
Special Topics in Complexity Theory

Emanuele Viola

December 28, 2017

This document collects the Fall 2017 lectures given by the instructor.
Compared to the lectures on the class website, I have made some minor edits
to harmonize the various lectures. In addition we had two guest lectures
and presentations by students, which can also be found on the class website.
Many thanks to Matthew Dippel, Xuangui Huang, Chin Ho Lee, Biswaroop
Maiti, Tanay Mehta, Willy Quach, and Giorgos Zirdelis for doing an excellent
job scribing these lectures. Many thanks also to all the students, postdocs,
and faculty who attended the class and created a great atmosphere.

Contents

1 Bounded independence 3
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 k-wise independent distribution . . . . . . . . . . . . . . . . . 4
1.3 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Who is fooled by k-wise independence? . . . . . . . . . . . . . 7

1.4.1 k-wise independence fools AND . . . . . . . . . . . . . 7
1.5 Bounded Independence Fools AC0 . . . . . . . . . . . . . . . . 12

1.5.1 Approximation 1 . . . . . . . . . . . . . . . . . . . . . 13
1.6 Approximation 2 . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Bounded Independence Fools AC0 . . . . . . . . . . . . . . . . 15

2 Small-bias distributions 18
2.1 Constructions of small bias distributions . . . . . . . . . . . . 19
2.2 An improved small bias distribution via bootstrapping . . . . 20
2.3 Connecting small bias to k-wise independence . . . . . . . . . 21

1

http://www.ccs.neu.edu/home/viola/classes/spepf17.html
http://www.ccs.neu.edu/home/viola/
http://www.ccs.neu.edu/home/viola/classes/spepf17.html


2.4 Fourier analysis of boolean functions 101 . . . . . . . . . . . . 21
2.5 Small bias distributions are close to k-wise independent . . . . 22
2.6 An improved construction . . . . . . . . . . . . . . . . . . . . 24

3 Tribes Functions and the GMRTV Generator 24

4 Bounded indistinguishability 28
4.1 Duality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Approximate Degree of AND. . . . . . . . . . . . . . . . . . . 33
4.3 Approximate Degree of AND-OR. . . . . . . . . . . . . . . . . 35
4.4 Lower Bound of d1/3(AND-OR) . . . . . . . . . . . . . . . . . 36
4.5 Lower Bound of d1/3(SURJ) . . . . . . . . . . . . . . . . . . . 38

5 Pseudorandom groups and communication complexity 41
5.1 2-party communication protocols . . . . . . . . . . . . . . . . 44
5.2 3-party communication protocols . . . . . . . . . . . . . . . . 44
5.3 A randomized protocol for the hypercube . . . . . . . . . . . . 44
5.4 A randomized protocol for Zm . . . . . . . . . . . . . . . . . . 45
5.5 Other groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.6 More on 2-party protocols . . . . . . . . . . . . . . . . . . . . 49

6 Number-on-forehead communication complexity 51

7 Corners in pseudorandom groups 52
7.1 Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Weak Regularity Lemma . . . . . . . . . . . . . . . . . . . . . 54
7.3 Getting more for rectangles . . . . . . . . . . . . . . . . . . . 55
7.4 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.4.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . 59

8 Static data structures 59

2



1 Bounded independence

In this first lecture we begin with some background on pseudorandomness
and then we move on to the study of bounded independence, presenting in
particular constructions and lower bounds.

1.1 Background

Let us first give some background on randomness. There are 3 different
theories:

(1) Classical probability theory. For example, if we toss a coin 12 times
then the probability of each outcome is the same, i.e., Pr[010101010101] =
Pr[011011100011]. However, intuitively we feel that the first outcome is less
random than the second.

(2) Kolmogorov complexity. Here the randomness is measured by the
length of the shortest program outputting a string. In the previous example,
the program for the second outcome could be “print 011011100011”, whereas
the program for the first outcome can be “print 01 six times”, which is shorter
than the first program.

(3) Pseudorandomness. This is similar to resource-bounded Kolmogorov
complexity. Here random means the distribution “looks random” to “efficient
observers.”

Let us now make the above intuition precise.

Definition 1.[Pseudorandom generator (PRG)] A function f : {0, 1}s →
{0, 1}n is a pseudorandom generator (PRG) against a class of tests T ⊆
{t : {0, 1}n → {0, 1}} with error ε, if it satisfies the following 3 conditions:

(1) the output of the generator must be longer than its input, i.e., n > s;
(2) it should fool T , that is, for every test t ∈ T , we have Pr[t(Un) = 1] =

Pr[t(f(Us)) = 1]± ε;
(3) the generator must be efficient.

To get a sense of the definition, note that a PRG is easy to obtain if we
drop any one of the above 3 conditions. Dropping condition (1), then we can
define our PRG as f(x) := x. Dropping condition (2), then we can define our
PRG as f(x) := 0. Dropping condition (3), then the PRG is not as obvious
to obtain as the previous two cases. We have the following claim.

Claim 2. For every class of tests T , there exists an inefficient PRG with
error ε and seed length s = lg2 lg2(|T |) + 2 lg2(1/ε) +O(1).
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Before proving the claim, consider the example where T is the class of
circuits of size n100 over n-bit input, it is known that |T | = 2n

O(1)
. Hence,

applying our claim above we see that there is an inefficient PRG that fools
T with error ε and seed length s = O(lg2(n/ε)).

We now prove the claim using the probabilistic method.

Proof. Consider picking f at random. Then by the Chernoff bound, we have
for every test t ∈ T ,

Pr
f

[|Pr
Us

[t(f(Us)) = 1]− Pr
Un

[t(Un) = 1]| ≥ ε] ≤ 2−Ω(ε22s) < 1/|T |,

if s = lg2 lg2(|T |)+2 lg2(1/ε)+O(1). Therefore, by a union bound over t ∈ T ,
there exists a fixed f such that for every t ∈ T , the probabilities are within
ε. �

1.2 k-wise independent distribution

A major goal in research in pseudorandomness is to construct PRGs for (1)
richer and richer class T , (2) smaller and smaller seed length s, and making
the PRG explicit. For starters, let us consider a simple class of tests.

