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1 Introduction

Define the languages of NP as the languages with efficient proof systems.

Definition 1. A language L is in NP if there is a polynomial-time deter-
ministic Turing machine V that, given an input x, verifies proofs, denoted
π, of x ∈ L. The following properties hold:

x ∈ L =⇒ ∃π : Vπ(x) = 1 (1)

x /∈ L =⇒ ∀π : Vπ(x) = 0. (2)

Vπ(x) has access to an input string x and a certificate string π. Note that
we use “proof” and “certificate” interchangeably.

It is instructive to pose NP-problems as a game between a solver and a veri-
fier. A solver must produce a certificate π of the existence of x ∈ L, whereas
a verifier correctly and efficiently determines the validity of π. Consider the
problem SAT: a certificate is merely an assignment to the variables of the
input formula. The verifier can substitute the assignment into the original
formula and quickly discern satisfiability. Notice, however, the verifier scans
every bit of π.

An astute reader may ask if it is necessary to read every bit of a certifi-
cate. Certainly we must if we rely on substitution as a means of verification.
However, if we change the structure of our certificate, can we provide a new
proof system which is verifiable by reading a constant number of bits of π,
if only probabilistically? Surprisingly, we can.

1



1.1 PCP Verifiers

Let us generalize our notion of a verifier. First, outfit the verifier with
an address tape so that it may randomly access individual bits of π. An
address is written to the tape by throwing r(n) random coins, where each
coin corresponds to a bit on the tape. Next, limit the number of queries to
the proof to q(n). Relative to the classical verifier, this restricts the power
of the PCP verifier. We allow the verifier to err, and consider the following
questions:

• what is the tradeoff between the query complexity and the error in-
curred by the verifier; and

• how small can the probabilistically checkable proof be relative to the
classical proof?

1.1.1 Formalization

A probabilistic verifier admits the following properties: a correct proof of
x ∈ L is always accepted, i.e.,

Pr[accepting a correct proof] = 1,

and, if x /∈ L, then every claimed certificate of x ∈ L is rejected with high
probability.

Definition 2. Let L be a language and q, r : N→ N. L has an (r(n), q(n))-
PCP verifier if there is a polynomial-time probabilistic algorithm V such that
it is:

• Efficient: given an input x ∈ {0, 1}n and random access to a cer-
tificate π ∈ {0, 1}∗, V uses at most r(n) random coins and makes at
most q(n) queries to π. V accepts or rejects when it outputs “1” or
“0” respectively.

• Complete: if x ∈ L then there exists a certificate π ∈ {0, 1}∗ such
that Pr[Vπ(x) = 1] = 1.

• Sound: if x /∈ L then for every certificate π ∈ {0, 1}∗, Pr[Vπ(x) =
0] > 1

2 .

A language L is in PCP(r(n), q(n)), if L has a (c ·r(n), d ·q(n))-PCP verifier,
for constants c, d > 0.
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Notice this formulation dictates the maximum size of a proof that can
be verified. Given an address tape of length r(n) we may access 2r(n) bits.
Querying the proof q(n) times is equivalent to accessing q(n) proofs of size
2r(n). Thus, proofs may be at most q(n) · 2r(n) bits.

1.2 The PCP Theorem

The following theorem is known as the PCP theorem and was shown by
Arora et al. in 1992 [1].

Theorem 3. NP = PCP(log n, 1).

A proof of this result is outside the scope of this project. Theorem 3 shows,
in short, that every NP-language has a PCP verifier that verifies certificates
of at most poly(n) bits by reading a constant number of bits. The follow-
ing section outlines a proof of a weaker PCP theorem that provides some
intuition of the proof of 3.

2 A Proof of a Weak PCP Theorem

The primary contribution of this project is a pedagogical proof of the fol-
lowing PCP theorem:

Theorem 4. NP ⊆ PCP(poly(n), 1).

Theorem 4 is weaker than the PCP theorem stated in the previous sec-
tion in the sense that the proofs it validates may be much larger. The former
verifies proofs of exponential size, whereas the latter verifies proofs of poly-
nomial size. It is interesting, still, that exponentially sized proofs can be
verified by a constant number of queries.

