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Abstract. We formulate a narrowing-based decision procedure for
E-unifiability. Termination is obtained requiring a narrowing bound: a
bound on the length of narrowing sequences. We study general condi-
tions under which the method guarantees that E-unifiability is in NP.
The procedure is also extended to narrowing modulo AC (associativity
and commutativity). As an application of our method, we prove N P-
completeness of unifiability modulo bisimulation in process algebra with
proper iteration, significantly extending a result in [8]. We also give
(new) proofs, under a unified point of view, of NP-decidability of I,
ACI, ACI1-unifiability and of unifiability in quasi-groups and central
groupoids.

1 Introduction

E-unification is concerned with solving term equations modulo an equational
theory E [11,3]. It is a fundamental tool in theorem proving, logic programming
and type assignment systems. Narrowing is a well-known technique that can be
used as a general E-unification procedure in the presence of a term rewriting
system (T'RS) [2]. Narrowing a term is finding the minimal instantiation of it
such that one rewrite step becomes applicable, and to apply it. If this process
is applied to an equation and is iterated until finding an equation whose both
terms are syntactically unifiable, then the composition of the most general unifier
with all the substitutions computed during the narrowing sequence yields an E-
unifier of the initial equation. The narrowing process that builds all the possible
narrowing sequences starting from the equation to be solved, is an E-unification
procedure that yields complete sets of unifiers, provided that E can be presented
by a convergent (i.e. confluent and terminating) rewrite system [3]. However, in
general this procedure does not terminate.

Hullot [9] gives sufficient conditions for this procedure to be terminating.
His results also extend to equational narrowing. However, the T RS must sat-
isfy strong requirements and no complexity analysis of the procedure is given.
Furthermore, there is not much hope to find low complexity bounds, as long
as we want complete sets of unifiers, since in simple cases their cardinality is
unfeasible [14].

* Work carried out within the MURST project TOSCA (Theory of concurrency, higher
order and types).
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However, constraint approaches to theorem proving [15,5] and logic pro-
gramming [6], need the computation of finite complete sets of unifiers no longer
for many applications. It is sufficient to decide solvability of the E-unification
problems, namely E-unifiability.

Nieuwenhuis [18], using basic paramodulation techniques, shows that
E-unifiability is in NP if E is shallow (i.e. variables at depth at most one).
But there is no extension to equational paramodulation and being shallow is
very restrictive.

Here we study E-unifiability via narrowing. This paper does not aim to define
yet another refinement of the basic narrowing which does not destroy complete-
ness (for a survey, see [3]). We show how optimal and new complexity results
can be obtained considering a simple bound on the length of the basic narrow-
ing sequences. Our method is lazy, in the sense that we never compute unifiers.
Instead, we add equations to our unification problem, and only at the end we
check the unifiability of all the equations we have created.

We show that if for every rule [ — r in a convergent T'RS we have that r
is a subterm of /, then FE-unifiability is in NP (where E is equivalent to the
TRS). This is enough, for example, to give (new) proofs of N P-decidability of
unifiability in quasi-groups, central groupoids and of I-unifiability (idempotency,
ie.z+r~u1).

Of course not every theory can be presented as a convergent T RS. One of the
main reasons is that some (sets of) axioms cannot be oriented into terminating
(sets of) rewrite rules. Among these there is AC (‘associativity, i.e. x + (y+2) =~
(z + y) + 2, and commutativity, i.e. x +y ~ y + x), satisfied by many common
binary operations. Consequently, we extend our results to narrowing modulo
AC'. Being lazy is particularly important in this case, because the cardinality of
a minimal complete set of AC-unifiers may be doubly-exponential [14,17].

The most important application we consider here is in the field of process alge-
bra [4]: N P-completeness of unifiability modulo bisimulation in minimal process
algebra with proper iteration [7]. This is a significant extension of a result in [8].

Again, we get new proofs of classical results: N P-decidability of ACT, ACI1-
unifiability (1 stands for existence of unity, i.e. ¢ + 1 =~ x).

This paper is organized as follows. In the next section we give some prelimi-
naries. In Section 3 we define our narrowing-based decision procedure, study its
complexity and compare our results with Hullot’s and with Nieuwenhuis’. We
also give some applications. In Section 4 we extend our results to AC-narrowing
and detail an application in process algebra. We also discuss other applications.
Section 5 is a conclusion.