Definition 3.[d-local tests] The d-local tests are tests that depend only on d
bits.

We will show that for this class of tests we can actually achieve error
ε = 0. To warm up, consider what happens when d = 1, then we can have a
PRG with seed length s = 1 by defining f(0) := 0n and f(1) := 1n.

For d = 2, we have the following construction. Define

f(x)y := 〈x, y〉 =
∑
i

xiyi mod 2.

Here the length of x and y is |x| = |y| = lg2 n, and we exclude y = 0lg2 n.
Note that the output has n− 1 bits, but we can append one uniform bit to
the output of f . So the seed length would be lg2 n+ 1.

Now we prove the correctness of this PRG.

Claim 4. The f defined above is a PRG against 2-local tests with error
ε = 0.
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Proof. We need to show that for every y 6= z, the random variable (f(x)y, f(x)z)
over the choice of x is identical to U2, the uniform 2-bit string. Since y 6= z,
suppose without loss of generality that there exists an i such that yi = 1 and
zi = 0. Now f(x)z is uniform, and conditioned on z, f(x)y is also uniform,
thanks to the index yi. �

The case for d = 3 becomes much more complicated and involves the use
of finite fields. One can think of a finite field as a finite domain that behaves
like Q in the sense that it allows you to perform arithmetic operations, in-
cluding division, on the elements. We will use the following fact about finite
fields.

Lemma 5. There exist finite fields of size pk, for every prime p and integer
k. Moreover, they can be constructed and operated with in time poly(k, p).

Remark 6. Ideally one would like the dependence on p to be lg2 p. However,
such construction remains an open question and there have been many at-
tempts to constructing finite fields in time poly(k, lg2 p). Here we only work
with finite fields with p = 2, and there are a lot of explicit constructions for
that.

One simple example of finite fields are integers modulo p.

Theorem 7. Let D = {0, 1}lg2 n. For every k, there exists an explicit
construction over Dn such that

(1) elements in Dn can be sampled with s = k lg2 n bits, and
(2) every k symbols are uniform in Dk.

For d = 3, we can use the above theorem with k = 3, and the PRG can
output the first bit of every symbol.

Remark 8. There exist other constructions that are similar to the inner
product construction for the case d = 2, with y carefully chosen, but the way
to choose y involves the use of finite fields as well.

Note that we can also apply the theorem for larger d to fool d-local tests
with seed length s = d lg2 n.

We now prove the theorem.

Proof. Pick a finite field F of size 2lg2 n. Let a0, . . . , an−1 ∈ F be uniform
random elements in F which we think of as a polynomial a(x) of degree
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k − 1. We define the generator f to be

f(a0, . . . , an−1)x = a(x) =
n−1∑
i=0

aix
i.

(One should think of the outputs of f as lines and curves in the real plane.)
The analysis of the PRG follows from the following useful fact: For every

k points (x0, y0), (x1, y1), . . . , (xk−1, yk−1), there exists exactly one degree k−1
polynomial going through them. �

Let us now introduce a terminology for PRGs that fool d-local tests.

Definition 9. We call distributions that look uniform (with error 0) to k-
local tests k-wise independent (also known as k-wise uniform). The latter
terminology is more precise, but the former is more widespread.

We will soon see an example of a distribution where every k elements are
independent but not necessarily uniform.

1.3 Lower bounds

We have just seen a construction of k-wise independent distributions with
seed length s = d lg2 n. It is natural to ask, what is the minimum seed length
of generating k-wise independent distributions?

Claim 10. For every k ≥ 2, every PRG for k-local tests over {0, 1}n has
seed length s ≥ Ω(k lg2(n/k)).

Proof. We use the linear-algebraic method. See the book by Babai–Frankl [BF92]
for more applications of this method.

To begin, we will switch from {0, 1} to {−1, 1}, and write the PRG as a
2s × n matrix M , where the rows are all the possible outputs of the PRG.
Since the PRG fools k-local tests and k ≥ 2, one can verify that every 2
columns of M are orthogonal, i.e., 〈Mi,Mj〉 = 0 for i 6= j. As shown below,
this implies that the vectors are independent. And by linear algebra this
gives a lower bound on s.

However so far we have not used k. Here’s how to use it. Consider all
the column vectors v obtained by taking the entry-wise products of any of
the k/2 vectors in M . Because of k-wise independence, these v’s are again
orthogonal, and this also implies that they are linearly independent.
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Claim 11. If v1, v2, . . . , vt are orthogonal, then they are linearly independent.

Proof. Suppose they are not and we can write vi =
∑

j∈S,i6∈S vj for some
S. Taking inner product with vi on both sides, we have that the L.H.S. is
nonzero, whereas the R.H.S. is zero because the vectors are orthogonal, a
contradiction. �

Therefore, the rank of M must be at least the number of v’s, and so

2s ≥ number of v’s ≥
(
n

k/2

)
≥ (2n/k)k/2.

Rearranging gives s ≥ (k/2) lg2(2n/k). �

1.4 Who is fooled by k-wise independence?

In the coming lectures we will see that k-wise independence fools AC0, the
class of constant-depth circuits with unbounded fan-in. Today, let us see
what else is fooled by k-independence in addition to k-local tests.

(1) Suppose we have n independent variables x1, . . . , Xn ∈ [0, 1] and we
want to understand the behavior of their sum

∑
iXi. Then we can apply

tools such as the Chernoff bound, tail bounds, Central Limit Theorem, and
the Berry–Esseen theorem. The first two give bounds on large deviation from
the mean. The latter two are somewhat more precise facts that show that
the sum will approach a normal distribution (i.e., the probability of being
larger than t for any t is about the same). One can show that similar results
hold when the Xi’s are k-wise independent. The upshot is that the Chernoff
bound gives error 2−samples, while under k-wise independence we can only get
an error (samples)−k/2.

(2) We will see next time that k-wise independence fools DNF and AC0.
(3) k-wise independence is also used as hashing in load-balancing.

1.4.1 k-wise independence fools AND

We now show that k-wise independent distributions fool the AND function.

