Cell-Probe Lower Bounds for Succinct Partial Sums

Mihai Patrascu Emanuele Viola*
AT&T Labs Northeastern University

October 21, 2009

Abstract

The partial sums problem in succinct data structures asks to preprocess an array
A[l..n] of bits into a data structure using as close to n bits as possible, and answer
queries of the form RANK(k) = Zle Ali]. The problem has been intensely studied,
and features as a subroutine in a number of succinct data structures.

We show that, if we answer RANK(k) queries by probing ¢ cells of w bits, then the
space of the data structure must be at least n + n/w®® bits. This redundancy /probe
trade-off is essentially optimal: Patrascu [FOCS’08] showed how to achieve n+n /(w/)%
bits. We also extend our lower bound to the closely related SELECT queries, and to
the case of sparse arrays.

1 Introduction

Consider an array A[l..n] of bits. Can we preprocess this array into a data structure of
size n + r bits, for small redundancy r, which supports rank queries RANK(k) = Zle Alil
efficiently? One can also consider the query SELECT(x), which asks for k such that RANK(k—
1) <z < RANK(k).

The problem of supporting rank and select is the bread-and-butter of succinct data
structures. It finds use in most other data structures (for representing trees, graphs, suffix
trees / suffix arrays etc), and its redundancy / query trade-off has come under quite a bit of
attention.

Rank already had a central position in the seminal papers on succinct data structures.
Jacobson [Jac89], in FOCS’89, and Clark and Munro [CM96], in SODA’96, gave the first
data structures using space n + o(n) and constant query time. These results were slightly
improved in [Mun96, MRR0O1, RRR02].

In several applications, the set of ones is not dense in the array. Thus, the problem was
generalized to storing an array A[l..n], containing m ones and n — m zeros. It is generally
assumed that n < m - lgo(l) m; outside this range, the problem essentially goes outside the

*Supported by NSF grant CCF-0845003.

world of succinct data structures, as the lower bounds for predecessor search apply [PTO06].
The optimal space is B = lg() Pagh [Pag01] achieved space B + O(m - M) for

m Ign
this sparse problem. Golynski et al. [GGGT07] essentially gained a log factor forgm ~n,
achieving space B + O(n - lfnggs). Subsequently, Golynski et al. [GRRO8] achieved space
B+ O(m - lglg’gw» extending the log-factor improvement even to sparse arrays.

A qualitative improvement to these bounds is obtained in [Pat08], which shows an ex-
ponential dependence between the query time and the redundancy. Specifically, with query
time O(t), the achievable redundancy is r < n/ (lgT”)t. This improved the redundancy for
many succinct data structures where rank/select queries were the bottleneck.

Given the surprising nature of this improvement, a natural question is whether we can

do much better. In this paper, we rule out this possibility:

Theorem 1. In the cell-probe model with words of w > lgn bits, a data structure that
supports RANK or SELECT queries over an array of n bits requires at least n + n/w®® bits
of space, where t is the cell-probe complexity.

The lower bound matches the upper bound [Pat08], except for the difference between
(Ign)* and (lng)t‘ This difference is inconsequential up to ¢t = lg'~n. However, if we want
a polynomially small redundancy (say, less than n®, for constant o < 1), the upper bound
says that ¢t = O(lgn) is sufficient, whereas the lower bound says that ¢t = Q(lgn/lglgn) is
necessary. Closing this gap appears to be a difficult problem.

For sparse arrays, we obtain the following result:

Theorem 2. In the cell-probe model with words of w > lgn bits, a data structure that
supports RANK or SELECT queries over an array of n bits containing exactly m ones requires
at least 1g (::L) + m/wP® bits of space, where t is the cell-probe compleity.

This matches the upper bound when n < m - lgo(l) m and t < lg' °n. As noted above,
for n > m-poly log(m), a better lower bound can be obtained from the (colored) predecessor
problem [PT06, PT07].

Our lower bounds hold in the cell-probe model [Mil99], which is a nonuniform general-
ization of the Word RAM. The Word RAM model with words of w = Q(lgn) formalizes the
unit-cost operations of modern programming languages (random access to memory, arith-
metic operations, etc), and is broadly assumed for the analysis of algorithms.