2 Preliminaries

We assume that the reader is familiar with terms, equational theories,
E-unification, term rewriting systems and related topics [2]. We denote by
Term(D>|JX) the set of terms generated by the signature ) and the set of
variable symbols X. We denote the set of positions of a term s by Pos(s). For
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p € Pos(s), s|p is the subterm of s at position p, and s[t], is the term obtained
from s by replacing the subterm at position p by the term t. We denote by Pos(s)
the set of non variable positions of s: {p : p € Pos(s) and s|, ¢ X}. The size of
a term s is |Pos(s)|. We may write a substitution 6 as {z; < 6z1,...,2, « 0z, }
if its domain, denoted by Dom(8), is {1, ...,x, }. Let E be an equational theory.
It is convenient to see an equation over », modulo E as a term with top symbol
=5 (=54 ), i.e. s =5 t where s,t € Term (> UX). We write § = s =%, t for
0s =g 0t. An E-unification problem over Y is a finite set of equations modulo
E. In this paper every E-unification problem is general, i.e. it may contain arbi-
trary function symbols not occurring in E. Let IT be an E-unification problem.
The size of IT is ), ; size(e). II is E-unifiable if there is a substitution 6 such
that for any e € IT, § |= e. In this case we write § |= IT and 6 is said to be a
E-unifier. If 6 is a substitution, we write 6II for {fe: e € II}.

A term rewriting system (T'RS) T is a finite set of identities, called (rewrite)
rules and written | — r, such that for any | - r € T', [ ¢ X and var(l) D var(r)
(var(s) is the set of variables occurring in s). Let T be a TRS. We write s = ¢
(s reduces to t) iff there are I — r € T, p € Pos(s) and a substitution 6 such
that s|, = 6l and t = s[fr],. We write s =1/4¢ t (s reduces modulo AC to t) iff
there are terms s',#' such that s =4¢ 8" =7 t' =4¢ t. When considering —7,4¢
we speak of an AC-TRS. Let T be an (AC-)TRS. If s —y(/ac) t we speak
of a reduction step. A term s is reducible if there is ¢ such that s —r(/4c) t;
otherwise, s is in normal form. A substitution 6 is said to be normalized if for
any € Dom(0), 6z is in normal form. T' is convergent if it is confluent (modulo
AC) and terminating (modulo AC).

3 Narrowing

We start with the case where E is equivalent to a convergent TRS T'. A system
is a couple IT; K where I is an E-unification problem and K a set of equations
(modulo §). We define our narrowing relation ~:

Definition 1. Let IT U {e}; K be a system, p € Pos(e) andl — r € T. Then
I U{elul,}; K ~7 MU {elr],}; K U{l =" u}

If IT; K ~7 II'; K' then we say that IT; K narrows in IT'; K'. We also speak
of a (narrowing) sequence IlI1; K1 ~> ... ~71 II,;; K,,, and we denote by ~%. the
reflexive transitive closure of ~»7. In the following we will occasionally slightly
abuse this notation, narrowing systems where we have a term in place of the
E-unification problem.

Our narrowing relation is nothing but a lazy version of the basic narrowing
relation introduced by Hullot [9]. Moving the subterm u in K enforces the basic
restriction on future applications of the rule [3].

We are not interested in finding minimal complete set of E-unifiers [3], only
in FE-unifiability. So in our setting narrowing gives a complete semi-decision
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zx(x\y) >y  (zxy)/y = o
(z/y)xy 2z (z/y)\z —y
a\(zxy) >y  x/(Y\2) 2y
Table 1. Rewrite rules for quasi-group theory.

procedure for E-unifiability. This means that, for every E-unification problem
11, the following two conditions are equivalent:

1. IT is E-unifiable.
2. IT;) ~% II'; K and IT' U K is syntactically unifiable.

However, this does not give rise to a terminating decision procedure for E-
unifiability. In fact some narrowing sequences may not terminate, and we don’t
know when we can stop following them.

Hullot [9] gives sufficient conditions for the narrowing to be a terminating
decision procedure for E-unifiability. He proves that, given a TRS T, if for ev-
ery | — r € T every basic narrowing sequence starting from r terminates, then
every narrowing sequence starting from every term terminates. Using this fact,
one can give a decision procedure for I-unifiability. In fact the TRS {z+ 2z — z}
is convergent and equivalent to I, and moreover it satisfies the Hullot condition
for termination, because there is no basic narrowing sequence starting from z.
Similarly, Hullot gets decidability of unifiability in quasi-group theory, whose the-
ory is equivalent to the convergent T'RS reported in Table 1. Hullot’s approach
extends to narrowing modulo equational theories. But it gives no complexity
analysis of the procedure and the T RS must satisfy a quite strong requirement.

