EMANUELE VIOLA

May 20, 2024
Northeastern University, 338 West Village H (WV), 440 Huntington Avenue, Boston, MA 02115
Web: WWW.ccs.neu.edu/home/viola Email: viola@ccs.neu.edu Phone: (617) 373-8298
Blog: https://emanueleviola.wordpress.com

Contents

RESEARCH INTERESTS 2
POSITIONS 2
EDUCATION 2
AWARDS AND DISTINCTIONS 2
RESEARCH PAPERS 2
SURVEYS AND MY PH.D. THESIS 8
PREPRINTS AND NOTES 9
OTHER WORK BY RESEARCH GROUP 10
TALKS 11
VIDEO GAMES 16
EXTERNAL GRANTS 16
INTERNAL GRANTS 17
TEACHING: COURSES 17
RESEARCH TEAM (INCLUDING STUDENTS) 18
SERVICE TO THE INSTITUTION 18
$\begin{array}{ll}\text { SERVICE TO THE DISCIPLINE } & 18\end{array}$

RESEARCH INTERESTS

Is the computer ever slow?
I want to know why.
But I am not interested in explanations grounded in human choice.
I want to know if there is an intrinsic, mathematical reason why some tasks take longer than others.

POSITIONS

Northeastern University, Boston, MA
Professor
Associate professor
Assistant professor
Fall 2021 - present

Visiting Scientist at Simons Institute Spring 2014 - Spring 2021

Visiting Scientist at Simons Institute
Fall 2008 - Spring 2014
Fall 2018
Visiting scholar at Harvard University
Fall 2015

Columbia University, New York, NY
2014-2015
Postdoctoral fellow; Sponsor: Rocco Servedio
Institute for Advanced Study, Princeton, NJ
Fall 2006 - Summer 2007
Postdoctoral fellow; Sponsor: Avi Wigderson

EDUCATION

Harvard University, Cambridge, MA
Fall 2001 - Summer 2006
Ph.D. Computer Science; Advisor: Salil Vadhan
La Sapienza University, Rome, Italy
Fall 1995 - Spring 2000
B.S. Computer Science, summa cum laude

AWARDS AND DISTINCTIONS

Best Paper Award, IEEE Conf. on Computational Complexity, for the paper [13] 2008
SIAM Student Paper Prize, for the paper [7]
Six papers selected for STOC/FOCS special issues
Four papers selected for CCC/ICALP/RANDOM/CSR special issues

RESEARCH PAPERS

All of the conferences (and journals) below are peer reviewed.
69. Pseudorandomness, symmetry, smoothing: I

With Harm Derksen and Peter Ivanov and Chin Ho Lee
In Conf. on Computational Complexity (CCC), 2024
68. Quasirandom groups enjoy interleaved mixing

With Harm Derksen
Discrete Analysis, 2023
67. On correlation bounds against polynomials

With Peter Ivanov and Liam Pavlovic
In Conf. on Computational Complexity (CCC), 2023
66. New sampling lower bounds via the separator

In Conf. on Computational Complexity (CCC), 2023
65. Efficient resilient functions

With Peter Ivanov and Raghu Meka
In ACM-SIAM Symp. on Discrete Algorithms (SODA), 2023
64. Fooling polynomials using invariant theory

With Harm Derksen
In IEEE Symp. on Foundations of Computer Science (FOCS), 2022
63. Affine extractors and AC0-Parity

With Xuangui Huang and Peter Ivanov
In Workshop on Randomization and Computation (RANDOM), 2022
62. Pseudorandom bits and lower bounds for randomized Turing machines Theory of Computing, vol. 18, num. 10, pp. 1-12, 2022
61. On Hardness Assumptions Needed for "Extreme High-End" PRGs and Fast Derandomization With Ronen Shaltiel
In ACM Innovations in Theoretical Computer Science conf. (ITCS), 2022
60. Mixing in non-quasirandom groups

With W. T. Gowers
In ACM Innovations in Theoretical Computer Science conf. (ITCS), 2022
59. Approximate Degree-Weight and Indistinguishability

With Xuangui Huang
To appear in ACM Trans. Computation Theory
58. Fourier growth of structured F2-polynomials and applications

With Jaroslaw Blasiok and Peter Ivanov and Yaonan Jin and Chin Ho Lee and Rocco A. Servedio In Workshop on Randomization and Computation (RANDOM), 2021
57. Fourier conjectures, correlation bounds, and Majority

In Coll. on Automata, Languages and Programming (ICALP), 2021
56. Average-case rigidity lower bounds