1.1 Related work

Much work in lower bounds for succinct data structures has been in the restricted model
known as systematic model. In this model, the array A must be represented as is, but in
addition the data structure may store an index of sublinear size, which the query algorithm
can examine at no cost. See [GMO03, Mil05, GRR08, Gol07] for increasingly tight lower
bounds in this model. Note, however, that in the systematic model, the best achievable

redundancy with query time ¢ is m, i.e. there is a linear trade-off between redundancy

and query time. This is significantly improved by the (non-systematic) upper bounds in
[Pat08]. Therefore, previous lower bounds qualitatively miss the nature of this improvement.

In the unrestricted cell-probe model, the first lower bounds were shown by Gal and
Miltersen [GMO03] in 2003. These lower bounds were strong, showing a linear dependence
between time and redundancy: r -t = Q(n/lgn). However, the problem being analyzed
is somewhat unnatural: the bound applies to polynomial evaluation, for which nontrivial
succinct upper bounds appear unlikely. Their technique, which is based on the strong error
correction implicit in their problem, remains powerless for “easier” problems.

A significant break-through occured in SODA’09, when Golynski [Gol09] showed a tight
lower bound of r - t2 = Q(n) for the problem of storing a permutation 7 and querying both
7(+) and its inverse 771(-). Due to the particular attention it pays to inverses, it is unclear
how Golynski’s technique could generalize to problems like rank.

We also note that [Vio09a] proves lower bounds for succinct data structures in the bit-
probe model (w = 1). The argument in [Vio09a] breaks down when reading w = Q(logn)
bits, although some of the techniques in that paper are useful in the cell-probe setting,
cf. [Vio09b].

In this paper, we make further progress on getting lower bounds for natural problems,
and analyze some of the central problems in succinct data structures. It is reasonable to
hope that our lower bound technique will generalize to many other problems, given the many
applications of rank and select queries.

2 Proof of The Main Result

In this section, we prove a space/time trade-off for the rank problem in a vector of n random
bits.

2.1 The Top-Level Induction

We will now lower bound the complexity of RANK in an array A, where every Ali] is an
independent, uniform bit.

Imagine that the queries RANK(0), ..., RANK(n—1) are divided into k blocks of 7 consec-
utive queries (the remainder is ignored if & doesn’t divide n). Let Qa = {A, 24+A,22+A, ..}
be the set containing the A-th query (counting from zero) in each block. For a set @ of
queries, let Ans(@) be the vector of answers to the queries in). We treat Ans(Q) as a
random variable, depending on the random choice of the input.

To support the induction in our proof, we augment the cell-probe model with published
bits. These bits represent a memory of bounded size (P bits) which the query algorithm can
examine at no cost. Like the regular memory (which must be examined through cell probes),
the published bits are initialized at construction time, as a function of the input. Observe
that if we have n published bits, the problem can be solved with zero query complexity.

Our proof will try to publish a small number of cells from the regular memory which
are accessed frequently. Thus, the complexity of many queries will decrease by at least one.

The argument is then applied iteratively: the cell-probe complexity decreases, as more and
more bits are published. If the cell-probe complexity hits zero, while less than n bits are
published, we have a contradiction.

Let Probes(q) be the set of cells probed by query ¢; this is a random variable, since the
query can be adaptive. Also let Probes(Q) = |, ¢, Probes(g).

Our main technical result is captured in the following lemma, the proof of which appears
in the next section:

Lemma 3. Let A be uniform in {0,1}". Assume that a data structure can answer RANK
queries over A using n memory bits and P = o(n) published bits. Break the queries into
k =~ - P blocks, for a large enough constant ~y. Then:

Pr [Probes(q) N Probes(Qo) # 0| = Q(1).

Aq€(n]

The lemma suggests that Probes(Qq) is a good set of cells to publish, since a constant
fraction of the queries probe at least one cell from this set.

Completing the proof is now easy. If the data structure has redundancy r, begin by
publishing some arbitrary Py = r bits; this ensures that there are at most n bits in regular
memory, as required in the lemma.

In step i = 0,1,2..., we let k; = v - P;, and publish the cells in Probes(Q). Each
cell requires w bits for its contents and O(lgn) bits for its address, bringing the number
of published bits to Piyy < P+ k; -t - O(w) = O(P;w?). Here, t stands for the cell-probe
complexity of a query, and ¢t < lgn, since otherwise there is nothing to prove.

After publishing these bits, the cell-probe complexity of RANK(k) decreases by Q(1),
on average over uniform A and k. Since the average complexity cannot go below zero, the
maximum number of iterations that we are able to make must be O(t). The only reason we
may fail to make another iteration is a violation to the lemma’s condition P = o(n). Thus,
Powy =1 - w® = Q(n). We obtain the desired trade-off: r > n/w°®.

