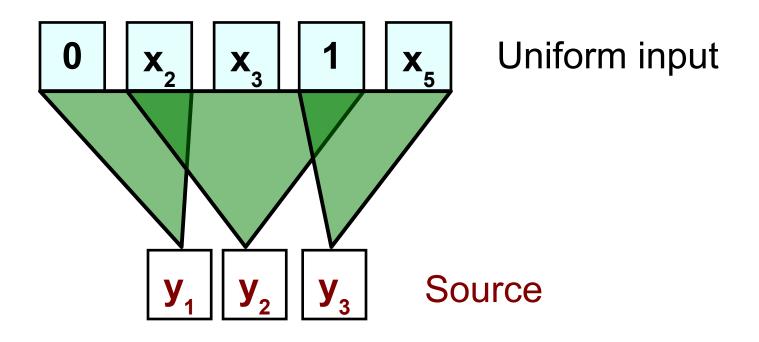


Want: extract randomness from y₁ y₂ y₃

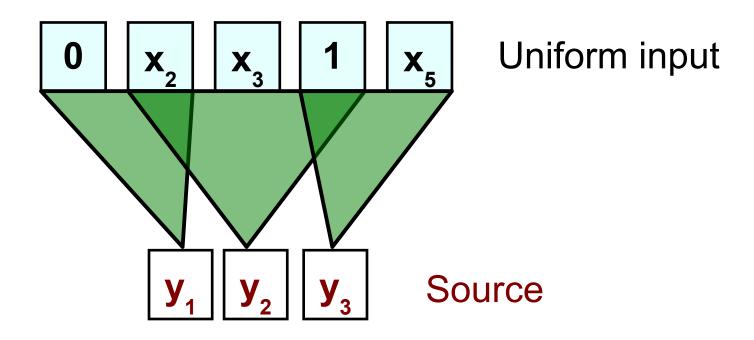
We reduce to source: each y_i depends on one x_h
 then apply extractor from literature



Step 1: Fix (Condition) few random x_i



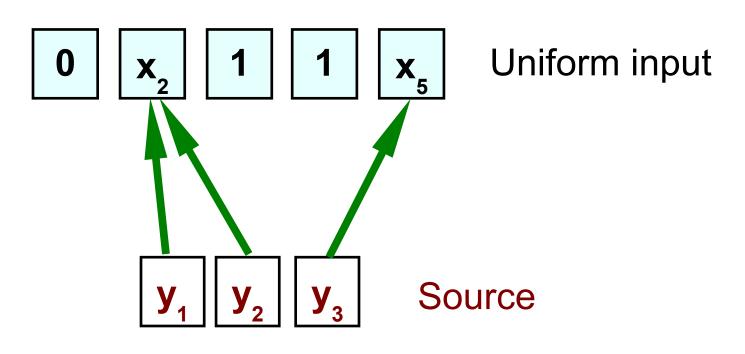
Step 1: Fix (Condition) few random x_i
 [Hastad] Source turns local: y_i depends on few x_j
 [V] No entropy loss (Noise isoperimetric inequality)



• Step 2: (Iteratively)

[V] Pick high-entropy y_i.

Local \Rightarrow some x_j high influence. Fix relevant rest $\Rightarrow y_i$ depends on x_i only, and retains entropy



- Now each y_i depends on one x_h
- Apply extractor from literature

Outline

Randomness extractors

Data structures

Pseudorandom generators

Error-correcting codes

Bits vs. trits

• Store n "trits" $t_1, t_2, \ldots, t_n \in \{0,1,2\}$ t_1 t_2 t_3 t_n Store

In u bits $b_1, b_2, ..., b_u \in \{0,1\}$

Retrieve b₁ b₂ b₃ b₄ b₅ ... b_u

Want:

Small space u (optimal = $\lceil n \lg_2 3 \rceil$)

Fast retrieval: Get t_i by probing few bits (optimal = 2)

Two solutions

Arithmetic coding:

Store bits of
$$(t_1, ..., t_n) \in \{0, 1, ..., 3^n - 1\}$$

 $\begin{bmatrix} t_1 & t_2 & t_3 \\ b_1 & b_2 & b_3 & b_4 & b_5 \end{bmatrix}$

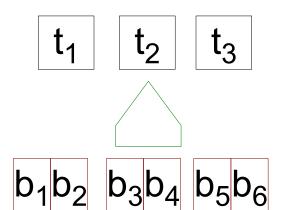
Optimal space: $\lceil n \lg_2 3 \rceil \approx n \cdot 1.584$