The remainder of this section outlines a proof of a (poly(n), 1)-PCP ver-
ifier for CIRCUIT-SAT. Because CIRCUIT-SAT is known to be NP-complete,
any NP-language has a PCP verifier by first reducing to CIRCUIT-SAT. For
simplicity, we assume the problem is translated into a set of equivalent
boolean quadratic constraints. The pith of the verifier is to encode solutions
to these constraints as functions which can be quickly tested and decoded.
Our main tools include, boolean linear functions, Walsh-Hadamard codes
and boolean quadratic equations. Finally, we prove the verifier is efficient,
complete and sound.
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2.1 Linear Functions and Bit Vectors

Throughout our study of the Walsh-Hadamard code (section 2.2) and theo-
rem 4, we frequently depend on linear functions from {0, 1}n to {0, 1}.

Definition 5. A function f : {0, 1}n → {0, 1} is linear if, for every x, y ∈
{0, 1}n, f(x+ y) = f(x) + f(y), and f(αx) = αf(x).

It is also convenient to reason about bit strings as vectors. Consider the dot
product of u, x ∈ {0, 1}n as vectors.

Definition 6. The dot product of any u, x ∈ {0, 1}n is defined as

`u(x) =
n∑
i=1

uixi (mod 2)

Corollary 7. `u(x) is a linear function.

The next lemma shows that if two bit strings u, v are different, then for
half the choices of x, `u(x) 6= `v(x). It appears frequently throughout the
design of the PCP verifier (section 2.3) in the form, Pr

x
[`u(x) 6= `v(x)] = 1

2 .

Lemma 8. Let u, v ∈ {0, 1}n. If u 6= v, then for half the choices of x,
`u(x) 6= `v(x).

Proof. Let u = u1u2 . . . un ∈ {0, 1}n and v = v1v2 . . . vn ∈ {0, 1}n such that
u 6= v. Then u and v differ in at least one bit. Without loss of generality,
let k be the least index such that uk 6= vk. We show that `u(x) 6= `v(x)
for half the choices of x ∈ {0, 1}n by a simple counting argument. Let
x = x1x2 . . . xn and consider the following.

n∑
i=1,i 6=k

uixi (3)

n∑
i=1,i 6=k

vixi (4)

By definition,

`u(x) = (3) + ukxk (mod 2) (5)

`v(x) = (4) + vkxk (mod 2) (6)

Suppose (3) = (4); we are forced to set xk = 1 to ensure `u(x) 6= `v(x).
Otherwise (3) 6= (4) and setting xk = 0 ensures the inequality. Since there
are 2n possible choices of x, but a single bit is fixed for every choice, there
are 2n−1 possible choices of x where `u(x) 6= `v(x).
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A useful fact for conceptualizing Walsh-Hadamard codewords (section
2.2) is that the set Ln = {`u |u ∈ {0, 1}n} is equal to the set of all linear
functions from {0, 1}n to {0, 1}.

Lemma 9. A function f : {0, 1}n → {0, 1} is linear if and only if there
exists some u ∈ {0, 1}n such that f(x) = `u(x).

Proof. Starting in the “if” direction, suppose f(x) = `u(x). It follows from
corollary 7 that f is linear. In the “only if” direction, suppose f : {0, 1}n →
{0, 1} is linear. We must show there exists some u such that f(x) = `u(x).
Consider the following bit vectors,

e1 = 100 . . . 0, e2 = 010 . . . 0, . . . , en = 000 . . . 1,

where ei ∈ {0, 1}n. Any bit vector x = x1x2 . . . xn can be decomposed as
the summation of the following unit vectors,

x = x1e1 + x2e2 + . . .+ xnen

Here, xi acts as a scalar. Since f(x) is linear,

f(x) = f(x1e1) + f(x2e2) + . . .+ f(xnen)

= x1f(e1) + x2f(e2) + . . .+ xnf(en)

=

n∑
i=1

xiui, where ui = f(ei)

= `u(x).