Claim 12. Every k-wise uniform distribution fools the AND functions on
bits with error ε = 2−Ω(k).
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Proof. If the AND function is on at most k bits, then by definition the error
is ε = 0. Otherwise the AND is over more than k bits. Without loss of
generality we can assume the AND is on the first t > k bits. Observe that
for any distribution D, we have

Pr
D

[AND on t bits is 1] ≤ Pr
D

[AND on k bits is 1].

The right-hand-side is the same under uniform and k-wise uniformity, and is
2−k. Hence,

| Pr
uniform

[AND = 1]− Pr
k-wise ind.

[AND = 1]| ≤ 2−k.

�

Instead of working over bits, let us now consider what happens over a
general domain D. Given n functions f1, . . . , fn : D → {0, 1}. Suppose
x1, . . . , xn are k-wise uniform over Dn. What can you say about the AND of
the outputs of the fi’s, f1(x1), f2(x2), . . . , fn(xn)?

This is similar to the previous example, except now that the variables are
independent but not necessarily uniform. Nevertheless, we can show that a
similar bound of 2−Ω(k) still holds.

Theorem 13.[[EGL+92]] LetX1, X2, . . . , Xn be random variables over {0, 1},
which are k-wise independent, but not necessarily uniform. Then

Pr[
n∏
i=1

Xi = 1] =
n∏
i=1

Pr[Xi = 1]± 2−Ω(k).

This fundamental theorem appeared in the conference version of [EGL+92],
but was removed in the journal version. One of a few cases where the journal
version contains less results than the conference version.

Proof. Let D be the distribution of (X1, . . . , Xn). Let B be the n-wise in-
dependent distribution (Y1, . . . , Yn) such that Pr[Yi = 1] = Pr[Xi = 1] for
all i ∈ [n] and the Yi are independent. The theorem is equivalent to the
following statement.

| Pr
X←D

[
n∧
i=1

Xi = 1

]
− Pr

X←B

[
n∧
i=1

Xi = 1

]
| ≤ 2−Ω(k)
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We will prove the above statement by the following version of the Inclusion-
Exclusion principle.

Inclusion-Exclusion Principle Let V be any distribution over {0, 1}n.
Note that by De Morgan’s laws, we have

Pr
[∧

Vi = 1
]

= 1− Pr
[∨

Vi = 0
]

Let Ei be the event that Vi = 0. We want to bound the quantity Pr [
⋃
Ei].

By looking at the Venn diagram of the events Ei, we can see that

Pr
[⋃

Ei

]
≤ Pr[E1] + · · ·+ Pr[En] =

∑
i

Pr[Ei]

Pr
[⋃

Ei

]
≥
∑
i

Pr[Ei]−
∑
i,j

Pr[Ei ∩ Ej]

Pr
[⋃

Ei

]
≤
∑
i

Pr[Ei] −
∑

S⊆[n],|S|=2

Pr

[⋂
i∈S

Ei

]
+

∑
S⊆[n],|S|=3

Pr

[⋂
i∈S

Ei

]
,

and so on. In general, we have the following. Define

Tj :=
∑

S⊆[n],|S|=j

Pr

[⋂
i∈S

Ei

]

Sh :=
h∑
i=1

(−1)i+1Ti

Then, we have the bounds Pr [
⋃
Ei] ≤ Sj for odd j, and Pr [

⋃
Ei] ≥ Sj for

even j. This fact holds for any distribution.
Let us return to the proof. Note that the Sh are the same for D and B

up to h = k because they only involve sums of ANDs of at most k events.
Hence, we have that∣∣∣Pr

D

[∧
Xi = 1

]
− Pr

B

[∧
Xi = 1

]∣∣∣ ≤ |Sk − Sk−1| = |Tk|

where the last equality comes from the definition of Sk. Therefore, we are
done if |Tk| ≤ 2−Ω(k). We have that

Tk =
∑

S⊆[n],|S|=k

Pr

[⋂
i∈S

Ei

]
=

(
n

k

)
ES⊆[n],|S|=k

[∏
i∈S

Pi

]
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where Pi := Pr[Ei] = 1 − Pr[Xi = 1]. To bound the expectation we recall a
useful inequality.

A Useful Inequality Let Q1, . . . , Qn be non-negative real numbers.
Then, by the AM-GM inequality, we have that∑

iQi

n
≥

(∏
i

Qi

)1/n

.

Consider the following more general statement,

ES⊆[n],|S|=1

[∏
i∈S

Qi

]
≥ ES⊆[n],|S|=2

[∏
i∈S

Qi

]1/2

≥ . . .

· · · ≥ ES⊆[n],|S|=k

[∏
i∈S

Qi

]1/k

≥ · · · ≥ ES⊆[n],|S|=n

[∏
i∈S

Qi

]1/n

and note that the left most term is equal to
∑

i Qi

n
, while the right most term

is equal to (
∏

iQi)
1/n

Applying the above inequality to Tk and a common approximation for the
binomial coefficient, we have that

Tk =

(
n

k

)
ES⊆[n],|S|=k

[∏
i∈S

Pi

]
≤
(
n

k

) n∑
i=1

(
Pi
n

)k
≤
(en
k

)k (∑Pi
n

)k
=

(
e
∑
Pi

k

)k
.

Therefore, we are done if
∑
Pi ≤ k

2e
. Recall that Pi = Pr[Ei] = 1 −

Pr[Xi = 1]. So if Pi is small then Pr[Xi = 1] is close to 1.
It remains to handle the case that

∑
Pi ≥ k

2e
. Pick n′ such that

n′∑
i=1

Pi =
k

2e
± 1.

By the previous argument, the AND of the first n′ is the same up to 2−Ω(k)

for D and B. Also, for every distribution the probability of that the And of
n bits is 1 is at most the probability that the And of n′ bits is 1. And also,
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for the n-wise independent distribution B we have

Pr
B

[
n′∧
i=1

Xi = 1

]
=

n′∏
i=1

Pr[Xi = 1]

=
n′∏
i=1

(1− Pi)

≤

(∑n′

i=1(1− Pi)
n′

)n′

by the AM-GM inequality

≤
(
n′ − k/2e

n′

)n′
≤ (1− k/2en′)n′ ≤ e−Ω(k).