2.2 Correlation of Threshold Queries

In this section, we make the first step towards proving Lemma 3. Let P and k be as in the
lemma’s statement, and assume for contradiction that Pra 4epm[Probes(q) N Probes(Qq) #
] < &, for a small enough constant e. We thus know that a random query is very unlikely
to probe cells in Probes(Q).

By averaging, there exists a A € {(1 —¢%)%, ... % — 1} such that Pry 4eq, [Probes(q) N
Probes(Qy) # 0] < e. We are only going to concentrate on the queries @y and Qa.

Intuitively speaking, our contradiction is found as follows. The answers to queries)
must be encoded in the cells Probes(Q), and the answers to Qa in Probes(Qa). By as-
sumption, Probes(Qa) is almost disjoint from Probes(Q)p). But the answers Ans(Qg) and

n

Ans(Qa) are highly correlated, since they ask for partial sums that are only &° - T away

(remember that we chose A > (1 —&®)%). Thus, if the two sets of answers are written in

disjoint sets of cells, a lot of entropy is being wasted, which is impossible for a succinct data
structure.

Unfortunately, the random variable Ans(Q;) turns out to be rather unwieldy, since it
has superconstant entropy (we cannot afford the loss of an e fraction of the queries in
Qa). Instead, we will define a boolean version of our query. Let X (i) be the variable
RANK(i + 7) — RANK(7); this is the sum of a block of 7 elements following .

Now define T'(4) as the indicator of whether X (i) exceeds its mean: T'(i) = 1if X (i) > 7,
and T'(i) = 0 otherwise. Extend the definition of T to a set of queries, T'({¢1,¢2,...}) =
(T(q1),T(g2),...). Note that we can compute T'(i) from the answer of RANK(i) and
RANK(7 + 7). Then, T(Qa) is a function of Ans(Qa). Thus, we may work with 7'(Qo)
and T(Qa) instead of Ans(Qg) and Ans(Qa). To implement our intuition, the first thing to
prove is that T'(Q) and T'(Qa) are well correlated:

Lemma 4. H(T(Qo)) = k — o(k), but H(T(Qo) | T(Qa)) = O(ck).
Proof. We deduce this lemma from the following:
2
2 7 —

Fact 5. If Zx is the sum of N independent bits, NS %
standard normal distribution N'(0,1): the pointwise ({,) distance between the two cumulative

distribution functions is O(\/ﬁ)

converges uniformly to the

This is an immediate instantiation of the Berry-Esseen theorem.

Let Qo = {q0,q1,-..} and Qa = {¢},d},...} (sic). Note that the values T'(g;) are
independent, since the X (g;)’s are sums of different blocks of elements. Thus, H(T(QO)) =
k-H(T(q)). We claim that Pr[X(q;) > 5] = 1 —o(1). This follows from Fact 5, since
the normal has probability ; above the mean. We conclude that H(T'(g;)) = 1 — o(1) so

H(T(Qo)) =k — o(k).
For the second part of the lemma, we expand H(T(Qo) | T(QA)) using the chain rule
for entropy:

H(T(Qo) | T(Qa)) ZH (g) | T(q0), -, T(gi-1); T(q1), T(g5),--)

Conditioning on less variables may only increase the entropy; thus, we may bound:

H(T(Qo) | T(Qa)) < H(T(q)) +Y_H(T(a:) | T(4)

1>1

To analyze H(T'(¢;) | T(¢})), we observe that X(g;) and X(q}) are sums of A common
elements, plus # — A unique elements for each. Formally, we can write X(¢;) = A+ B and
X(¢}) = A+ C, where A is the sum of A > (1 — €)% elements, B and C' are the sum of
r—ALZ g - 7 elements, and A, B, C' are independent.

From Fact 5 applied to B and C, we conclude that Pr[|B — E[B]| > 5\/%} = O(e)
Applying the fact to A, we have Pr [|A — E[A]| > e/7] =1—O(e

By union bound, with probability 1—O(e), A deviates from its expectation by more than
5\/%, but B and C deviate by at most 5\/%. Thus, with probability 1 —0(¢), T(¢;) = T'(¢}).
We conclude that H(T'(¢;) | T'(¢}) = O(e). O

2.3 An Encoding Argument

In this section, we complete the proof of Lemma 3. We show that, if Pry o, [Probes(¢) N
Probes(Qo) # 0] < e, we can encode the input A via a prefix-free code using strictly less
than n bits on average, an information-theoretic contradiction.