With Xuangui Huang
In Computer Science Symp. in Russia (CSR), 2021
55. New lower bounds for probabilistic degree and AC0 with parity gates

To appear in Theory of Computing
54. AC0 unpredictability

To appear in ACM Trans. Computation Theory
53. More on bounded independence plus noise: Pseudorandom generators for read-once polynomials With Chin Ho Lee
Theory of Computing, vol. 16, pp. 1-50, 2020
52. Lower bounds for data structures with space close to maximum imply circuit lower bounds Theory of Computing, vol. 15, pp. 1-9, 2019
51. Sampling lower bounds: boolean average-case and permutations

SIAM J. on Computing, vol. 49, num. 1, 2020
50. How to Store a Random Walk

With Omri Weinstein and Huacheng Yu
In ACM-SIAM Symp. on Discrete Algorithms (SODA), 2020
49. Constant-error pseudorandomness proofs from hardness require majority

ACM Trans. Computation Theory, vol. 11, num. 4, pp. 19:1-19:11, 2019
48. What do humans perceive in asset returns?

With Jasmina Hasanhodzic and Andrew Lo
Journal of Portfolio Management, vol. 45, num. 4, pp. 49-60, 2019
47. Indistinguishability by adaptive procedures with advice, and lower bounds on hardness amplification proofs
With Aryeh Grinberg and Ronen Shaltiel
In IEEE Symp. on Foundations of Computer Science (FOCS), 2018
46. Revisiting Frequency Moment Estimation in Random Order Streams

With Vladimir Braverman and David P. Woodruff and Lin F. Yang
In Coll. on Automata, Languages and Programming (ICALP), 2018
45. The coin problem for product tests

With Chin Ho Lee
ACM Trans. Computation Theory, vol. 10, num. 3, 2018
44. Local Expanders

With Avi Wigderson
Computational Complexity, vol. 27, num. 2, pp. 225-244, 2018
43. Bounded independence plus noise fools products

With Elad Haramaty and Chin Ho Lee
SIAM J. on Computing, vol. 47, num. 2, pp. 295-615, 2018
Preliminary version in Conf. on Computational Complexity (CCC), 2017
42. Block-symmetric polynomials correlate with parity better than symmetric

With Frederic Green and Daniel Kreymer
Computational Complexity, vol. 26, num. 2, pp. 323-364, 2017
41. Some limitations of the sum of small-bias distributions

With Chin Ho Lee
Theory of Computing, vol. 13, 2017
40. Interleaved group products

With W. T. Gowers
SIAM J. on Computing, vol. 48, num. 3, pp. 554-580, 2019
Preliminary version in IEEE Symp. on Foundations of Computer Science (FOCS), 2016
FOCS Special Issue. The journal version includes the results appearing in the STOC 2015 and
FOCS 2016 conference versions
39. Bounded Independence versus Symmetric Tests

With Ravi Boppana and Johan Håstad and Chin Ho Lee
ACM Trans. Computation Theory, vol. 11, num. 4, pp. 21:1-21:27, 2019
Preliminary version in Workshop on Randomization and Computation (RANDOM), 2016
38. Bounded indistinguishability and the complexity of recovering secrets

With Andrej Bogdanov and Yuval Ishai and Christopher Williamson
In Int. Cryptology Conf. (CRYPTO), 2016
37. Quadratic maps are hard to sample

ACM Trans. Computation Theory, vol. 8, num. 4, 2016
36. Local reductions

With Hamid Jahanjou and Eric Miles
Information and Computation, vol. 261, num. 2, 2018
Preliminary version in Coll. on Automata, Languages and Programming (ICALP), 2015
ICALP Special issue
35. The communication complexity of interleaved group products

With W. T. Gowers
In ACM Symp. on the Theory of Computing (STOC), 2015
34. On Randomness Extraction in AC0

With Oded Goldreich and Avi Wigderson
In IEEE Conf. on Computational Complexity (CCC), 2015
33. 3SUM, 3XOR, Triangles

With Zahra Jafargholi
Algorithmica, pp. 1-18, 2014
32. Short PCPs with projection queries

With Eli Ben-Sasson
In Coll. on Automata, Languages and Programming (ICALP), 2014
31. Real advantage

With Alexander Razborov
ACM Trans. Computation Theory, vol. 5, num. 4, pp. 17, 2013
30. Shielding circuits with groups

With Eric Miles
In ACM Symp. on the Theory of Computing (STOC), 2013
29. On the complexity of information spreading in dynamic networks

