On Randomness Extraction in AC⁰

June 2015

Emanuele Viola

NEU

Joint work with Oded Goldreich and Avi Wigderson

Extracting randomness from sources

- Min-entropy [Nisan Zuckerman '96, ...,
 Guruswami Umans Vadhan, Dvir Wigderson, ...]
- Bit-fixing [Chor Friedman Goldreich Hastad Rudich Smolensky '85, Cohen Wigderson, Kamp Zuckerman, ...]
- Independent blocks [Chor Goldreich 88, Barak Bourgain Impagliazzo Kindler Rao Raz Shaltiel Sudakov Wigderson Li ...]
- Many more types
- [This work] Which of these extractors is in AC⁰?

Motivation

- Still far from understanding power of AC⁰
- Better switching lemma for non-random restriction?
- AC⁰ vs. communication complexity under uniform?
- [Goldreich Wigderson '14] Error reduction in AC⁰ for "derandomizing algorithms that err extremely rarely"

Recently obtained without AC⁰ extractors

pseudorandom generator constructions

Outline

Seeded extractors

Deterministic extractors

Previous results on seeded AC⁰ extractors

• Ext : $\{0,1\}^n \times \{0,1\}^r \rightarrow \{0,1\}^m$ min-entropy k source

Negative: m ≤ 1.01r unless k/n ≥ 1/polylog n [V]

Positive: m = r + 1, r = n [Impagliazzo Naor, V]
 Generate (x, y, InnerProduct(x,y))

[Nisan Zuckerman, Vadhan] "Sample-then-extract" t samples have min-entropy t•k/n

Our results on seeded extractors

- Ext : $\{0,1\}^n$ x $\{0,1\}^r \rightarrow \{0,1\}^m$ min-entropy k source
- Extracting 1 bit (m = r+1):
 Can ←→ r ≥ (n/k) / log^{O(1)}n + 10 log n
- Extracting more bits:
- If k/n ≤ 1/log^{ω(1)}n: Can ←→ m/r ≤ 1 + log^{O(1)}(n) k/n "extraction rate ≤ 1 + entropy rate"
 Strong extraction impossible
- If $k/n \ge 1/\log^{O(1)}n$: Can with m = 1.01r, $r = O(\log n)$ Strong Open problem: $m = \Omega(k)$?

Our AC⁰ extractor construction

- Sampling gives shorter source [Vadhan]
 - can extract with smaller complexity/seed
- In general we need new explicit sampler
- To extract 1 bit from entropy k, sample n/k bits
 - If n/k ≤ log ^{O(1)} n, apply best-known extractor
 - If n/k ≥ log ^{ω(1)} n, apply "inner product" extractor, seed n/k
- To extract t bits repeat with t independent seeds

Outline

Seeded extractors

Deterministic extractors

Extractors for bit-fixing sources

- Bit-fixing source = restriction
 Entropy = number of unfixed variables
- Switching Lemma: [Furst Saxe Sipser, Ajtai, Yao, Hastad]
 Any depth-d circuit becomes constant
 on random restriction leaving n/log^{d-1} n variables
- [This work] Some depth-d circuits are far from constant on any restriction leaving $n/\log^{\Omega(d)} n$ variables

"Pick restriction after circuit? No better than random"

Our extractor for bit-fixing sources

- [Ajtai Linial]: ∃depth-3 circuit: {0,1}ⁿ → {0,1}
 that extracts if k = n n/polylog(n) bits uniform,
 other n k function of those k
- Want k = n/polylog(n). Idea: combine [AL] with sparse linear map: {0,1}ⁿ polylog(n) → {0,1}ⁿ: any n x n submatrix has rank ≥ n – n/polylog(n)
- Could not prove existence of linear map. Instead:
 - Get map over large field [Blomer Karp Welzl]
 - Combine that with codes, non-linear "condenser"

Extractors for independent sources

#	Best k/n for P-time	Best k/n for AC ⁰ [This work]
2	0.499 [Bourgain]	1-1/polylog(n) not explicit
3	n ^{-0.49} [Li]	1-1/polylog(n) not explicit
4	n ^{-0.49} [Li]	0.99
O(1)	polylog(n)/n [Li]	0.01

Open: Only AC⁰ lower bound k/n ≥ 1/polylog(n)

Conclusion

- Randomness extraction in AC⁰
- Min-entropy source: complete picture for m=r+1, or for k/n ≤ 1/log ω(1) n
- Bit-fixing source:
 "Pick restriction after circuit? No better than random"
- Independent sources
- ... and much more on samplers, zero-fixing sources, generalizations of inner-product extractor, converting min-entropy sources into block, etc.