The combination of these facts concludes this case. To summarize, in this
case we showed that

Pr
D

[
n∧
i=1

Xi = 1] ≤ Pr
D

[
n′∧
i=1

Xi = 1].

as well as

Pr
B

[
n∧
i=1

Xi = 1] ≤ Pr
B

[
n′∧
i=1

Xi = 1] ≤ 2−Ω(k).

By the choice of n′ and the previous argument, we also know that |PrD[
∧n′

i=1Xi =

1] − PrB[
∧n′

i=1 Xi = 1]| ≤ 2−Ω(k) and so we are done, as all quantities above
are at most 2−Ω(k) (and at least 0). �

Remark 14. The bound is tight up to Ω(.)

Proof. Let D be the distribution over {0, 1}k+1 as follows: D1,...,k = Uk and
Dk+1 = D1 + · · · + Dk mod 2. Then, D is k-wise independent. However, if
k is even, then

Pr[
k+1∧
i=1

Di = 1] = 0.

Yet, we have that

Pr[
k+1∧
i=1

Ui = 1] = 2−(k+1).

�
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1.5 Bounded Independence Fools AC0

Acknowledgement. This section is based on Amnon Ta-Shma’s notes for
the class 0368.4159 Expanders, Pseudorandomness and Derandomization CS
dept, Tel-Aviv University, Fall 2016.

Note that a DNF on n bits can be modeled as a depth two circuit where
the top layer is an OR-gate whose inputs are AND-gates, which take inputs
X1, . . . , Xn and their negations. The circuit class AC0 can be viewed as
a generalization of this to higher (but constant) depth circuits. That is,
AC0 consists of circuits using AND-gates, OR-gates, NOT-gates, and input
registers. Each of the gates have unbounded fan-in (i.e. the number of input
wires). The size of the circuit is defined to be the number of gates.

AC0 is one of the most studied classes in complexity theory. AC0 circuits
of polynomial size can do many things, including adding and subtracting
n-bit integers.

Conjecture 15.[Linial-Nisan[LN90]] logO(d) s-wise independence fools AC0

circuits of depth d and size s.

The conjecture was open for a long time, even for in the special case d = 2.
In 2007 a breakthrough work by Bazzi [Baz09] proved it for d = 2. Shortly
afterwards, Razborov presented a simpler proof of Bazzi’s result [Raz09], and

Braverman proved the conjecture for any d with logd
2

s-wise independence
[Bra10]. Tal improved the result to logO(d) s [Tal17].

Interestingly, the progress on the conjecture does not use ideas that were
not around since the time of its formulation. Bottom line: if a problem is
open for a long time, you should immediately attack it with existing tools.

The high-level intuition why such a result should be true is the following:

1. AC0 is approximated by polylog degree polynomials.

2. k-wise independence fools degree-k polynomials.

Proof of (2). Let x = (x1, . . . , xn) ∈ {0, 1}n. Let p(x1, . . . , xn) be a degree k
polynomial over R. Write p as

p(x1, . . . , xn) =
∑

M⊆[n],|M |≤k

cM · xM .
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If D is a k-wise independent distribution on {0, 1}n, then by linearity of
expectation

ED[P ] =
∑

M⊆[n],|M |≤k

cMED[xM ] =
∑

M⊆[n],|M |≤k

cMEU [xM ] = EU [P ].

�

There are several notions of approximating AC0 by low-degree polynomi-
als. We now review two of them, explaining why neither of them is sufficient.
Braverman showed how to cleverly combine the two methods to prove a ver-
sion of (1) that’s strong enough.

1.5.1 Approximation 1

Theorem 16. For all AC0 circuits C(x1, . . . , xn) of size s and depth d, for all
distributions D over {0, 1}n, for all ε, there exists a polynomial p(x1, . . . , xn)
of degree logO(d) s/ε such that

Pr
x←D

[p(x) = C(x)] ≥ 1− ε.

The important features of this approximation are that it works under any
distribution, and when the polynomial is correct it outputs a boolean value.

Similar approximations appear in many papers, going back to Razborov’s
paper [Raz87] (who considers polynomials modulo 2) which uses ideas from
earlier still work.

Note that the polynomial p depends on the circuit C chosen, and on the
distribution. This theorem is not a good enough approximation because on
the ε fraction of inputs where the polynomial and circuit are unequal, the
value of the polynomial can (and does) explode to be much greater than 1/ε.
This prevents us from bounding the average of the polynomial.

Nevertheless, let us prove the above theorem.

Proof. Consider one OR-gate of fan-in s. We construct a distribution of
polynomials that compute any input with high probability. This implies
that there is a fixed polynomial that computes the circuit on a large fraction
of the inputs by an averaging argument.
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For i = 1, 2, . . . , log s. let Si be a random subset of [s] where every element
is included with probability 1/2i, independently.

Suppose x has Hamming weight 2j. Then, E[
∑

n∈Sj
xn] = 1. And the

sum can be shown to equal 1 with constant probability.
Define the approximation polynomial p to be

p(x) := 1−
log s∏
i=1

(1−
∑
h∈Si

xh)

Note that if x has weight w > 0, then p(x) = 0 with constant probability. If
w = 0, then p(x) = 1 with probability 1. We can adjust the error probability
to ε by repeating each term in the product log(1/ε) times.

Thus, we can approximate one gate with the above polynomial of degree
O(log(s) · log(1/ε)). Construct polynomials as p above for each gate, with
error parameter ε/s. The probability that any of them is wrong is at most
ε by a union bound. To obtain the approximating polynomial for the whole
circuit compose all the polynomials together. Since the circuit is of depth
d, the final degree of the approximating polynomial is (log(s) · log(s/ε))d, as
desired.

As mentioned at the beginning, this is a distribution on polynomials that
computes correctly any input with probability at least 1 − ε. By averaging,
there exists a fixed polynomial that computes correctly a 1 − ε fraction of
inputs. �

It can be verified that the value of the polynomial can be larger than 1/ε.
The polynomial for the gates closest to the input can be as large as s. Then
at the next level it can be as large as slog s/ε, which is already much larger
than 1/ε.