With Chinmoy Dutta and Gopal Pandurangan and Rajmohan Rajaraman and Zhifeng Sun In ACM-SIAM Symp. on Discrete Algorithms (SODA), 2013
28. The communication complexity of addition

Combinatorica, pp. 1-45, 2014
Preliminary version in ACM-SIAM Symp. on Discrete Algorithms (SODA), 2013
27. Extractors for Turing-machine sources

In Workshop on Randomization and Computation (RANDOM), 2012
26. Substitution-permutation networks, pseudorandom functions, and natural proofs

With Eric Miles
J. of the ACM, vol. 62, num. 6, 2015

Preliminary version in Int. Cryptology Conf. (CRYPTO), 2012
25. Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates With Anna Gál and Kristoffer Arnsfelt Hansen and Michal Koucký and Pavel Pudlák
IEEE Transactions on Information Theory, vol. 59, num. 10, pp. 6611-6627, 2013
Preliminary version in ACM Symp. on the Theory of Computing (STOC), 2012
24. Extractors for circuit sources

SIAM J. on Computing, vol. 43, num. 2, pp. 355-972, 2014
Preliminary version in IEEE Symp. on Foundations of Computer Science (FOCS), 2011
FOCS Special Issue
23. On beating the hybrid argument

With Bill Fefferman and Ronen Shaltiel and Christopher Umans
Theory of Computing, vol. 9, pp. 809-843, 2013
Preliminary version in ACM Innovations in Theoretical Computer Science conf. (ITCS), 2012
22. Randomness buys depth for approximate counting

Computational Complexity, vol. 23, num. 3, pp. 479-508, 2014
Preliminary version in IEEE Symp. on Foundations of Computer Science (FOCS), 2011
21. On the complexity of constructing pseudorandom functions (especially when they don't exist) With Eric Miles
J. of Cryptology, pp. 1-24, 2013

Preliminary version in Theory of Cryptography Conf. (TCC), 2011
20. A Computational View of Market Efficiency

With Jasmina Hasanhodzic and Andrew W. Lo
Quantitative Finance, vol. 11, num. 7, 2011
19. Bounded-depth circuits cannot sample good codes

With Shachar Lovett
Computational Complexity, vol. 21, num. 2, pp. 245-266, 2012
Preliminary version in IEEE Conf. on Computational Complexity (CCC), 2011
CCC Special issue
18. The complexity of distributions

SIAM J. on Computing, vol. 41, num. 1, pp. 191-218, 2012
Preliminary version in 51th IEEE Symp. on Foundations of Computer Science (FOCS), 2010
17. Cell-probe lower bounds for succinct partial sums

With Mihai Pǎtraşcu
In 21th ACM-SIAM Symp. on Discrete Algorithms (SODA), 2010
16. Bounded Independence Fools Halfspaces

With Ilias Diakonikolas and Parikshit Gopalan and Ragesh Jaiswal and Rocco A. Servedio
SIAM J. on Computing, vol. 39, num. 8, pp. 3441-3462, 2010
Preliminary version in 50th IEEE Symp. on Foundations of Computer Science (FOCS), 2009
15. Bit-probe lower bounds for succinct data structures

SIAM J. on Computing, vol. 41, num. 6, pp. 1593-1604, 2012
Preliminary version in 41th ACM Symp. on the Theory of Computing (STOC), 2009
STOC Special Issue
14. Improved separations between nondeterministic and randomized multiparty communication With Matei David and Toniann Pitassi
ACM Trans. Computation Theory, vol. 1, num. 2, pp. 1-20, 2009
Preliminary version in 12 th Workshop on Randomization and Computation (RANDOM), 2008
13. The sum of d small-bias generators fools polynomials of degree d

Computational Complexity, vol. 18, num. 2, pp. 209-217, 2009
Preliminary version in IEEE Conf. on Computational Complexity (CCC), 2008
Best paper award
12. Hardness amplification proofs require majority

With Ronen Shaltiel
SIAM J. on Computing, vol. 39, num. 7, pp. 3122-3154, 2010
Preliminary version in 40th ACM Symp. on the Theory of Computing (STOC), 2008
11. One-way multiparty communication lower bound for pointer jumping with applications

With Avi Wigderson
Combinatorica, vol. 29, num. 6, pp. 719-743, 2009
Preliminary version in 48th IEEE Symp. on Foundations of Computer Science (FOCS), 2007
Invited to FOCS Special Issue
10. Pseudorandom bits for polynomials