Corollary 10. The set Ln = {`u |u ∈ {0, 1}n} is the set of all linear func-
tions from {0, 1}n to {0, 1}.

2.2 The Walsh-Hadamard Code

The Walsh-Hadamard code is an encoding of binary strings of length n
as binary strings of length 2n. The Walsh-Hadamard encoding function
WH : {0, 1}n → {0, 1}2n is defined as:

Definition 11. WH(u) = `u.

5



This definition may seem counterintuitive; WH maps binary strings to bi-
nary strings, but clearly `u is a function. It is useful, then, to think ofWH(u)
as a binary string encoding the dot product of u with every i ∈ {0, 1}n. Ob-
serve that the ith bit ofWH(u), writtenWH(u)i, is equal to the dot product
of u with i. From corollary 10, we conclude WH(u) is equivalently the eval-
uation of every linear function at u.

Definition 12. If f ∈ {0, 1}2n is equal to WH(u) for some u, then f is a
Walsh-Hadamard codeword.

Corollary 13. The set of Walsh-Hadamard codewords SWH is equivalent
to the set of all linear functions.

2.2.1 Linearity Testing

Linear functions are ideal proof encodings because they can be efficiently
tested for membership in SWH. Suppose we are given oracle access to a
function f : {0, 1}n → {0, 1}; if f(x + y) = f(x) + f(y), for every x, y ∈
{0, 1}n, conclude f is linear. Clearly this test is inefficient, as it requires
O(22

n
) queries to f . With high confidence, can we determine linearity by

querying f a constant number of times? We begin by defining the “closeness”
of two functions.

Definition 14. Let ρ ∈ [0, 1]. f, g : {0, 1}n → {0, 1} are ρ-close if

Pr
x∈R1{0,1}n

[f(x) = g(x)] ≥ ρ.

f is ρ-close to a linear function if there is a linear function g such that f
and g are ρ-close.

Theorem 15. Let f : {0, 1}n → {0, 1} such that for some ρ > 1
2 ,

Pr
x,y∈R{0,1}n

[f(x+ y) = f(x) + f(y)] ≥ ρ.

Then f is ρ-close to a linear function.

Now we define an efficient linearity test T (f): choose x, y ∈ {0, 1}n
independently at random and output f(x + y) = f(x) + f(y). Similar to
the PCP verifier, we must argue that linear functions always pass T (f),

1x ∈R {0, 1}n is x chosen uniformly at random from {0, 1}n.
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and that functions not ρ-close to a linear function are rejected with high
probability. Formally, theorem 15 states, for ρ > 1

2 ,

Pr[T (f) = 1] = 1 when f is linear (7)

Pr[T (f) = 0] ≥ 1

2
when f is not ρ-close to linear (8)

2.2.2 Local Decoding

Let f : {0, 1}n → {0, 1} be a function that is 1- δ-close to a Walsh-Hadamard
codeword (read “linear function”) g. We argue that g is uniquely defined
by lemma 8.

Lemma 16. Suppose δ < 1
4 and the function f : {0, 1}n → {0, 1} is (1− δ)-

close to some linear function g. Then g is unique.

Proof. Assume by way of contradiction, that g is not unique, i.e., there exists
some linear function g′ such that g 6= g′ and f is (1− δ)-close to both g and
g′.

Pr
x∈R{0,1}n

[f(x) = g(x)] ≥ 1− δ > 3/4 (definition) (9)

Pr
x∈R{0,1}n

[f(x) = g′(x)] ≥ 1− δ > 3/4 (definition) (10)

(9) and (10) =⇒ Pr
x∈R{0,1}n

[(f(x) = g(x)) ∧ (f(x) = g′(x))]

= Pr
x∈R{0,1}n

[g(x) = g′(x)] > 9/16 > 1/2.

But from lemma 8,

Pr
x∈R{0,1}n

[g(x) = g′(x)] = 1/2

Hence contradiction.