1.6 Approximation 2

Theorem 17. For all circuits C of size s and depth d, for all error values ε,
there exists a polynomial p(x1, . . . , xn) of degree O(log(s)d−1 log(1/ε)) such
that

Ex←Un [(C(x)− p(x))2] ≤ ε.
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The important feature of this approximation is that it bounds the average,
but only under the uniform distribution. Because it does not provide any
guarantee on other distributions, including k-wise independent distributions,
it cannot be used directly for our aims.

Remark 18. Approximation 2 is proved via the switching lemma, an in-
fluential lemma first proved in the early 80’s by Ajtai [Ajt83] and by Furst,
Saxe, and Sipser [FSS84]. The idea is to randomly set a subset of the vari-
ables to simplify the circuit. You can do this repeatedly to simplify the
circuit even further, but it only works on the uniform distribution. Hastad
[H̊as87] gave a much tighter analysis of the switching lemma, and the paper
[LMN93] used it to prove a version of Approximation 2 with a slightly worse
dependence on the error. Recently, a refinement of the switching lemma was
proved in [H̊as14, IMP12]. Based on that, Tal [Tal17] obtained the corre-
sponding refinement of Approximation 2 where the parameters are as stated
above. (The polynomial is simply obtained from the Fourier expansion of the
function computed by the circuit by removing all Fourier coefficients larger
than a certain threshold. The bound on the Fourier decay in [Tal17] implies
the desired approximation.)

1.7 Bounded Independence Fools AC0

Theorem 19. For all circuits C with unbounded fan-in of size s and depth
d, for all error values ε, for all k-wise independent distributions D on {0, 1}n,
we have that

|E[C(D)]− E[C(Un)]| ≤ ε

for k = log(s/ε)O(d).

Corollary 20. In particular, if s = poly(n), d = O(1), s = 1/poly(n), then
k = logO(1)(n) suffices.

The next claim is the ultimate polynomial approximation used to prove
the theorem.

Claim 21. For all circuits C with unbounded fan-in of size s and depth d,
for all error values ε, for all k-wise independent distributions D on {0, 1}n,
there is a set E of inputs, and a degree-k polynomial p such that:

1. E is ’rare’ under both D and Un:

15



Prx←Un [E(x) = 1] ≤ ε, and Prx←D[E(x) = 1] ≤ ε. Here we write E(x)
for the indicator function of the event x ∈ E.

2. For all x, p(x) ≤ C(x) ∨ E(x). Here ∨ is the logical Or.

3. E[p(Un)] = E[C(Un)]± ε.

We only need (1) under D, but (1) under U is used to prove (3).

Proof of Theorem 19 from Claim 21.

E[C(D)] = E[C(D) ∨ E(D)]± ε, by Claim.(1)

≥ E[p(D)]± ε, by Claim.(2)

= E[p(Un)]± ε, because p has degree k and D is k-wise independent

= E[C(Un)]± ε, by Claim.(3)

For the other direction, repeat the argument for ‘not C’. �

We can construct the polynomial approximation from Claim 21 by us-
ing a combination of Approximation 1 and 2. First we need a little more
information about Approximation 1.

Claim 22. Two properties of approximation 1:

1. For all x, p(x) ≤ 2log(s/ε)O(d)
.

2. The ’bad’ set E is computable by a circuit of size poly(s), and depth
d+O(1).

Proof of Claim 22 part 2. Consider a single OR gate with input gates g1, . . . , gs.
This is represented in the approximating polynomial by the term

1−
polylog(s/ε)∏

i=1

(1−
∑
j∈Si

gj).

Note that the term is incorrect exactly when the input g1, . . . , gs has weight
> 0 but all the sets Si intersect 0 or ≥ 2 ones. This can be checked in AC0,
in parallel for all gates in the circuit. �
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Proof of Claim 21. Run approximation 1 for the distribution D+U
2

, yielding
the polynomial pc and the set E. This already proves the first part of the
claim for both D and U , because if E has probability ε under D it has
probability ≥ ε/2 under (D+U)/2, and the same for U . Use Claim 22 part
2, and run approximation 2 on E. Call the resulting polynomial pE, which
has degree log(s/δ)O(d) with error bound δ.

The idea in the ultimate approximating polynomial is to “check if there
is a mistake, and if so, output 0. Otherwise, output C”. Formally:

p(x) := 1− (1− pc(1− pE))2

Claim 21 part 2 can be shown as follows. p(x) ≤ 1 by definition. So, if
C(x) ∨ E(x) = 1, then we are done. Otherwise, C(x) ∨ E(x) = 0. So there
is no mistake, and C = 0. Hence, by the properties of Approximation 1,
pc(x) = 0. This implies p(x) = 0.

It only remains to show Claim 21 part 3:

EU [p(x)] = EU [C(x)]± ε.

By part 1 of Claim 21,

EU [C(x)− p(x)] = EU [C(x) ∨ E(x)− p(x)]± ε.

We can show that this equals

EU

[
(C(x) ∨ E(x)− pc(x)(1− pE(x)))2]± ε

by the following argument: If C(x)∨E(x) = 1 then 1−p(x) = (1−pc(x)(1−
pE(x)))2 by definition. If C(x) ∨ E(x) = 0, then there is no mistake, and
C(x) = 0. This implies that pc(x)(1− pE(x)) = p(x) = 0.

Let us rewrite the above expression in terms of the expectation `2 norm.

||C ∨ E − pc(1− pE)||22.

Recall the triangle inequality, which states: ||u−v||2 ≤ ||u−w||2 + ||w−v||2.
Therefore, letting w = pc(1− E) we have that the above quantity is

≤ (||pc(1− E)− pc(1− pE)||2 + ||pc(1− E)− C ∨ E||2)2

≤ O(||pc(1− E)− pc(1− pE)||22 + ||pc(1− E)− C ∨ E||22).
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To conclude, we will show that each of the above terms are ≤ ε. Note that

||pc(1− E)− pc(1− pE)||22 ≤ max
x
|pc(x)|2||(1− E)− (1− pE)||22.

By Claim 22 part 1 and Approximation 2, this is at most

2log(s/ε)O(d) · ||E − pE||22 ≤ 2log(s/ε)O(d) · δ.