Nieuwenhuis [18] shows that E-unifiability is in NP if E is shallow (i.e.
variables at depth at most one). As a direct application one gets a new proof that
IT-unifiability is in NP, but one can not prove the same for quasi-group theory
because it is not shallow. In fact being shallow is rather restrictive. In addition,
this approach gives no extensions to deduction modulo equational theories.

Let’s consider an easy case which is not covered by any of the above ap-
proaches. Let T be the TRS {f(f(z)) — f(z)} convergent and equivalent to
E := {f(f(z)) = f(z)}. Intuitively, E-unifiability looks like an easy task. But
we can’t apply Nieuwenhuis’ results because E is not shallow. Nor can we apply
Hullot’s results because there is a non-terminating narrowing sequence starting
from f(z), namely, using the non-lazy basic narrowing introduced by Hullot [9]:

@) ~srn—1w) FO) i) —5) F(2) ~ .

However, suppose t € Term(>|J X). If 6 is normalized, how long can a re-
duction sequence starting from 8¢ be? Clearly at most the number of occurrences
of f in ¢, which is less than size(t). So, if to every reduction sequence corresponds
a narrowing sequence of the same length, in order to check the E-unifiability of
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an equation s =% t it is sufficient to consider narrowing sequences as long as
max{size(s), size(t)}.

In order to formalize this idea we introduce a useful notation. We write
s =T,9 t to indicate the substitution 8 involved in the reduction step. We write
s >y tiff s -1 ¢t and 0 is normalized. Similarly, if IT and II' are sets of
equations, we write IT ¢ II' iff IT = IT U {e}, II' = I U {¢'} and e 7 €.
We speak of an inner reduction step. Furthermore, we write slp. (IT]7) if s (IT)
reaches its normal form in at most n inner reduction steps, i.e. if there is no
sequence 8 Fr 81 T ... 7 Sy 1 Spa1 (IT =7 I =y oo =y I, &
Hn+1)-

The previous considerations lead to the following definition:

Definition 2. Let H be a computable function from the set of all E-unification
problems into the positive integers. H is a narrowing bound for T if for any
E-unification problem II, if II is unifiable then there is a unifier 0 such that

orr .

The reader might wonder about the rationale for considering inner reductions.
In addition: why don’t we use the well-known innermost reductions? There is a
specific reason for this, explained at the end of Section 4.1.

We can now give our decision procedure for E-unifiability, when E is equiv-
alent to a convergent TRS T and H is a narrowing bound for 7. Let II be an
FE-unification problem:

Decision Procedure

1. Guess n < H(II).
2. Guess a sequence IT; ) ~7 IT1; Ky ~ ...~ I K.
3. Answer ‘yes’ iff IT,, U K, is syntactically unifiable.

The proof of the completeness of the above decision procedure should be
substantially obvious [3,23].

3.1 Complexity

Our approach allows us to say something more than just decidability of E-
unifiability: we can prove it is in NP when there is a polynomial narrowing
bound:

Definition 3. A narrowing bound H is polynomial if it is polynomially com-
putable and there is a polynomial q such that for every E-unification problem II,
H(IT) < q(size(IT)).

In fact, if there is a polynomial narrowing bound for 7', then we can restrict
to considering only narrowing sequences whose length is bounded by a (fixed)
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polynomial in the size of the problem. Moreover, our lazy approach guarantees
that if IT; K ~»1 II'; K' then size(II' U K') = O(size(IT U K)). So the whole
narrowing sequence is polynomial in the size of the problem, and can therefore
be guessed in non-deterministic polynomial time. Noticing that general syntactic
unifiability is in P [19, 3] concludes the proof of the following theorem.

Theorem 1. Let E be an equational theory and T a convergent T RS equivalent
to E. If there is a polynomial narrowing bound for T then E-unifiability is in
NP.

The point now is: how do we find a (polynomial) narrowing bound for a
T RS? The following corollary establishes a rather general result:

Corollary 1. Let E be an equational theory and T a convergent TRS equivalent
to E. If for everyl — r € T we have that r is a subterm of l, then E-unifiability
is in NP.