Because f is only ρ-close to g, it is possible that f(x) 6= g(x). However,
we can easily recover g(x), with high probability. Notice that since g is a
Walsh-Hadamard codeword, g(x + r) = g(x) + g(r), for any r ∈ {0, 1}n.
Then, g(x+ r)− g(r) = g(x). Therefore, f(x+ r)− f(r) is highly likely to
be equal to g(x), thereby allowing efficient decoding.

Definition 17. Let D(f)x be a procedure such that given an input x and
oracle access to a function f , decodes f(x). We define D(f)x as follows:
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1. choose r ∈ {0, 1}n at random.

2. query f(x+ r), f(r) and output f(x+ r)− f(r).

Lemma 18. If f : {0, 1}n → {0, 1} is (1 − δ)-close to a Walsh-Hadamard
codeword g, then, for all x ∈ {0, 1}n,

Pr[D(f)x = g(x) = `u(x)] ≥ 1− 2δ

Proof. Let u ∈ {0, 1}n be fixed. Because f is (1− δ)-close to g, we have

Pr
v∈R{0,1}n

[f(v) 6= g(v)] ≤ δ.

Similarly, Pr[f(u+ v) 6= g(u+ v)] ≤ δ. By the union-bound,

Pr
v∈{0,1}n

[f(u) 6= g(u) ∨ f(u+ v) 6= g(u+ v)] ≤ 2δ.

Thus, with probability at least 1− 2δ, we have

f(u+ v)− f(u) = g(u+ v)− g(u) = g(v).

2.3 A PCP Verifier for CIRCUIT-SAT

In this section we will describe the NP-complete language CIRCUIT-SAT,
and formulate an equivalent problem of finding satisfying assignments for a
set of polynomials.

2.3.1 CIRCUIT-SAT is NP-complete

Definition 19. The language CIRCUIT-SAT consists of all circuits, rep-
resented as strings, that produce a single bit of output and which have a
satisfying assignment. An n-input circuit C is in CIRCUIT-SAT iff there
exists u ∈ {0, 1}n such that C(u) = 1.

CIRCUIT-SAT is clearly in NP because the satisfying assignment can
serve as the certificate, and it can be verified in polynomial-time in the size
of the circuit.

Lemma 20. CIRCUIT-SAT ≤p 3SAT
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Proof. Let C be a circuit. Without loss of generality, assume that the circuit
C has only AND (fan-in = 2) and NOT (fan-in = 1) gates. Now, we map
circuit C to a 3CNF formula φ as follows.

• For all gate nodes vi of C, create a corresponding variable zi in φ.

• If the node vi is the output of an AND gate with input from nodes vj
and vk, then add clauses equivalent to ¬(zi ⊕ (zj ∧ zk)) to φ, i.e.,

(¬zi ∨ ¬zj ∨ zk) ∧ (¬zi ∨ zj ∨ ¬zk) ∧ (¬zi ∨ zj ∨ zk) ∧ (zi ∨ ¬zj ∨ ¬zk).

• If vi is an output of a NOT gate with input vj , then add (zi ∨ zj) ∧
(¬zi ∨ ¬zk) to φ.

• If vi is an output gate, then add (zi) to φ.

The formula φ is satisfiable if and only if the circuit C is satisfiable, by
construction. The reduction is also polynomial-time in the input size of the
circuit.

CIRCUIT-SAT is equivalently expressible as set of boolean constraints.
The boolean constraint for any gate i with input j, k is,

Pi(z) =


zi − zjzk if i is an AND gate

zi − (1− zj) if i is a NOT gate

1− zj if i is an OUTPUT gate

0 if i is an INPUT gate

Let us phrase CIRCUIT-SAT as the following question: given a boolean cir-
cuit C with n gates and k ≤ n input gates, is there an assignment w ∈ {0, 1}n
such that C(w) = 1? In terms of boolean constraints, is there an assignment
z to all the gates such that ∀i, Pi(z) = 0?