For this quantity to be at most ε we set δ = ε ·2− log(s/ε)O(d)
. Here we critically

set the error in Approximation 2 much lower, to cancel the large values
arising from Approximation 1. By Theorem 17, the polynomial arising from
approximation 2 has degree O(log(s)d−1 log(1/δ)) = log(s/ε)O(d).

Finally, let us bound the other term, ||pc(1−E)−C ∨E||22. If E(x) = 0,
then the distance is 0. If E(x) = 1, then the distance is ≤ 1. Therefore, this
term is at most PrU [E(x) = 1], which we know to be at most ε. �

2 Small-bias distributions

Definition 1.[Small bias distributions] A distribution D over {0, 1}n has
bias ε if no parity function can distinguish it from uniformly random strings
with probability greater than ε. More formally, we have:

∀S ⊆ [n], S 6= ∅,

∣∣∣∣∣Px∈D
[⊕
i∈S

xi = 1

]
− 1/2

∣∣∣∣∣ ≤ ε.

In this definition, the 1/2 is simply the probability of a parity test being
1 or 0 over the uniform distribution. We also note that whether we change
the definition to have the probability of the parity test being 0 or 1 doesn’t
matter. If a test has probability 1/2 + ε of being equal to 1, then it has
probability 1− (1/2 + ε) = 1/2− ε of being 0, so the bias is independent of
this choice.

This can be viewed as a distribution which fools tests T that are restricted
to computing parity functions on a subset of bits.

Before we answer the important question of how to construct and ef-
ficiently sample from such a distribution, we will provide one interesting
application of small bias sets to expander graphs.

18



Theorem 2.[Expander construction from a small bias set] Let D be a dis-
tribution over {0, 1}n with bias ε. Define G = (V,E) as the following graph:

V = {0, 1}n, E = {(x, y)|x⊕ y ∈ support(D)}.

Then, when we take the eigenvalues of the random walk matrix of G in
descending order λ1, λ2, ...λ2n , we have that:

max{|λ2|, |λ2n|} ≤ ε.

Thus, small-bias sets yields expander graphs. Small-bias sets also turn out
to be equivalent to constructing good linear codes. Although all these ques-
tions have been studied much before the definition of small-bias sets [NN90],
the computational perspective has been quite useful, even in answering old
questions. For example Ta-Shma used this perspective to construct better
codes [Ta-17].

2.1 Constructions of small bias distributions

Just like our construction of bounded-wise independent distributions from the
previous lecture, we will construct small-bias distributions using polynomials
over finite fields.

Theorem 3.[Small bias construction] Let F be a finite field of size 2`, with
elements represented as bit strings of length `. We define the generator
G : F2 → {0, 1}n as the following:

G(a, b)i =
〈
ai, b

〉
=
∑
j≤`

(ai)jbj mod 2.

In this notation, a subscript of j indicates taking the jth bit of the rep-
resentation. Then the output of G(a, b) over uniform a and b has bias n/2`.

Proof. Consider some parity test induced by a subset S ⊂ [n]. Then when
applied to the output of G, it simplifies as:

∑
i∈S

G(a, b)i =
∑
i∈S

〈
ai, b

〉
=

〈∑
i∈S

ai, b

〉
.
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Note that
∑

i∈S a
i is the evaluation of the polynomial PS(x) :=

∑
i∈S x

i

at the point a. We note that if PS(a) 6= 0, then the value of 〈PS(a), b〉 is
equally likely to be 0 or 1 over the probability of a uniformly random b. This
follows from the fact that the inner product of any non-zero bit string with
a uniformly random bit string is equally likely to be 0 or 1. Hence in this
case, our generator has no bias.

In the case where PS(a) = 0, then the inner product will always be 0,
independent of the value of b. In these situations, the bias is 1/2, but this is
conditioned on the event that PS(a) = 0.

We claim that this event has probability ≤ n/2`. Indeed, for non empty
S, PS(a) is a polynomial of degree ≤ n. Hence it has at most n roots. But
we are selecting a from a field of size 2`. Hence the probability of picking
one root is ≤ n/2`.

Hence overall the bias is at most n/2`. �

To make use of the generator, we need to pick a specific `. Note that the
seed length will be |a|+ |b| = 2`. If we want to achieve bias ε, then we must
have ` = log

(
n
ε

)
. Al the logarithms in this lecture are in base 2. This gives

us a seed length of 2 log
(
n
ε

)
.

Small-bias are so important that a lot of attention has been devote to opti-
mizing the constant “2” above. A lower bound of log n+(2−o(1)) log(1/ε) on
the seed length was known. Ta-Shma recently [Ta-17] gave a nearly matching
construction with seed length log n+ (2 + o(1)) log(1/ε).

We next give a sense of how to obtain different tradeoffs between n and ε in
the seed length. We specifically focus on getting a nearly optimal dependence
on n, because the construction is a simple, interesting “derandomization” of
the above one.

2.2 An improved small bias distribution via bootstrap-
ping

We will show another construction of small bias distributions that achieves
seed length (1 + o(1)) log n + O(log(1/ε)). It will make use of the previous
construction and proof.

The intuition is the following: the only time we used that b was uniform
was in asserting that if PS(a) 6= 0, then 〈PS(a), b〉 is uniform. But we don’t
need b to be uniform for that. What do we need from b? We need that it
has small-bias!
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Our new generator isG(a,G′(a′, b′)) whereG andG′ are as before but with
different parameters. For G, we pick a of length ` = log n/ε, whereas G′ just
needs to be an ε-biased generator on ` bits, which can be done as we just saw
with O(log `/ε) bits. This gives a seed length of log n+log log n+O(log 1/ε),
as promised.

We can of course repeat the argument but the returns diminish.

2.3 Connecting small bias to k-wise independence

We will show that using our small bias generators, we can create distribu-
tions which are almost k-wise independent. That is, they are very close to
a k-wise independent distribution in statistical distance, while having a sub-
stantially shorter seed length than what is required for k-wise independence.
In particular, we will show two results:

• Small bias distributions are themselves close to k-wise independent.

• We can improve the parameters of the above by feeding a small bias
distribution to the generator for k-wise independence from the previous
lectures. This will improve the seed length of simply using a small bias
distribution.