Our encoding needs a careful definition of the intuitive notion of “the contents of the
cells Probes(Q).” Define the footprint Foot(Q) of a query set @ by the following algorithm.
We assume the published bits are known in the course of the definition. Enumerate queries
q € @ in increasing order. For each query, simulate its execution one cell probe at a time. If
a cell has already been included in the footprint, ignore it. Otherwise, append the contents
(but not the address) of the new cell in the footprint.

The crucial property of this definition is that Foot(Q) is a string of exactly |Probes(Q)|-w
bits.

Now observe that Ans(@®) is a function of Foot(Q) and the published bits. Indeed, we
can simulate the queries in order. At each step, we know how the query algorithm acts
based on the published bits and the previously read cells. Thus, we know the address of the
next cell to be read. We can check whether this cell appeared previously the footprint (since
inductively we know the addresses of all previous cells). If not, we read the next w bits of
the footprint, which are precisely the contents of this cell, and continue the simulation.

With the definition of the footprint, we can now describe our encoding for the array A:

1. the published bits (P bits). Denote these bits by the random variable P.

2. the identity of the (few) queries in Qa that touch Probes(Qy), i.e. the set @* = {q €
Qa | Probes(q) N Probes(Qg) # 0}. We can represent this using O(lg (@%")) bits. By
submodularity, the average length of this component is on the order of:

e (1g.)] < e (gyo) = #(a) - #oemd

3. the footprint Foot(Qa \ @*). This uses E[|Probes(Qa \ @*)|] - w bits. Observe that
from the published bits, the identity of @Q*, and this footprint, one can decode the
answers Ans(Qa \ @*).

4. the entries of T'(Q) that are not already known. Note that whenever two consecutive
queries from QA are outside Q*, the entry of T'(Qa) that talks about their difference
is known, since Ans(Qa \ Q*) are known. Thus, at least k — 2|Q*| entries in T'(Qa)
are known; this component writes down the rest, in order. The expected size is O(ek)
bits.

5. the value of T'(Qy), encoded optimally given T'(Qa). Using any efficient code (like
Hamming coding), this takes H(T'(Qo) | T(Qa)) +O(1) bits on average. By Lemma 4,
this is O(ek) bits.

6. the footprint Foot(Qy), encoded optimally given knowledge of T'(Q)y) and the published
bits. This takes H(Foot(Qo) | T(Qo), P) 4+ O(1) bits, using an efficient code. We can
rewrite H(Foot(Qo) | T(Qo),P) = H(Foot(Qo),T(Qo) | P) — H(T(Qo) | P).

But remember that 7'(Qo) is a function of Ans(Qy), which can in turn be recovered
from Foot(Qo) and P. Thus, the first term is H(Foot(Qo), T(Qo) | P) = H(Foot(Qo) |
P) < H(Foot(Qo)) < w - E[|Probes(Qo)]].

For the second term, we write H(T(Qo) | P) = H(T(Qo),P) — H(P) > H(T(Qo)) —
P > k—o(k)—P = Q(k). Therefore, the size of this component is w-E[|Probes(Qo)|] —
7. all cells outside Probes(Qg) U Probes(Qa \ @*), included verbatim with w bits per
cell. From the footprints included above, the addresses of the cells Probes(Q)y) and
Probes(Qa \ @*) are known. Thus, we know exactly which cells are included in this
component, and we do not need to spell out their addresses. This component takes

n —w - E[|Probes(Qo)| + [Probes(Qa \ @*)|] bits on average.

Observe that this encoding includes the published bits and all cells in the memory (though
the cells in Probes(Q) and Probes(Qa \ Q*) are included in a compressed format). Thus,
all n queries can be simulated, which allows us to reconstruct the entire array A. Thus, we
have a correct encoding of A.

Let us now calculate the average size of the encoding, summing up all components. Ob-
serve that items 3 and 6 contribute the footprint sizes: w-E[|Probes(Qa \ Q*)|], respectively
w-E [|Probes(Q0)” . But these terms are cancelled because the cells in the footprint are not
included in item 7, which takes n — w - E[|Probes(Qo)| + [Probes(Qa \ @*)|]. Items 1, 2, 4,
and 5 total k- O(elg L) bits.