With Andrej Bogdanov
SIAM J. on Computing, vol. 39, num. 6, pp. 2464-2486, 2010

Preliminary version in IEEE Symp. on Foundations of Computer Science (FOCS), 2007

FOCS Special Issue

9. Norms, XOR lemmas, and lower bounds for polynomials and protocols

With Avi Wigderson
Theory of Computing, vol. 4, pp. 137-168, 2008
Preliminary version in IEEE Conf. on Computational Complexity (CCC), 2007
8. On approximate majority and probabilistic time

Computational Complexity, vol. 18, num. 3, pp. 337-375, 2009
Preliminary version in IEEE Conf. on Computational Complexity (CCC), 2007
7. Pseudorandom Bits for Constant-Depth Circuits with Few Arbitrary Symmetric Gates

SIAM J. on Computing, vol. 36, num. 5, pp. 1387-1403, 2007
Preliminary version in 20th IEEE Conf. on Computational Complexity (CCC), 2005
SIAM Student Paper Prize
6. On Constructing Parallel Pseudorandom Generators from One-Way Functions

In 20th IEEE Conf. on Computational Complexity (CCC), 2005
5. Constant-Depth Circuits for Arithmetic in Finite Fields of Characteristic Two With Alexander Healy
In 23rd Symp. on Theoretical Aspects of Computer Science (STACS), 2006
4. Fooling Parity Tests with Parity Gates

With Dan Gutfreund
In 8thWorkshop on Randomization and Computation (RANDOM), 2004
3. Using Nondeterminism to Amplify Hardness

With Alexander Healy and Salil P. Vadhan
SIAM J. on Computing, vol. 35, num. 4, pp. 903-931, 2006
Preliminary version in ACM Symp. on the Theory of Computing (STOC), 2004
STOC Special Issue
2. The Complexity of Constructing Pseudorandom Generators from Hard Functions Computational Complexity, vol. 13, num. 3-4, pp. 147-188, 2004
Preliminary version in IEEE Conf. on Computational Complexity (CCC), 2003

1. E-unifiability via Narrowing

In 7th Italian Conference on Theoretical Computer Science (ICTCS), 2001

SURVEYS AND MY PH.D. THESIS

All of the surveys below are peer reviewed.
6. Non-abelian combinatorics and communication complexity SIGACT News, Complexity Theory Column, vol. 50, num. 3, 2019 Invited survey
5. Challenges in computational lower bounds

SIGACT News, Open Problems Column, vol. 48, num. 1, 2017
4. Selected Results in Additive Combinatorics: An Exposition

Theory of Computing Library, Graduate Surveys series, vol. 3, pp. 1-15, 2011
3. On the power of small-depth computation

Foundations and Trends in Theoretical Computer Science, vol. 5, num. 1, pp. 1-72, 2009 Invited survey
2. Correlation bounds for polynomials over $\{0,1\}$

SIGACT News, Complexity Theory Column, vol. 40, num. 1, 2009
Invited survey

1. The Complexity of Hardness Amplification and Derandomization

Ph.D. thesis, Harvard University, 2006

PREPRINTS AND NOTES

10. Mathematics of the impossible: The uncharted complexity of computation

Manuscript, 2023
9. Pseudorandomness, symmetry, smoothing: II

With Harm Derksen and Peter Ivanov and Chin Ho Lee
Manuscript, 2024
8. Correlation bounds against polynomials, a survey

Manuscript, 2022
7. Special topics in complexity theory

Manuscript, 2017
Lecture notes of the class taught at Northeastern University
6. Succinct and explicit circuits for sorting and connectivity

With Hamid Jahanjou and Eric Miles
Manuscript, 2014
5. On a special case of rigidity

With Rocco A. Servedio
Manuscript, 2012
4. From RAM to SAT

With NEU
Manuscript, 2012
3. Think like the pros

Manuscript, 2011
Lecture notes aimed towards students lacking mathematical maturity
2. Reducing 3XOR to listing triangles, an exposition

Manuscript, 2011

1. Gems of Theoretical Computer Science

Manuscript, 2009
Lecture notes of the class taught at Northeastern University

OTHER WORK BY RESEARCH GROUP

12. Space Hardness of Solving Structured Linear Systems

Xuangui Huang
In Int. Symp. on Algorithms and Computation (ISAAC), 2020
11. Fourier Bounds and Pseudorandom Generators for Product Tests

Chin Ho Lee
In Conf. on Computational Complexity (CCC), 2019
10. Absolutely Sound Testing of Lifted Codes