Bad retrieval: To get t_i probe all > n bits

Two bits per trit

Bad space: n 2

Optimal retrieval: Probe 2 bits



Polynomial tradeoff

• Divide n trits $t_1, \ldots, t_n \in \{0,1,2\}$ in blocks of q

Arithmetic-code each block

$$b_1b_2b_3b_4b_5$$
 $b_6b_7b_8b_9b_{10}$

Space:
$$[q lg_2 3] n/q < (q lg_2 3 + 1) n/q$$

= $n lg_2 3 + n/q$

Retrieval: Probe O(q) bits

polynomial tradeoff between probes, redundancy

Polynomial tradeoff

- Divide n trits $t_1, ..., t_n \in \{0,1,2\}$ in blocks of q
- Arithmetic-code each block

Space:
$$\lceil q \lceil g_2 \rceil \rceil n/q = (q \lceil g_2 \rceil + 1/q^{\Theta(1)}) n/q$$

= $n \lceil g_2 \rceil + n/q^{\Theta(1)}$
Retrieval: Probe O(q) bits

polynomial tradeoff between probes, redundancy

[V] logarithmic forms

Exponential tradeoff

[Pătraşcu Thorup 08]

Space: n $\lg_2 3 + n/2^{\Omega(q)}$

Retrieval: Probe q bits

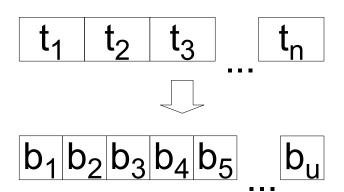
exponential tradeoff between probes, redundancy

- E.g., optimal space [n lg₂ 3], probe O(lg n)
- Exponential tradeoff tight?
 "beyond the scope of current techniques"

Our results

[V; STOC 2009 Special Issue, SIAM J. Computing]

Theorem: Tradeoff tight
 Store n trits t₁, ..., tₙ ∈ {0,1,2}
 in u bits b₁, ..., bᵢ ∈ {0,1}.

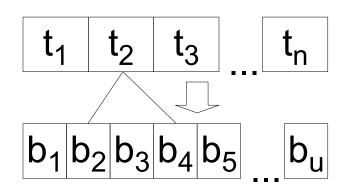


Retrieval: probe q bits \Rightarrow space u > n $\lg_2 3 + n/2^{O(q)}$.

• Matches [Pătrașcu Thorup]: space < n $\lg_2 3 + n/2^{\Omega(q)}$

Proof via sampling

Store n trits in u = n lg₂ 3 + r bits
 get trit by probing q bits

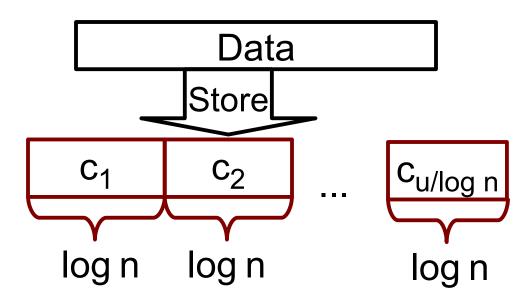


- Sample trits from bits, locality q
 distance < 1 2^{-r} from uniform
 - Proof: With prob. > 2^{-r} uniform over trits' encodings ◆
- ⇒ ∃ trit ≈ uniform. Impossible: 1/3 ≠ INTEGER / 2^u

Cell-probe model

So far: q = number of bit probes

Cell model:
 q = number of probes
 in cells of log(n) bits



Think of cell as long in C language

Our results [Pătrașcu V; SODA 2010]

"Bread and butter" of data structures:

Store n bits $x_1, x_2, ..., x_n$ in cells

Retrieve PrefixSum(i) := $\sum_{k \le i} x_k \in \{0, 1, 2, ..., n\}$

	Space	Probes
	n log(n)	1
	n	n/log(n)
[Pătraşcu]	$< n + n / log^{\Omega(q)} n$	q
[Pătraşcu V]	> n + n / log ^{O(q)} n	q