Thus, the encoding size is n + k - O(elg 1) — Q(k), where the Q(k) saving is from item
6 (where we took out the entropy of H(T(Qy)) from the footprint). For a small enough
constant ¢, the negative term is twice the positive one, and the encoding has size n — Q(k).
We have reached a contradiction.

3 Extensions

We now extend our lower bound to both RANK and SELECT queries, in arrays that contain
a prescribed number, m, of ones. The optimal space in this case is Ig (::1) Observe that
setting m = 7, we also get a lower bound for SELECT in an unrestricted bit vector, since
lg(,) =n—0(gn).

ur strategy is to reinterpret the RANK and SELECT problems in a common partial-
sums framework. Let B[0.. N — 1] have integer elements, chosen independently from some
distribution D; the optimal average space is n - H(D). Consider the partial sums query
Sun(k) = Y°*, Blil.

If one chooses D as the Bernoulli distribution with probability of one being p, then SuM
is intuitively similar to the RANK problem in an array of size n = N, containing m = pn
ones. Note, however, that in the SUM problem, the number of ones is a random variable.
Thus, these two problems are identical only in the event & = {327 B[i] = pn}. Observe

that Pr[&] = Q(\/Lpfn).

If one chooses D as the geometric distribution with success probability p, then Sum is
intuitively similar to the SELECT problem in an array of size n = N/p, containing m = N
ones. Indeed, we can treat B[i] as the distance between the ith and (i + 1)th one in A. This
works in the event & = {37 B[i] < N/p}. Observe that Pr[€] = s £ 0(1): the skenewss
of the geometric distribution is constant for p bounded away from one, so the Berry-Esseen
theorem guarantees that the c.d.f. of), Bli] is within (., distance O(\/Lﬁ) from the normal
c.d.f.

The crucial ingredient of our lower bound was Lemma 3. We now state the following

replacement for it:

Lemma 6. Assume a data structure answers SUM queries on an array B[0..N — 1] of
i.i.d. elements from D, using P published bits, in the worst case, and n - H(D) memory bits,
on average. Assume (1) D is a Bernoulli with parameter p, and P = o(pN); or (2) D is a
geometric distribution with parameter p, and P = o(N).

Let ~v,e > 0 be appropriate constants. Break the queries into k = - P blocks. If:

Pr [Probes(q) N Probes(Qo) # 0| < e,

A,q€[n] N
there there exists an encoding for the input A of average size n - H(D) — Q(P).

Proof. Our proof of Lemma 3 only depended on A being a vector of uniform bits in one
place: Fact 5. Fortunately, we have the following easy replacements:

Fact 7. Let Z, be the sum of n independent variables, sampled from a Bernoulli distribu-

tion with parameter p. Then, 1(1)Zn — pn converges uniformly to the standard normal
n-p(l—p

distribution N'(0,1): the pointwise () distance between the two cumulative distribution

functions is O(\/%fn) .

As before, this is an instantiation of the Berry-Esseen theorem, since the standard devi-
ation of a Bernoulli trial is ©(,/p) and the third absolute moment is ©(p).

Fact 8. Let Z,, is the sum of n independent variables, sampled from a geometric distribution

with parameter p. Then, ﬁZn —% converges uniformly to the standard normal distribu-
n(l—p

tion N'(0,1): the pointwise () distance between the two cumulative distribution functions

is O(7=)-

This is another application of the Berry-Esseen theorem, using that the standard devia-
tion of the geometric distribution is \/127_7, and the third absolute moment is O(1/p?).

Our proof required o(1) distance from the normal distribution. We apply these facts
with n = w(N/k) = w(N/P), so we need the technical conditions: (1) for the Bernoulli
distribution, N/P = w(1/p), or P = o(pN); (2) for the geometric distribution, N/P = w(1),
or P =o(N). O

The final trick we need is a way to deal with the events £. As noted above, our > problem
is only identical to the RANK/SELECT problem under £. The data structure assumed by

8

Lemma 6 only exists under the event &£, since we start with data structures for RANK,
respectively SELECT.

To encode the input array B, we have two cases. If £ is not satisfied, we simply spell out
B with an efficient code, taking n - H(D) + O(1) bits. If £ is satisfied, we apply the lemma,
and obtain an encoding of size n- H(D) — Q(P). The average size will be n- H(D) + O(1) —
Q(P) - Pri&].