Proof. We prove by induction that for every term ¢ and for every normalized

substitution 6, thsTize(t). The result follows since for any e € IT, Helgfze(e) and
size(I) = 3, size(e), so we have Hﬂ_zfze(m and therefore we can consider

H(IT) := size(II).
We proceed with the induction:

— If t = x then Oz is in normal form because € is normalized.

— Ift = f(t1,...,t5) for n > 0 then 6t = f(0t4,...,0t,). By induction, one gets
ot 157 0, 1579 If £(0ty Lr, ..., 0t L) = t then ¢ is in normal
form because it is a (proper) subterm of f(6t; |, ...,0t, l7). So we perform
at most 1+ Y7, size(t;) reduction steps, and we can conclude HtlsTize(t).

O

Clearly, the existence of a polynomial narrowing bound for a TRS T does not
imply that r is a subterm of [ for every rule [ — r € T'. For example, the trivial
TRS {a — b} has a polynomial narrowing bound. We are currently working
on generalizations of the above corollary. However, it already gives interesting
results, which we detail in the next section.

3.2 Applications

We immediately get a new narrowing-based proof of the following well-known
result.

Theorem 2. I-unifiability is in NP.

Proof. The TRS {z + © — =} is convergent and equivalent to I. The result
follows because of Corollary 1. O
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Notice that this last result is optimal: I-unifiability is N P-complete [13]. As
we noted before, T-unifiability can be showed to be in NP using the results in
[18]. However, our technique applies to non-shallow theories as well. We give a
couple of examples:

Theorem 3. Unifiability in quasi-group theory is in NP.

Proof. A convergent TRS equivalent to quasi-group theory is reported in Ta-
ble 1. The result follows because of Corollary 1. ]

The theory {(z *y) * (y * z) =~ y} defines central groupoids [2].
Theorem 4. Unifiability in central groupoids is in NP.

Proof. The following is a convergent T' RS equivalent to {(z*y) *(y*z) ~ y} [2]:

The result follows because of Corollary 1. O

4 AC-Narrowing

In this section we extend our results to narrowing modulo AC. A special atten-
tion has always been devoted to this case [9,17], as A and C are well-suited for
being built-in due to their permutative nature and they often occur in practical
specifications (we will give an example in Section 4.2).

For simplicity, we assume that + is the only AC-symbol, i.e. interpreted as
an operator satisfying AC. Cases where there are several AC-symbols can be
treated analogously.

We extend our narrowing relation in a way which parallels inner equational
rewriting. One extends inner rewriting to inner AC-rewriting defining

sr/act iff s=acs =7t =act

for some s',t'. We might then define our AC-narrowing relation in the following
way:

DU {e}; K ~pjac I K iff € =pceand TU{e'}; K ~p ITI' K

This would lead to a decision procedure for E-unifiability as in Section 3,
where the final system is checked for AC-unifiability instead of syntactic unifia-
bility (now K is a set of equations modulo AC).

However, the completeness is lost. In fact, the completeness of our narrowing
for E-unifiability rests on a variant of the Hullot property [9,11]:
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Definition 4. (Hullot property) For every normalized substitution 0:
if Be—riac e then e;0 ~qiac € K
and there is a normalized substitution §' D 6 such that 8" =4c €' and ' = K.

We now show that the introduced narrowing relation does not satisfy the
Hullot property. For readability we write Z,, for 1 +...+z, and a,, for a+...+a
(where there are n a’s).

Ezample 1. Let T := {x + x — ¢} and E := AC U {z + = = c}. For every even
n > 1 consider the equation Z,, =% c. The substitution 6 := {z; + a +b, ..., z,
+ a + b} is normalized and we get:

0(Zy, :?E c) =r/ACc €+ Bn :?E c

The system Z,, =% ¢; 0 could narrow in ¢ =% ¢; %, =’ 2z +2 but now ¢ # c+by,.
So the Hullot property is not satisfied.
Other narrowing sequences lead to similar results.

The point is that every fzx; in the above example is only partially involved in
the reduction step. L.e. 8z; = 4¢ u; +v; where u; is not involved in the reduction
step.

To overcome the incompleteness, we consider extensions of the equations.
We use them implicitly, that is coding them in the narrowing relation. This idea
first appeared in [21]. The reader may consult [22] for a comparison between
implicit and explicit [20] extensions, and for another example showing that AC-
paramodulation is incomplete without extensions. In many cases, it is sufficient
to consider single-variable extensions, i.e. given an equation s = ¢t one considers
s+ 2z =t+x where z is a new variable [20,17]. But in our framework this is not
sufficient. We will return to this later.