2.3.2 Building a Proof

Suppose the set of constraint equations for CIRCUIT-SAT were polynomials
of degree one. In that case, we could easily use the Walsh-Hadamard en-
coding f as a satisifying assignment, i.e., a proof π. Then to verify π, define
the following procedure.

1. Use linearity testing to verify f is δ-close to a linear function. By
lemma 15 we accept with probability 1− δ.
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2. Since f is δ-close to a linear function, use local decoding to verify that
the assignment satisfies the constraints.

With this procedure, along with lemma 8, we can design a PCP verifier
satisfying completeness, soundness and efficiency.

However, the constraint equations are not polynomials of degree one, but
polynomials of degree two. Decompose a constraint Pi(z) = Qi(z)+Li(z)+ci
into three parts,

• Qi(z) : polynomials of degree two,

• Li(z) : polynomials of degree one, and

• ci : constants.

This suggests that we need to extend the Walsh-Hadamard encoding to
include evaluation of all quadratic polynomials at some point x ∈ {0, 1}n.

Definition 21. A quadratic evaluation quadx : {0, 1}n×n → {0, 1} is defined
as

quadx(C) =
n∑
i=1

n∑
j=1

Cijxixj = xTCx.

The following properties hold for quadx:

1. quadx can be represented as a bit string of length 2n
2
;

2. quadx is the evaluation of all quadratic polynomials at x, i.e., it is a
truth table for all quadratic polynomials, and therefore, a single query
retrieves the value of any polynomial of degree 2; and

3. quadz is linear, namely, for any n×n matrix C1, C2, quadx(C1 +C2) =
quadx(C1) + quadx(C2). This is trivially derived from the linearity of
matrix operation (A1 +A2)x = A1x+A2x.

Notice the quadratic encoding is similar to the Walsh-Hadmard encoding.
The prover can give the verifier a proof of the assignment z, consisting of

a Walsh-Hadamard encoding f and a quadratic encoding g for z. f encodes
the satisfying assignment for the linear part of the boolean constraints, while
g encodes the corresponding quadratic portion.
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2.3.3 Test Procedures for the PCP Verifier

Given two strings f and g, where f is a Walsh-Hadamard encoding and g is
a quadratic encoding of z, we define the following test procedure.

1. Test f and g for linearity (lemma 15).

2. Test f and g for consistentency, i.e., the encode the same source word.

3. If f and g are δ-close to linear, then perform self-correction, and re-
cover the unique linear function closest to it.

4. Test that the assignment satisfies the constraint equation using lemma
8.

Intutively, the consistency requirement comes from the observation that
although we have two codewords f and g, the source word may not be the
same. Therefore, we must test the consistency of the codewords, i.e., to
verify that for any u1 and u2, f(u1u

T
2 ) = f(u1)f(u2).

Definition 22 (Consistency Test). Given f : {0, 1}n → {0, 1} and g :
{0, 1}n×n → {0, 1}, the test procedure Quad-Consistencyf,g is defined as:

1. choose z1 and z2 ∈R {0, 1}n;

2. accept if g(z1z
T
2 ) = f(z1)f(z2).

z1z
T
2 is a multiplicatin of an n×1 vector with a 1×n vector, giving an n×n

matrix whose ijth element is (z1)i(z2)j

Lemma 23 (Completeness). If f : {0, 1}n → {0, 1} is a linear function,
say `z, and g : {0, 1}n×n → {0, 1} is a linear function, say quadz, for some
z ∈ {0, 1}n, then Pr[Quad-Consistencyf,g accepts] = 1.

Proof. Since f = `z, then for any y ∈ {0, 1}n, f(y) = yT z (matrix represen-
tation of the dot product). Similarly, since g = quadz, by the definition of
quadz, for any z1, z2 ∈R {0, 1}n,

g(z1z
T
2 ) =

∑
i,j

zizj [z1z
T
2 ]i,j

=
∑

zizj [z1]i[z2]j

=

(∑
i

zi[z1]i

)(∑
i

zj [z2]j

)
= f(z1)f(z2)
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The completeness criterion suggests that if f is a Walsh-Hadamard en-
coding of z, and g is a quadratic encoding of the same z, then Quad-
Consistency will always accept. A proof of soundness is given below.