For RANK, Pr[€] = Q(ﬁ), so we need to start with P = max {r,w(y/pN)} to always
get a contradiction. The lemma applies as long as P = o(pN). Thus, we get the lower bound
max {r,w(\/]W)} -w®® > pN. But this simplifies to 7 - w°® > pN, since for r < (pN)'~¢,
the lower bound on t only varies by constants. Since D is the Bernoulli distribution, H(D) =
Hy(p), where h(-) is the binary entropy function: Hs(p) = p-log, 5 + (1 — p)logy 11, We
have log, (p’;) =n- Hy(p) — O(lgn), and m = pn. Thus, we obtain that any data structure
using lg (") + r bits and cell-probe complexity ¢ needs to satisfy r - w?® = Q(m).

For SELECT, Pr[€] is constant, so we only need to start with P a big enough constant. The
lemma applies as long as P = o(IN) = o(m). Since D is the geometric distribution with rate p,
it has entropy H(D) = %-Hg(p). Thus, N-H(D) = %-Hg(p) =n-Hy(p) = logs(") +O(Ign).

We again obtain that any data structure using Ig (") +r bits needs to satisfy r-w?® = Q(m).

References

[CM96] David R. Clark and J. Ian Munro. Efficient suffix trees on secondary storage.
In Proc. 7th ACM/SIAM Symposium on Discrete Algorithms (SODA), pages
383-391, 1996.

[GGGT07] Alexander Golynski, Roberto Grossi, Ankur Gupta, Rajeev Raman, and S. Srini-
vasa Rao. On the size of succinct indices. In Proc. 15th European Symposium on
Algorithms (ESA), pages 371-382, 2007.

[GMO03] Anna G4l and Peter Bro Miltersen. The cell probe complexity of succinct data
structures. In Proc. 30th International Colloguium on Automata, Languages and
Programming (ICALP), pages 332-344, 2003.

[Gol07] Alexander Golynski. Optimal lower bounds for rank and select indexes. Theo-
retical Computer Science, 387(3):348-359, 2007. See also ICALP’06.

[Gol09] Alexander Golynski. Cell probe lower bounds for succinct data structures. In
Proc. 20th ACM/SIAM Symposium on Discrete Algorithms (SODA), pages 625—
634, 20009.

[GRRO8] Alexander Golynski, Rajeev Raman, and S. Srinivasa Rao. On the redundancy
of succinct data structures. In Proc. 11th Scandinavian Workshop on Algorithm

Theory (SWAT), 2008.

[Jac89]

[Mil99]

[Mil05]

IMRRO1]

[Mun96]

[Pag01]

[P&t08]

[PT06]

[PTO7]

[RRRO2]

[Vio09a]

[Vio09b]

Guy Jacobson. Space-efficient static trees and graphs. In Proc. 30th IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages 549554, 1989.

Peter Bro Miltersen. Cell probe complexity - a survey. In Proc. 19th Conference
on the Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), 1999. Advances in Data Structures Workshop.

Peter Bro Miltersen. Lower bounds on the size of selection and rank indexes.
In Proc. 16th ACM/SIAM Symposium on Discrete Algorithms (SODA), pages
11-12, 2005.

J. Tan Munro, Venkatesh Raman, and S. Srinivasa Rao. Space efficient suffix
trees. Journal of Algorithms, 39(2):205-222, 2001. See also FSTTCS’98.

J. Ian Munro. Tables. In Proc. 16th Conference on the Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), pages 37-40, 1996.

Rasmus Pagh. Low redundancy in static dictionaries with constant query time.
SIAM Journal on Computing, 31(2):353-363, 2001. See also ICALP’99.

Mihai Patragcu. Succincter. In Proc. 49th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 305-313, 2008.

Mihai Patragcu and Mikkel Thorup. Time-space trade-offs for predecessor search.
In Proc. 38th ACM Symposium on Theory of Computing (STOC), pages 232-240,
2006.

Mihai Patrascu and Mikkel Thorup. Randomization does not help searching
predecessors. In Proc. 18th ACM/SIAM Symposium on Discrete Algorithms
(SODA), pages 555-564, 2007.

Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct indexable
dictionaries with applications to encoding k-ary trees and multisets. In Proc.
13th ACM/SIAM Symposium on Discrete Algorithms (SODA), pages 233-242,
2002.

Emanuele Viola. Bit-probe lower bounds for succinct data structures. In Proc.
41st ACM Symposium on Theory of Computing (STOC), pages 475-482, 20009.

Emanuele Viola. Cell-probe lower bounds for prefix sums. arXiv:0906.1370v1,
2009.

10