Recall we assume + is the only AC-symbol in > . We denote by UngPos(s)
the set of variable positions unguarded in s, i.e. {p:p € Pos(s), s|p € X and if
p = qq¢' with |¢'| > 0 then s|; =t +¢'} [4].

Our AC-narrowing relation is then:

Definition 5. Let IT U {e}; K be a system, e =ac €', p € Pos(e'),l > r €T
and Yo, ..., Yyn—1 new variables where n < |UngPos(€'|,)|. Then

IIu{eh K T/AC Iru {eI[T + gn]p}§KU {I+3n :,?40 el|p}-

Using this relation, AC-narrowing is complete. For instance, in the previous
example we get:

- T _ 7 I
Tpn=p G0 ~r/ac ¢+ n =5 G2+ 2+ Tn =40 Tn

now considering 6’ := 6 U {z — Gp/2,y1 <— b, ..., yn +— b} we see that the
Hullot property is satisfied.
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This example also explains the inequality n < |UngPos(e'|p)|: the Hullot
property would not be satisfied using less than n new variables.

The notion of narrowing bound translates to the AC-case simply considering
inner reductions modulo AC. Let E be equivalent to a convergent AC-TRS T
and let H be a narrowing bound for 7'. Given an E-unification problem II, the
following procedure decides its E-unifiability:
Decision Procedure (AC case)

1. Guess n < H(II).
2. Guess a sequence IT; () ~rac i Ky ~1jac - ~1jac n; K.
3. Answer ‘yes’ iff IT,, U K,, is AC-unifiable.

Again, the proof of the completeness should be substantially obvious, but it
requires some technical notations to deal with AC-symbols [23].

4.1 Complexity

Implicit extensions do not affect the complexity of our decision procedure: all
we have to do is to guess the number of new variables, which is bounded by
the size of the term being considered. In addition, given a term s we can guess
in non-deterministic polynomial time any term s’ such that s =4¢ s'. Noticing
that AC-unifiability is in NP [12] gives the following:

Theorem 5. Let E be an equational theory and T a convergent AC-TRS equiv-
alent to E. If there is a polynomial narrowing bound for T then E-unifiability is
in NP.

Polynomial narrowing bounds exist for significant AC-T'RS, as we shall see
in the next section. However, we can’t hope in a result as Corollary 1. To see
this, consider E := ACU {a+ b =~ b} and T := {a + b — b}. The point is: if
a term s is in normal form, how many reductions do we need to take s + b to
its normal form? This clearly depends on the number of a’s in s, which might
be exponential in the size of the unification problem. More precisely, using an
argument similar to one in [19], we define for every n > 1 the unification problem
I, .=

z+b :?‘? b
T = ?E r1 + 21
Ty =g T2 + T2

>
Tp—1 =g Tp +2Tn
?
Ty =g a

If 6 |= IT,,, then 6z contains 2™ a’s. Therefore we need 2™ reduction steps to
take 6(z + b) to its normal form b, since each application of the rule a +b — b
removes a single a.
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We conclude this section explaining why we use inner reductions instead of
innermost ones. Let’s consider the same set of problems {II,,} above, but now
let B:= ACU{z+b=b} and T := {z + b — b}. As before, if § |= II,, then 6z
contains 2" a’s. If we used innermost reductions then we would need 2" reduction
steps to take 6(x + b) to its normal form b. On the other hand, 8(z +b) — b by
just one inner reduction step. To sum it up: using innermost reductions there
is no polynomial narrowing bound for 7', while using inner reductions (one can
prove) there is.

4.2 Application in Process Algebra

As mentioned before, applications of our method can be found in Process Al-
gebra [4]. We can in particular prove N P-completeness of unifiability modulo
bisimulation in minimal process algebra with proper iteration (M PA(}") [7]. This
is the so-called compatibility checking problem for M PA}, a significant exten-
sion of that for BCCSP, studied in [8]. See [8,10] for motivation and a survey
of the compatibility checking.

In the following, let A be a fixed set of actions. The signature of MPAS
consists of a constant §, which represents deadlock, the binary alternative com-
position x + y, the unary prefix sequential composition a(x) and the proper
iteration a™ (x), for a € A. Often, a(t) and at(t) will be abbreviated by at and
a™t, which bind stronger than the alternative composition +.