Lemma 24 (Soundness). If f and g are linear functions and

Pr[Quad-Consistencyf,g accepts] >
3

4
,

then there exists z ∈ {0, 1}n, such that f = `z and g = quadz.

Proof. We will use linearity of f and g and lemma 8 to prove the soundness
of the Quad-consistency test procedure.

1. f = `z for some z ∈ {0, 1}n {f is linear}
therefore for any z1, z2 ∈ {0, 1}n,

f(z1)f(z2) = zT1 zz
T z2

= zT1 Cz2 where C = zzT is a n× n matrix

2. Since g is linear, there exists a matrix B = bij such that

g(z1z
T
2 ) =

∑
i,j

bij
[
z1z

T
2

]
ij

=
∑
i,j

bij
(
z1)i(z

T
2

)
j

=
∑
i,j

(
z1)ibij(z

T
2

)
j

= zT1 Bz2

So we should compare the matrix B and C = zzT .
If B = C then it must be the case that g = quadz. Other-wise we will
show that the Test rejects with probability at-least 1/4 which is 1 -
Pr[accept] condition in the definition.
If B 6= C then for a random vector z ∈ {0, 1}n, we have Bz2 6= Cz2
with probability at least 1/2 that is,
Pr[Bz2 6= Cz2|B 6= C] ≥ 1/2. 2

2Proof Sketch: Bz2 and Cz2 are n×1 vectors (multiplication of n×n matrix with n×1).
For any two column vectors to be different, they must differ in at least one row. Let Ri be

a row vector. Then, Pr[R1 6= R2] =

∑n
1

(
n
i

)
2n

. Using binomial expansion (1+x)n +(1−x)n

for x = 1, and the above expression is equal to 1− 1
2n
≥ 1/2 for n > 0
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3. For any two bit vectors y1, y2 ∈ {0, 1}n, and y1 6= y2

Pr[zT1 y1 6= zT1 y2] = 1/2 (Lemma 8).

Choose y1 = Bz1 and y2 = Cz1 . Thus we have

Pr[zT1 Bz2 6= zT1 Cz2|Bz2 6= Cz2] = 1/2

From Conditional Probability Pr[E] =
∑

Pr[E|Ai]Pr[Ai]

Pr[zT1 Bz2 6= zT1 Cz2|B 6= C] ≥ 1/4

That is the Quad-Consistency test accepts with probability > 3/4.

Recall that we cannot guarantee that the prover provides linear functions
f and g. With a linearity test, we are assured that f and g are δ-close
to linear function. Thus, we can recover the encoded word by defining a
Quad-Correction procedure similar to local decoding for Walsh-Hadamard
codewords.

We show that it is possible to do self-correction (quad-correction) using
the consistency test above, with required soundness and completeness prop-
erties for the procedure. Then, we query the oracle (Walsh-Hadamard and
Quadratic encoding of the assignment) to get the evaluation of any linear
and quadratic polynomial in our set of constraints at any given input.

Definition 25 (Quad-Correction). Given f : {0, 1}n → {0, 1} and g :
{0, 1}n×n → {0, 1}, Quad− Correctionf,g is defined as:

1. choose z1, z2 ∈R {0, 1}n and M ∈R {0, 1}n×n;

2. accept if g(z1z
T
2 +M)− g(M) = f(z1)f(z2).

Lemma 26 (Completeness Property). If f = `z and g = quadz for some
z ∈ {0, 1}n, then

Pr[Quad− correctionf,g accepts = 1]

Proof. For any z1, z2 ∈ {0, 1}n and M ∈ {0, 1}n×n

g(z1z
T
2 +M)− g(M) = g(z1z

T
2 ) + g(M)− g(M) (linearity of quadz)

= g(z1z
T
2 )

= f(z1)f(z2) (given f = `z and Quad-Consistency)

Therefore, Pr[g(z1z
T
2 +M)− g(M) = f(z1)f(z2)] = 1.
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Lemma 27. If f is δ-close to `z for some z ∈ {0, 1}n, g is δ-close to
some linear function and Pr[Quad-Correctionf,g accepts] > 3

4 + 4δ, then g
is δ-close to quadz.