Before we can show these, we’ll have to take a quick aside into some
fundamental theorems of Fourier analysis of boolean functions.

2.4 Fourier analysis of boolean functions 101

Let f : {−1, 1}n → {−1, 1}. Here the switch between {0, 1} and {−1, 1} is
common, but you can think of them as being isomorphic. One way to think
of f is as being a vector in {−1, 1}2n

. The xth entry of f indicates the value
of f(x). If we let 1S be the indicator function returning 1 iff x = S, but once
again written as a vector like f is, then any function f can be written over
the basis of the 1S vectors, as:

f =
∑
S

f(s)1S.

This is the “standard” basis.

21



Fourier analysis simply is a different basis in which to write functions,
which is sometimes more useful. The basis functions are χS(x) : {−1, 1}n →
{−1, 1} =

∏
i∈S xi. Then any boolean function f can be expressed as:

f(x) =
∑
S⊆[n]

f̂(S)χS(x),

where the f̂(S), called the “Fourier coefficients,” can be derived as:

f̂(S) = Ex Un [f(x)χS(x)] ,

where the expectation is over uniformly random x.

Claim 4. For any function f with range {−1, 1}, its Fourier coefficients
satisfy: ∑

S⊆[n]

f̂(S)2 = 1.

Proof. We know that E[f(x)2] = 1, as squaring the function makes it 1. We
can re-express this expectation as:

E[f(x)f(x)] = E

[∑
S

f̂(s)χS(x) ·
∑
T

f̂(T )χT (x)

]
= E

[∑
S,T

f̂(s)χS(x)f̂(T )χT (x)

]
.

We make use of the following fact: if S 6= T , then E[χS(x)χT (x)] =
E[χS⊕T (x)] = 0. If they equal each other, then their difference is the empty
set and this function is 1.

Overall, this implies that the above expectation can be simply rewritten
as: ∑

S=T

f̂(S)f̂(T ) =
∑
S

f̂(S)2.

Since we already decided that the expectation is 1, the claim follows. �

2.5 Small bias distributions are close to k-wise inde-
pendent

Before we can prove our claim, we formally introduce what we mean for two
distributions to be close. We use the most common definition of statistical
difference, which we repeat here:
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Definition 5. Let D1, D2 be two distributions over the same domain H.
Then we denote their statistical distance SD(D1, D2), and sometimes written
as ∆(D1, D2), as

∆(D1, D2) = max
T⊆H
|P [D1 ∈ T ]− P [D2 ∈ T ]| .

Note that the probabilities are with respect to the individual distributions
D1 and D2. We may also say that D1 is ε-close to D2 if ∆(D1, D2) ≤ ε.

We can now show our result, which is known as Vazirani’s XOR Lemma:

Theorem 6. If a distribution D over {0, 1}n has bias ε, then D is ε2n/2 close
to the uniform distribution.

Proof. Let T be a test. To fit the above notation, we can think of T as being
defined as the set of inputs for which T (x) = 1. Then we want to bound:

|E[T (D)]− E[T (U)]|.

Expanding T in Fourier basis we rewrite this as

|E[
∑
S

T̂SχS(D)]− E[
∑
S

T̂SχS(U)]| = |
∑
S

T̂S (E[χS(D)]− E[χS(U)]) |.

We know that EU [χS(x)] = 0 for all non empty S, and 1 when S is the empty
set. We also know that ED[χS(x)] ≤ ε for all non empty S, and is 1 when S
is the empty set. So the above can be bounded as:

≤
∑
S 6=∅

|T̂S||ED[χS(x)]− EU [χS(x)]| ≤
∑
S

|T̂S|ε = ε
∑
S

|T̂S|.

Lemma 7.
∑

S |T̂S| ≤ 2n/2

Proof. By Cauchy Schwartz:

∑
|T̂S| ≤ 2n/2

√∑
T̂S

2
≤ 2n/2

Where the last simplification follows from Claim 4. �

Using the above lemma completes the upper bound and the proof of the
theorem. �
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Corollary 8. Any k bits of an ε biased distribution are ε2k/2 close to uniform.

Using the corollary above, we see that we can get ε close to a k-wise
independent distribution (in the sense of the corollary) by taking a small bias
distribution with ε′ = ε/2k/2. This requires seed length ` = O(log(n/ε′) =
O(log(2k/2n/ε) = O(log(n) + k + log(1/ε)). Recall that for exact k-wise we
required seed length k log n.

2.6 An improved construction

Theorem 9. Let G : {0, 1}k logn → {0, 1}n be the generator previously
described that samples a k-wise independent distribution (or any linear G).
If we replace the input to G with a small bias distribution of ε′ = ε/2k, then
the output of G is ε-close to being k-wise independent.

Proof. Consider any parity test S on k bits on the output of G. It can be
shown that G is a linear map, that is, G simply takes its seed and it multiplies
it by a matrix over the field GF(2) with two elements. Hence, S corresponds
to a test S ′ on the input of G, on possibly many bits. The test S ′ is not empty
because G is k-wise independent. Since we fool S ′ with error ε′, we also fool
S with error ε, and the theorem follows by Vazirani’s XOR lemma. �

Using the seed lengths we saw we get the following.

Corollary 10. There is a generator for almost k-wise independent distribu-
tions with seed length O(log log n+ log(1/ε) + k).

3 Tribes Functions and the GMRTV Gener-

ator

We now move to a more recent result. Consider the Tribes function, which
is a read-once CNF on k · w bits, given by the And of k terms, each on w
bits. You should think of n = k · w where w ≈ log n and k ≈ n/ log n.

We’d like a generator for this class with seed length O(log n/ε). This is
still open! (This is just a single function, for which a generator is trivial, but
one can make this challenge precise for example by asking to fool the Tribes
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function for any possible negation of the input variables. These are 2n tests
and a generator with seed length O(log n/ε) is unknown.)

The result we saw earlier about fooling And gives a generator with seed
length O(log n), however the dependence on ε is poor. Achieving a good
dependence on ε has proved to be a challenge. We now describe a recent
generator [GMR+12] which gives seed length O(log n/ε)(log log n)O(1). This
is incomparable with the previous O(log n), and in particular the dependence
on n is always suboptimal. However, when ε = 1/n the generator [GMR+12]
gives seed length O(log n) log log n which is better than previously available
constructions.