Elad Haramaty and Noga Ron-Zewi and Madhu Sudan
Theory of Computing, vol. 11, pp. 299-338, 2015
9. Optimal Dynamic Distributed MIS

Keren Censor-Hillel and Elad Haramaty and Zohar S. Karnin
In Symp. on Principles of Distributed Computing (PODC), 2016
8. Robust Testing of Lifted Codes with Applications to Low-Degree Testing

Alan Guo and Elad Haramaty and Madhu Sudan
In IEEE Symp. on Foundations of Computer Science (FOCS), 2015
7. Amplifying Privacy in Privacy Amplification

Divesh Aggarwal and Yevgeniy Dodis and Zahra Jafargholi and Eric Miles and Leonid Reyzin In Int. Cryptology Conf. (CRYPTO), 2014
6. Non-malleable Codes from Additive Combinatorics

Divesh Aggarwal and Yevgeniy Dodis and Shachar Lovett
In ACM Symp. on the Theory of Computing (STOC), 2014
5. Key Derivation Without Entropy Waste

Yevgeniy Dodis and Krzysztof Pietrzak and Daniel Wichs
In Int. Conf. on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), 2014
4. Iterated group products and leakage resilience against $N C^{1}$

Eric Miles
In ACM Innovations in Theoretical Computer Science conf. (ITCS), 2014
3. Coalescing-Branching Random Walks on Graphs

Chinmoy Dutta and Gopal Pandurangan and Rajmohan Rajaraman and Scott Roche
In ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), 2013
2. Split and Join: Strong Partitions and Universal Steiner Trees for Graphs

Costas Busch and Chinmoy Dutta and Jaikumar Radhakrishnan and Rajmohan Rajaraman and Srivathsan Srinivasagopalan
In IEEE Symp. on Foundations of Computer Science (FOCS), 2012

1. More on a Problem of Zarankiewicz

Chinmoy Dutta and Jaikumar Radhakrishnan
In Int. Symp. on Algorithms and Computation (ISAAC), 2012

TALKS

88. Probability and Analysis Webinar

20240129
Correlation bounds and all that
87. Simons Institute, Berkeley, CA

Simons; 20230216
Correlation bounds and all that
86. Complexity Meetings, University of Warwick, UK

20220908
Correlation bounds and all that
85. Innovations in Theoretical Computer Science, Simons Institute, Berkeley, CA ITCS; 20220203 Mixing in non-quasirandom groups
84. Northeastern Univ. Mathematics department, Boston, MA

NEU; 202111 Mixing in groups
83. Int. Coll. on Automata, Languages, and Programming, Glasgow, UK

ICALP; 202107
Fourier conjectures, correlation bounds, and Majority
82. Dartmouth College, Hanover, NH

Dartmouth; 20210514
Why do lower bounds stop "just before" proving major results?
81. Boston University, Boston, MA

BU; Fall 2019
Why do lower bounds stop "just before" proving major results?
80. Simons Institute, Berkeley, CA

Simons; Fall 2018
Sampling lower bounds
79. Simons Institute, Berkeley, CA

Simons; Fall 2018
Bounded independence plus noise, and the communication complexity of decoding
78. Session on Math. Perspectives in Quantum Information Theory, Boston, MA AMS; Spring 2018 The complexity of distributions: boolean average-case lower bounds
77. Northeastern Univ. Applied and Interdisciplinary Math. Seminar, Boston, MA NEU; Spring 2018 Interleaved group products
76. Harvard workshop on additive combinatorics, Cambridge, MA

Harvard; Fall 2017 Interleaved group products
75. IEEE Symp. on Foundations of Computer Science, New Brunswick, NJ

FOCS; Fall 2016 The multiparty communication complexity of interleaved group products
74. Simons Institute, Berkeley, CA

Simons; Fall 2015
3SUM, 3XOR, Triangles
73. Simons Institute, Berkeley, CA

Simons; Fall 2015
Local reductions
72. ACM Symp. on Theory of Computing, Portland, OR

STOC; Summer 2015
The communication complexity of interleaved group products
71. Conf. on Computational Complexity, Portland, OR

CCC; Summer 2015 On randomness extractors in AC0
70. University of Tuzla, Bosnia

Tuzla; Spring 2015
The communication complexity of interleaved group products
69. Institute for Advanced Study, Princeton, NJ

IAS; Spring 2015
The communication complexity of interleaved group products
68. FOCS workshop on higher-order Fourier analysis, Philadelphia, PA FOCS workshop; Fall 2014 Interleaved products in special linear groups
67. Harvard University, Cambridge, MA