The following is a complete equational axiomatization of bisimulation equiv-
alence for M PAY [7]:

(@+y)+zmaz+(y+2)

r+yxy+x
rt+rrRw
r+ircz
alatz+z)~atz Va € A
at(atz+z)~atz Va€ A

We call this theory Bist. So we would like to decide Bis'-unifiability. One
could notice that Bis™ can be seen as the union of ACI1 and two axioms for
iteration. ACTI1-unifiability is decidable [16] (we will give a new proof in the
next section), so one may hope to use standard combination techniques for the
union of equational theories. But the combination techniques currently available,
see for instance [1], can not deal with this case, because these would require the
whole equational theory to be equal to a union of equational theories over disjoint
signatures, which is impossible because of the axiom a(atz + z) =~ a™z.

We can of course try to apply our results on AC-narrowing, so we need a
convergent AC-T' RS equivalent to Bis'. Such an AC-T'RS is reported in Table
2[7], and we call it T'. This shifts the problem towards finding a narrowing bound
for T'. But size is such!

Theorem 6. Size is a polynomial narrowing bound for T.
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rT+xT—x

r+0 >z
a(atz+z) > ats VacA
at(atz+x) > atz Vac A
a(@a™d) - atd VacA
at(até) »atd Vac A
Table 2. Rewrite rules of the AC-TRS T

Proof. We prove that if s =t + u, where both ¢ and u are in normal form, then
slr{p /ac- The rest of the proof proceeds exactly as that of Corollary 1.

If s is in normal form then we are done.

Ift =6 (u=4) then s —>7/4¢ u (t) and we are done.

Otherwise, we reduce by the rule z + z — z. Intuitively, we simply have to
choose the greatest substitution that fits. More formally, we associate to every
term v the multiset M (v), which is defined as follows:

M) =Mw)UMW') ifv=w+w
M (v) := {[v]ac} otherwise

where U is the union between multisets [2] and [v]4¢ is the equivalence class
of v modulo AC. Now consider the case where t # 6, u # § and t + u is not
in normal form. Let w be a term such that M (w) = M (t) N M (u), and reduce
applying the rule  + z — x with substitution 6 := {z + w}. It is easily seen
that we get a normal form.

In any case, we perform at most one inner reduction step, so we can conclude

T1
sdrjac .

Applying Theorem 5, we get that Bist-unifiability is in NP. In [8] it is
proven that Bis-unifiability (Bis is BisT without the two axioms for iteration)
is N P-hard. The proof also works for BisT-unifiability. So the upper bound on
the complexity of Bist-unifiability we have just shown is tight:

Theorem 7. Bist-unifiability is N P-complete.

To conclude, we point out that Bist-unifiability is (polynomially) equiva-
lent to unifiability modulo bisimulation in minimal process algebra with prefix
iteration (M PAj) [10].

4.3 Other Applications

We briefly discuss other applications of our decision procedure.

N P-decidability of both ACT-unifiability and ACT1-unifiability are well-
known results, which can be proven via ad hoc decision procedures [16] or via
combination techniques [1].

Our method can be used to reobtain them under a different and unified point
of view: the AC-TRS {z+z — z} and {24z — z,z+1 — =z} are convergent and
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equivalent to ACT and ACT1, respectively. Furthermore, size is a polynomial
narrowing bound for them (the proof is a sub-case of the proof of Theorem 6).
So our results hold and we get N P-decidability. It follows that our method can
be used to prove N P-decidability of Bis-unifiability, since this is the same as
ACT1-unifiability [8].

5 Conclusion

We have presented a narrowing-based method to decide E-unifiability when E is
equivalent to a convergent (AC-)TRS. The method guarantees N P-decidability
when a polynomial narrowing bound exists, and we have studied general condi-
tions under which this existence is guaranteed.

These results have been used to provide an optimal and new result in Process
Algebra, namely Bist-unifiability. They have also given (new) proofs under
a unified point of view of N P-decidability of I, ACI, ACI1-unifiability and of
unifiability in quasi-groups and central groupoids.

Our approach shows that sometimes FE-unifiability can be shifted towards
finding a narrowing bound for a convergent (AC-)TRS equivalent to E. We
are currently working on weaker conditions which guarantee the existence of a
polynomial narrowing bound for a convergent (AC-)TRS.

Acknowledgment: I thank professor Marisa Venturini Zilli for having intro-
duced me to the unification problems and for her helpful reading of this paper.
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