Proof. Since f is δ-close to `z and z1, z2 ∈R {0, 1}n,

Pr[f(z1) 6= `z(z1)] ≤ δ (11)

Pr[f(z2) 6= `z(z2)] ≤ δ. (12)

Let f ′ be the linear function that is δ-close to g. Since z1z
T
2 + M and M

∈R {0, 1}n×n (uniformly random elements, but not independent)

Pr[g(z1z
T
2 +M) 6= f ′(z1z

T
2 +M)] ≤ δ (13)

Pr[g(M) 6= f ′(M)] ≤ δ (14)

From (11), (12), (13) and (14),

Pr[f(z1) 6= `z(z1) ∪
f(z2) 6= `z(z2) ∪
g(z1z

T
2 +M) 6= f ′(z1z

T
2 +M) ∪

g(M) 6= f ′(M)] ≤ 4δ.

Since,

Pr[g(z1z
T
2 +M)− g(M) = f(z1)f(z2)] > 3/4 + 4δ

=⇒

Pr[`z(z1)`z(z2) = g(z1z
T
2 +M)− g(M)] ≥ 3

4
,

it follows from the soundness of Quad-Consistency that g = quadz.

2.3.4 PCP Verifier for CIRCUIT-SAT

Based on the test procedures developed so far, we now design a PCP verifier
for CIRCUIT-SAT that accepts a correct proof with probability 1, and rejects
with high probabilty, if the proof is not δ-close to a satisfying assignment.
In both the scenarios, the verifier makes only a constant number of queries
to the proof.

Definition 28 (PCP verifier for CIRCUIT-SAT). The PCP-verifier expects
as proof the functions f : {0, 1}n → {0, 1} and g : {0, 1}n×n → {0, 1}. Given
a circuit C and oracle access to f and g, the verifier performs the following
steps:
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1. Linearity testing for f :

(a) choose z1, z2 ∈R {0, 1}n, and

(b) output f(z1 + z2) = f(z1) + f(z2).

Query Complexity = 3, Randomness = 2n

2. Linearity testing for g:

(a) choose M1,M2 ∈R {0, 1}n×n, and

(b) output g(M1 +M2) = g(M1) + g(M2).

Query Complexity = 3, Randomness = 2n2

3. Consistency testing of f and g given both are δ-close to linear func-
tions:

(a) choose z1, z2 ∈R {0, 1}n and M ∈R {0, 1}n×n, and

(b) output f(z1)ḟ(z2) = g(z1z
T
2 +M)− g(M).

Query Complexity = 4, Randomness = 2n+ n2

4. Satisfiability of C:

(a) choose α1, α2, . . . , αn ∈R {0, 1}, r ∈R {0, 1}n and M ∈R {0, 1}n×n;

(b) decompose the function P (z) =
∑n

i=1 αiPi(z)
3 as the sum of

quadratic part Q(z) = zTBz, a linear part L(z) = yT z and a
constant c; and

(c) check that [g(M +B)− g(M)] + [f(y + r)− f(r)] + c = 0.

Query Complexity = 4, Randomness = 2n+ n2

2.3.5 Analysis

Let us analyze the PCP verifier V described in the preceding section. Recall
from definition 2, we must show efficiency, completeness and soundness.

Lemma 29 (Efficiency). V is efficient, that is, r(n) = poly(n) and q(n) =
O(1).

3Without loss of generality, assume that all constraints are linearly independent. To
reduce the number of queries needed to test the satisfiability of the circuit, use lemma 8.
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Proof. The number of random bits required for each step of the verifier is
provided up. Summing them together yields

r(n) = 2n+ 2n2 + (2n+ n2) + (2n+ 2n2) = O(n2).