Harvard; Fall 2014
Local reductions
66. Banff workshop on communication complexity, Banff, Canada

Banff; Summer 2014 The communication complexity of addition
65. Stanford University, Palo Alto, CA

Stanford; Summer 2013
Local reductions
64. ACM-SIAM Symp. on Discrete Algorithms, New Orleans, LA

SODA; Spring 2013 The communication complexity of addition
63. La Sapienza University, Rome, Italy

La Sapienza; Fall 2012
The communication complexity of addition
62. Oberwolfach meeting on complexity theory, Oberwolfach, Germany

Oberwolfach; Fall 2012 Block-symmetric polynomials correlate with parity better than symmetric
61. Int. Workshop on Randomization and Computation, Cambridge, MA RANDOM; Summer 2012 Extractors for Turing-machine sources
60. ACM Symp. on Theory of Computing, New York, NY

STOC; Spring 2012 Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates
59. Institute for Advanced Study, Princeton, NJ

IAS; Spring 2012 The complexity of distributions
58. IEEE Symp. on Foundations of Computer Science, Palm Springs, CA

FOCS; Fall 2011
Extractors for circuits sources
57. IEEE Symp. on Foundations of Computer Science, Palm Springs, CA

FOCS; Fall 2011 Randomness buys depth for approximate counting
56. Northeastern University, Boston, MA

NEU; Fall 2011
The communication complexity of addition
55. Bertinoro workshop on Ramsey Theory, Bertinoro, Italy

Bertinoro; Summer 2011 The disproof of the inverse conjecture for Gowers' norm via Ramsey Theory
54. Dagstuhl workshop on the complexity of discrete problems, Germany

Dagstuhl; Spring 2011
Extractors for circuit sources
53. Massachusetts Institute of Technology, Cambridge, MA

MIT; Spring 2011
The complexity of distributions
52. Northeastern University, Boston, MA

NEU; 16 November 2010
Williams' breakthrough
51. IEEE Symp. on Foundations of Computer Science, Las Vegas, NV

FOCS; Fall 2010
The complexity of distributions
50. Banff workshop on complexity theory, Banff, Canada

Banff; Summer 2010
The complexity of distributions
49. La Sapienza University, Rome, Italy

La Sapienza; Summer 2010
The complexity of distributions
48. Laci Babai's 60 th birthday, Columbus, OH

Babai is 60; Spring 2010
The complexity of distributions
47. Microsoft Research New England

Microsoft; Spring 2010
The complexity of distributions
46. Harvard University, Cambridge, MA

Harvard; Fall 2009
Lower bounds for succinct data structures
45. La Sapienza University, Rome, Italy

La Sapienza; Summer 2009
Lower bounds for succinct data structures
44. ACM Symp. on Theory of Computing, Bethesda, MD

STOC; Spring 2009
Bit-probe lower bounds for succinct data structures
43. Northeastern University, Boston, MA

NEU; Spring 2009
Bit-probe lower bounds for succinct data structures
42. Institute for Advanced Study, Princeton, NJ

IAS; Spring 2009
Bounded independence fools halfspaces
41. Northeastern University, Boston, MA

NEU; Fall 2008
What is a proof? What is knowledge? What is randomness?
40. Boston University, Boston, MA

BU; Fall 2008
Polynomials over $\{0,1\}$
39. Banff workshop on analytic tools in computational complexity, Banff, Canada Banff; Summer 2008 Hardness amplification proofs require majority
38. IEEE Conf. on Computational Complexity, College Park, MD

CCC; Summer 2008
The sum of d small-bias generators fools polynomials of degree d
37. ACM Symp. on Theory of Computing, Victoria, Canada

STOC; Spring 2008
Hardness amplification proofs require majority
36. Columbia University, New York, NY

Columbia; Spring 2008
Hardness amplification proofs require majority
35. Northeastern University, Boston, MA

NEU; Spring 2008
Pseudorandomness
34. University of Illinois at Chicago, Chicago, IL

UIC; Spring 2008
Polynomials
33. The University of Chicago, Chicago, IL

UChicago; Spring 2008
Lower bounds
32. Institute for Advanced Study, Princeton, NJ

IAS; Spring 2008
Hardness amplification proofs require majority
31. Cornell workshop on discrete harmonic analysis, Ithaca, NY