Outline

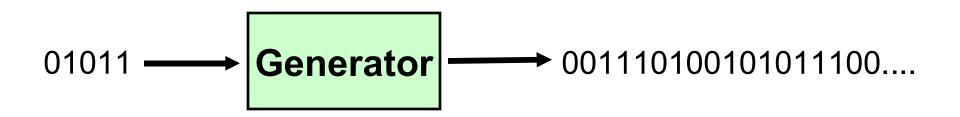
Randomness extractors

Data structures

Pseudorandom generators

Error-correcting codes

Pseudorandom generator



- Stretch short seed into output that "looks random"
- Uses: Monte Carlo, cryptography, ...
- Simple yet unexplored connection to sampling: only care about output distribution

Pseudorandom generators

Type	Looks random to:
In practice	?
Cryptographic	Efficient test Based on unproven assumptions
Unconditional	Small-depth [Nisan] [V] Central limit [DGJSV]
	Polynomials [Bogdanov V] [Lovett] [V]

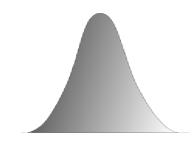
Pseudorandom generators

Type	Looks random to:
In practice	?
Cryptographic	Efficient test Based on unproven assumptions
Unconditional	Small-depth [Nisan] [V]
Next —	Central limit [DGJSV]
	Polynomials [Bogdanov V] [Lovett] [V]

[Diakonikolas Gopalan Jaiswal Servedio V FOCS '09, SIAM J. Comp.]

Central-limit theorem:

$$x_1, x_2, ..., x_n$$
 independent $\Rightarrow \sum x_i \approx normal$



Bounded-independence Central limit Theorem:

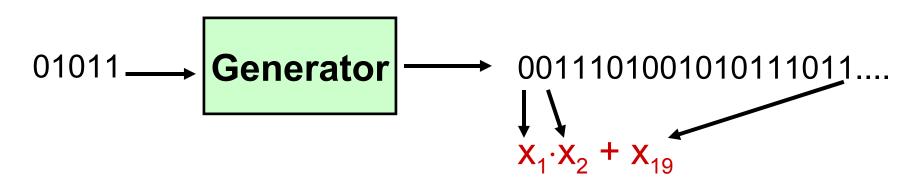
$$x_1, x_2, ..., x_n \text{ k-wise independent} \Rightarrow \sum x_i \approx \text{normal}$$

$$\forall$$
 t | $Pr[\sum x_i < t] - Pr[normal < t] | < 1/ $\sqrt{k}$$

[Bogdanov V FOCS 2007 Special Issue, SIAM J. Comp.] [V 2008. Best Paper Award, J. Comp. Complexity]

Theorem:

Pseudorandom generator for low-degree polynomials



- Open for 15 years
- Led to progress on Gowers' norm [Green Tao]

Proof idea

• For degree d:

Let L look random to degree 1 [Naor Naor]

bit-wise XOR d independent copies of L:

Generator := $L^1 + ... + L^d$

Proof idea

 Induction: Assume for degree d, prove for degree-(d+1) polynomial p

Inductive step: Case-analysis based on $Bias(p) := | Prob_{uniform X}[p(X)=1] - Prob_{uniform X}[p(X)=0] |$

- Bias(p) small ⇒ Pseudorandom bias small use expander graph given by extra generator
- Bias(p) large ⇒
 (1) self-correct: p close to degree-d polynomial
 This result used in [Green Tao]
 (2) apply induction

Outline

Randomness extractors

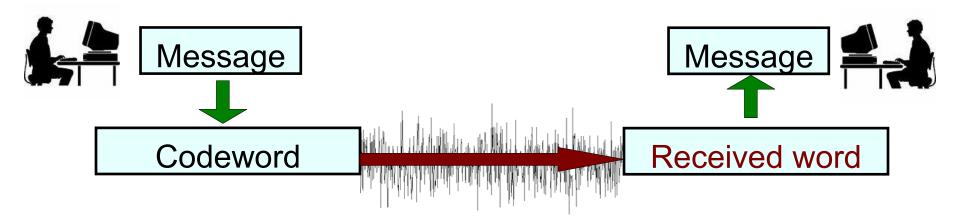
Data structures

Pseudorandom generators

Error-correcting codes

Error-correcting codes

To communicate over noisy channel



Need compact, fast, low-energy codes for:

Portable communication electronics

Micro/nano systems

Error-correction within chips

Codes, parameters

· Focus on complexity of encoding

k-bit Message n-bit Codeword

Asymptotically good:

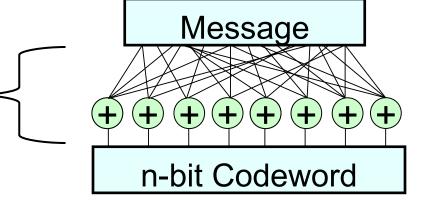
```
code length n = O(k) (rate \Omega(1))
```

minimum distance $\Omega(n)$ ($\Omega(n)$ adversarial errors)

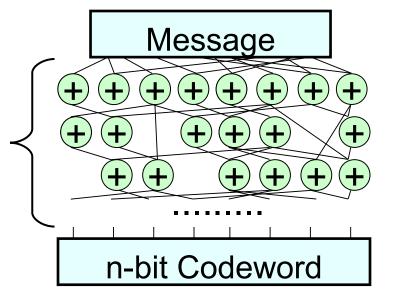
Alphabet = {0,1}

Previous codes

Linear codes
 Wires O(n²) Depth 1



[Spielman 95]
 Wires O(n) Depth O(log n)
 (fan-in 2)



Can we have both wires ≈ n and depth O(1)?

Our results

[Gal Hansen Koucky Pudlak V; 2011]

Also new circuit lower bound beating Ω(n log^{3/2} n)
 [Pudlak Rodl '96]

Open prob: explicit construction, efficient decoding, ...

Proof idea

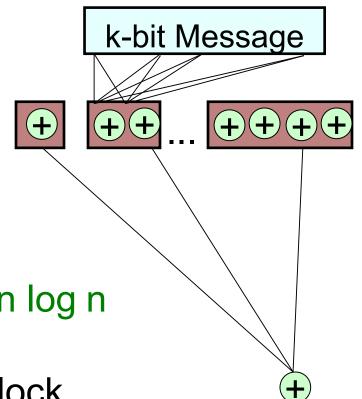
Just sample uniform bit from message weight w > 0

• i-th middle block (i < log k) Balanced if $w = \Theta(k/2^i)$

Each gate k / w wires to "hit" log (k_w) gates to union bound

Wires in block: $(k/w) \log {k \choose w} < n \log n$

Each output: XOR one bit per block



Conclusion

New paradigm: Sample, not compute

Data structure
 Storing trits, prefix sums

Pseudorandom generator Central limit; Polynomials

• Error-correcting code Quasi-linear size, depth 2

Many new directions and open problems!

- $\Sigma\Pi\sqrt{}$ \cap \Box
- $\geq \leq \forall \exists \Omega\Theta\omega \quad \alpha\beta\epsilon\gamma\delta$
- →↓⇒↑←⇔
- ≠≈
- Θω
- ∈ ∉
- ±
- $\bullet \quad \Sigma \Pi \forall \land \not\in \cup \supset \supseteq \not\subset \subseteq \in \downarrow \Rightarrow \uparrow \longleftarrow \Longleftrightarrow \lor \land \ge \le \forall \exists \Omega \alpha \beta \epsilon \gamma \delta \Rightarrow$
- ≠≈TAΘ
 - Recall: edit style changes ALL settings.
- Click on "line" for just the one you highlight

Proof outline

Circuit source

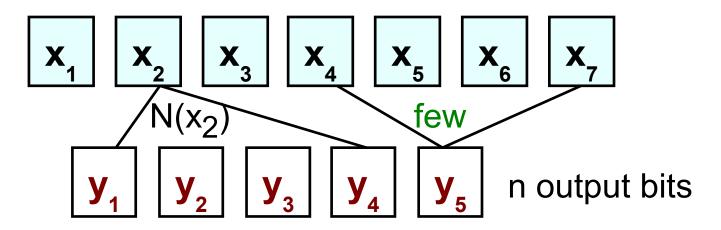
• local source Y = f(X) Each output bit of f(X) depends on few input bits

• Bit-source $Y = Y_1 \ 0 \ Y_2 \ 0 \ Y_2 \ 1 \ 1 \ Y_3 \ Y_1 \ 0$ $Pr[Y_i = 1] = \frac{1}{2}$

Previous extractors

Uniform

Local → bit source



- Entropy Y high ⇒ ∃ y with high variance (~unbiased)
- Locality + Isoperimetry ⇒ ∃ x_i with high influence
- Set uniformly $N(N(\mathbf{x}_{j})) \setminus {\mathbf{x}_{j}}$ (N(v) = neighbors of v) with high prob. $N(\mathbf{x}_{j})$ non-constant, depends on \mathbf{x}_{j} only
 - ⇒ bit-source

Repeat