Likewise, for the query complexity,

q(n) = 3 + 3 + 4 + 4 = 14 = O(1).

Furthermore, the length of a proof is 2n + 2n
2
.

Lemma 30 (Completeness). If z is a satisfying assignment for a circuit C,
then Pr[Vπ = 1] = 1, where π is a proof of z.

Proof. By construction.

Lemma 31 (Soundness). There exists a δ0 > 0, such that for all δ < δ0, V
accepts with probability at least 1− δ, then the following conditions hold:

1. there exists a satisfying assignment z for C;

2. f is δ-close to `z; and

3. g is δ-close to quadz.

Proof by contradiction. Suppose the claim is false for some δ0 = 1
20 . Then

there exists a δ < δ0 such that Pr[V = 1] > 1− δ, but there does not exist a
satisfying assignment z such that f is δ-close to `z and g is δ-close to quadz.
Then at least one of the following should be true:

1. f is not δ-close from linear. V will reject with probability ≥ δ (by
soundness of linearity testing).

2. g is not δ-close from linear. V will reject with probability ≥ δ (by
soundness of linearity testing).

3. f is δ-close to a linear function `z and g is δ-close to some linear
function g′, but g′ 6= quadz. V rejects with probability ≥ 1

4 − 4δ (by
soundness of Quad-Correction).

4. f is δ-close to some `z and g is δ-close to quadz for some z, but z is
not a satisfying assignment for C, that is, ∃i : Pi(z) 6= 0. Notice:

Lemma 8 =⇒ Pr[
∑

αiPi(z) 6= 0] = 1/2 (15)

Lemma 18 =⇒ Pr[f(y + u)− f(u) 6= `z(y)] ≤ 2δ (16)

Lemma 18 =⇒ Pr[g(M +B)− g(M) 6= quadz(B)] ≤ 2δ (17)
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Therefore, (15), (16) and (17) imply

Pr[(g(M+B)−g(M))+(f(y+r)−f(r))+c =
∑

αiPi(z) 6= 0] ≥ 1/2−4δ,

that is, the satisfiability test rejects with probability at least 1/2− 4δ.
For sufficiently small δ, 1/4 − 4δ and 1/2 − 4δ are no smaller than δ.
Hence, in each of the four cases above, the PCP verifier rejects with
probability at least δ. This is a contradiction.

Thus, there is a verifier which accepts an exponentially sized proof for
CIRCUIT-SAT, and satisfies the three properties of the PCP verifier out-
lined in definition 2. In particular, we have shown that CIRCUIT-SAT ∈
PCP(O(n2), 14).

2.4 Conclusion

In this paper, we proved a weaker notion of the PCP theorem. We hope that
the intution developed in the process encourages the reader to explore the
complete proof for the theorem. For an informal history and the connection
of the interactive proofs with PCP theorem, we refer the reader to [3]. Irit
Dinur gives a dramatically simple construction of the probabilitically check-
able proofs. Interested reader can refer to these excellent introduction and
complete proof of the PCP theorem [2] [4] [5].

We conclude by stating minor observations. First, adding randomness
to the verifier does not increase the power of the verifier, but does increase
efficiency. We can improve confidence by repeating tests throughout verifi-
cation. By endowing the proofs with redundancy, they have the resilience to
convince the verifier even when a fraction of the bits are flipped. Low degree
polynomials (over a field) are known to have efficient error-correcting prop-
erties in addition to their nice algebraic structure. This motiviates the use
of Walsh-Hadamard encoding, as well as the quadratic encoding developed
in 2.3.2. Lastly, the seemingly counterintuitive properties of PCP highlight
the fact that the “format” in which proofs are expected is a powerful tool
to aid verifiers. However, the format present in the preceeding sections is
exceptionally large. The PCP theorem proves that it is possible to main-
tain constant query complexity, but reduce the length of the proof to a size
polynomial in the length of the input. Recent research has improved the
size of PCP certificates to O(n log n)O(1), although, the reduction comes at
the cost of query complexity. This is an active research topic.
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