Cornell; Spring 2008
Polynomials
30. Theory Day, New York, NY

Theory Day; Fall 2007
Polynomials
29. IEEE Symp. on Foundations of Computer Science, Providence, RI

FOCS; Fall 2007
One-way multi-party communication lower bound for pointer jumping with applications
28. IEEE Symp. on Foundations of Computer Science, Providence, RI

FOCS; Fall 2007
Pseudorandom bits for polynomials
27. Columbia University, New York, NY

Columbia; Fall 2007
Selected results in additive combinatorics
26. IEEE Conf. on Computational Complexity, San Diego, CA

CCC; Summer 2007
Norms, XOR lemmas, and lower bounds for GF(2) polynomials and multiparty protocols
25. IEEE Conf. on Computational Complexity, San Diego, CA

CCC; Summer 2007
On approximate majority and probabilistic time
24. Oberwolfach meeting on complexity theory, Oberwolfach, Germany Oberwolfach; Summer 2007 One-way multi-party communication lower bound for pointer jumping
23. Dagstuhl workshop on the complexity of discrete problems, Germany Dagstuhl; Spring 2007 On approximate majority and probabilistic time
22. New York University, New York, NY

NYU; Spring 2007
Pseudorandomness: New results and applications
21. Institute for Advanced Study, Princeton, NJ

IAS; Spring 2007
One-way multi-party communication lower bound for pointer jumping with applications
20. IBM Watson Research Center, Hawthorne, NY

IBM; Spring 2007
Pseudorandomness: New results and applications
19. Institute for Advanced Study, Princeton, NJ

IAS; Spring 2007
On approximate majority and probabilistic time
18. Center for Discrete Math. and Theor. C. S., Rutgers, NJ

DIMACS; Spring 2007
Norms, XOR lemmas, and lower bounds for GF(2) polynomials and multiparty protocols
17. Institute for Advanced Study, Princeton, NJ

IAS; Spring 2007
Norms, XOR lemmas, and lower bounds for GF(2) polynomials and multiparty protocols
16. Toyota Technical Institute at Chicago, Chicago, IL

TTI; Spring 2006
Derandomization: New results and applications
15. La Sapienza University, Rome, Italy

La Sapienza; Spring 2006
Derandomization: New results and applications
14. Harvard University, Cambridge, MA

Harvard; Spring 2006
On approximate majority and probabilistic time
13. American Math. Society meeting on randomness in computation, Lincoln, NE AMS; Fall 2005 Pseudorandom bits for low complexity classes: new results and applications
12. Center for Math. and Comp. Science, Amsterdam, the Netherlands

CWI; Summer 2005
Pseudorandom bits for constant-depth circuits with few arbitrary symmetric gates
11. IEEE Conf. on Computational Complexity, San Jose, CA

CCC; Summer 2005
On constructing parallel pseudorandom generators from one-way functions
10. IEEE Conf. on Computational Complexity, San Jose, CA

CCC; Summer 2005
Pseudorandom bits for constant-depth circuits with few arbitrary symmetric gates
9. Berkeley University, Berkeley, CA,

Berkeley; Spring 2005
Pseudorandom bits for constant-depth circuits with few arbitrary symmetric gates
8. Microsoft Research, Mountain View, CA

Microsoft; Spring 2005
Pseudorandom bits for constant-depth circuits with few arbitrary symmetric gates
7. Harvard University, Cambridge, MA

Harvard; Spring 2004
Pseudorandom bits for constant-depth circuits with few arbitrary symmetric gates
6. Institute for Advanced Study, Princeton, NJ

IAS; Fall 2004
Using nondeterminism to amplify hardness
5. ACM Symp. on Theory of Computing, Chicago, IL

STOC; Summer 2004
Using nondeterminism to amplify hardness
4. Radcliffe Inst. for Adv. Study, Cambridge, MA

Radcliffe; Fall 2003
Using nondeterminism to amplify hardness
3. IEEE Conf. on Computational Complexity, Aarhus, Denmark

CCC; Summer 2003
The complexity of constructing pseudorandom generators from hard functions
2. Harvard University, Cambridge, MA

Harvard; Spring 2003
The complexity of constructing pseudorandom generators from hard functions

1. Harvard University, Cambridge, MA

Harvard; Fall 2001
E-unifiability via narrowing

VIDEO GAMES

ARORA, web game to study the perception of randomness 2009 - present
Black Viper, distributed by Neo Software Produktions GmbH, Vienna, Austria 1994 - 1996
Nathan Never, distributed by Softel Ltd., Rome, Italy 1992

EXTERNAL GRANTS

NSF CCF-2114116, PI, AF: Small: New Approaches to Complexity Theory Lower Bounds 6/15/20215/31/2024
\$499,997
NSF CCF-1813930, PI, AF: Small: Research in Complexity Theory 6/1/2018-12/31/2021 \$499,896
REU supplements 2019
\$8,000
NSF CCF-1319206, PI, Research in complexity theory and related areas $\quad 9 / 1 / 2013-8 / 31 / 2017$ \$493,824
MIT, PI, Experiment on the perception of randomness
1/2013-1/2014
\$31,100
NSF CAREER Award, 0845003, PI, Pseudorandom generators 2/2009-1/2014 \$452,009
REU supplements
2010, 2011
\$16,000

INTERNAL GRANTS

TIER 1 grant
July 1, 2022 - September 30, 2023
With Harm Derksen
\$50,000
Co-op funding award

TEACHING: COURSES

RESEARCH TEAM (INCLUDING STUDENTS)

Visitor Elena Grigorescu (Spring 2020)
Yevgeniy Dodis (Spring and Summer 2013)
Postdoc Jad Silbak (Fall 2023-)
Elad Haramaty (Fall 2014 - Summer 2016) \rightarrow Postdoc at Harvard
Chinmoy Dutta (partial mentoring) \rightarrow Twitter
Ph. D. Dustin Lin (Fall 2023-)
Peter Ivanov (Summer 2019 - present)
Xuangui Huang (Fall 2017 - Spring 2023)
Chin Ho Lee (Fall 2013-Summer 2019) \rightarrow Postdoc at Columbia \rightarrow Postdoc at Harvard
\rightarrow Professor at North Carolina State University
Tanay Mehta (partial advising)
Hamid Jahanjou (partial advising)
Zahra Jafargholi (partial advising) \rightarrow Postdoc at Aarhus University.
Eric Miles (Fall 2008-Spring 2014) \rightarrow Postdoc at UCLA \rightarrow Google.
M. S. Dolphy Fernandes (Summer 2009)
B. S. Liam Pavlovic (Summer 2020 - Fall 2020) \rightarrow Ph.D. student at Northeastern University. Daniel Kreymer (2009-2012) Block-symmetric polynomials project. \rightarrow Amazon.
Sky O’Mara (Summer 2009) Block-symmetric polynomials project

SERVICE TO THE INSTITUTION

Note: This section is not up to date.
Faculty search committee, joint Computer Science and Game Design position 2010 - 2011
Faculty search committee, joint Computer Science and Mathematics position 2009 - 2010
Seminar organizer, Northeastern University theory seminar 2008-2015
Merit committee 2012 - 2013
Sabbatical committee 2012 - 2013
Ph.D. admission committee 2008-2009, 2016-2017, 2018-2019, 2019-2020
M.S. committee

2010 (?) - 2013
M.S. curriculum committee

2019-2020

SERVICE TO THE DISCIPLINE

Associate editor

SIAM Journal on Computing
ACM Transactions on Computation Theory
SICOMP 2019 - present
TOCT 2015-2023

Program committee

IEEE Symp. on Foundations of Computer Science
FOCS 2022
Int. Coll. on Automata, Languages, and Programming
ICALP 2022
Conference on Computational Complexity CCC 2021
58th Annual IEEE Symposium on Foundations of Computer Science FOCS 2017
ACM-SIAM Symposium on Discrete Algorithms SODA 2014
28th IEEE Conference on Computational Complexity CCC 2013
16th Int. Workshop on Randomization and Computation RANDOM 2012
25th IEEE Conference on Computational ComplexityCCC 2010
13th Int. Workshop on Randomization and Computation RANDOM 2009
FOCS 2008 FOCS 200849th IEEE Symp. on Foundations of Computer Science
11th Int. Workshop on Randomization and Computation RANDOM 2007
Grant reviewing
National Science Foundation (NSF) panelist 2008, 2009, 2011, 2014, 2015, 2016, 2019, 2020
Israel Science Foundation 2009, 2010
American University of Beirut 2012
Ph.D. committees, Laura Poplawski (Northeastern), Joshua Brody (Dartmouth) 2008-2009
Local co-organizer, 25th IEEE Conference on Computational Complexity CCC 2010
Scientific board, Electronic Colloquium on Computational Complexity 2009 - present
Contribution to popular-science book, The Evolution of Technical Analysis, Wiley 2010
Paper refereeing, (J. of ACM, SIAM J. on Computing, STOC, FOCS, ...)