The high-level technique for doing this is based on iteratively restricting
variables, and goes back about 30 years [AW89]. This technique seems to
have been abandoned for a while, possibly due to the spectacular successes
of Nisan [Nis91, Nis92]. It was revived in [GMR+12] (see also [GLS12]) with
an emphasis on a good dependence on ε.

A main tool is this claim, showing that small-bias distributions fool prod-
ucts of functions with small variance. Critically, we work with non-boolean
functions (which later will be certain averages of boolean functions).

Claim 1. Let f1, f2, ..., fk : {0, 1}w → [0, 1] be a series of boolean functions.
Further, let D = (v1, v2, ..., vk) be an ε-biased distribution over wk bits, where
each vi is w bits long. Then

ED[
∏
i

fi(vi)]−
∏
i

EU [fi(U)] ≤

(∑
i

var(fi)

)d

+ (k2w)dε,

where var(f) := E[f 2] − E2[f ] is variance of f with respect to the uniform
distribution.

This claim has emerged from a series of works, and this statement is
from a work in progress with Chin Ho Lee. For intuition, note that constant
functions have variance 0, in which case the claim gives good bounds (and
indeed any distribution fools constant functions). By contrast, for balanced
functions the variance is constant, and the sum of the variances is about
k, and the claim gives nothing. Indeed, you can write Inner Product as a
product of nearly balanced functions, and it is known that small-bias does
not fool it. For this claim to kick in, we need each variance to be at most
1/k.

In the tribes function, the And fucntions have variance 2−w, and the sum
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of the variances is about 1 and the claim gives nothing. However, if you
perturb the Ands with a little noise, the variance drops polynomially, and
the claim is useful.

Claim 2. Let f be the AND function on w bits. Rewrite it as f(x, y), where
|x| = |y| = w/2. That is, we partition the input into two sets. Define g(x)
as:

g(x) = Ey[f(x, y)],

where y is uniform. Then var(g) = Θ(2−3w/2).

Proof.

var(g) = E[g(x)2]− (E[g(x)])2 = Ex[Ey[f(x, y)]2]− (Ex[Ey[f(x, y)]])2 .

We know that (Ex[Ey[f(x, y)]]) is simply the expected value of f , and
since f is the AND function, this is 2−w, so the right term is 2−2w.

We reexpress the left term as Ex,y,y′ [f(x, y)f(x, y′)]. But we note that
this product is 1 iff x = y = y′ = 1. The probability of this happening is
(2−w/2)3 = 2−3w/2.

Thus the final difference is 2−3w/2(1− 2−w/2) = Θ(2−3w/2). �

We’ll actually apply this claim to the Or function, which has the same
variance as And by De Morgan’s laws.

We now present the main inductive step to fool tribes.

Claim 3. Let f be the tribes function, where the first t ≤ w bits of each of
the terms are fixed. Let w′ = w− t be the free bits per term, and k′ ≤ k the
number of terms that are non-constant (some term may have become 0 after
fixing the bits).

Reexpress f as f(x, y) =
∧
k′ (
∨

(xi, yi)), where each term’s input bits are
split in half, so |xi| = |yi| = w′/2.

Let D be a small bias distribution with bias εc (for a big enough c to be
set later). Then∣∣E(x,y)∈U2 [f(x, y)]− E(x,y)∈(D,U)[f(x, y)]

∣∣ ≤ ε.

That is, if we replace half of the free bits with a small bias distribu-
tion, then the resulting expectation of the function only changes by a small
amount.
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To get the generator from this claim, we repeatedly apply Claim 3, re-
placing half of the bits of the input with another small bias distribution. We
repeat this until we have a small enough remaining amount of free bits that
replacing all of them with a small bias distribution causes an insignificant
change in the expectation of the output.

At each step, w is cut in half, so the required number of repetitions to
reduce w′ to constant is R = log(w) = log log(n). Actually, as explained
below, we’ll stop when w = c′ log log 1/ε for a suitable constant c′ (this arises
from the error bound in the claim above, and we).

After each replacement, we incur an error of ε, and then we incur the final
error from replacing all bits with a small bias distribution. This final error
is negligible by a result which we haven’t seen, but which is close in spirit to
the proof we saw that bounded independence fools AND.

The total accumulated error is then ε′ = ε log log(n). If we wish to achieve
a specific error ε, we can run each small bias generator with ε/ log log(n).

At each iteration, our small bias distribution requires O(log(n/ε)) bits,
so our final seed length is O(log(n/ε))poly log log(n).

Proof of Claim 3. Define gi(x) = Ey[
∨
i(xi, yi)], and rewrite our target ex-

pression as:

Ex∈U

[∏
gi(xi)

]
− Ex∈D

[∏
gi(xi)

]
.

This is in the form of Claim 1. We also note that from Claim 2 that
var(gi) = 2−3w′/2.

We further assume that k′ ≤ 2w
′
log(1/ε). For if this is not true, then the

expectation over the first 2w
′
log(1/ε) terms is ≤ ε, because of the calculation

(1− 2−w
′
)2w′ log(1/ε) ≤ ε.

Then we can reason as in the proof that bounded independence fools AND
(i.e., we can run the argument just on the first 2w

′
log(1/ε) terms to show

that the products are close, and then use the fact that it is small under
uniform, and the fact that adding terms only decreases the probability under
any distribution).

Under the assumption, we can bound the sum of the variances of g as:∑
var(gi) ≤ k′2−3w′/2 ≤ 2−Ω(w′) log(1/ε).

If we assume that w′ ≥ c log log(1/ε) then this sum is ≤ 2−Ω(w′).
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We can then plug this into the bound from Claim 1 to get

(2−Ω(w′))d + (k2w
′
)dεc = 2−Ω(dw′) + 2O(dw′)εc.

Now we set d so that Ω(dw′) = log(1/ε) + 1, and the bound becomes:

ε/2 + (1/ε)O(1)εc ≤ ε.

By making c large enough the claim is proved. �

In the original paper, they apply these ideas to read-once CNF formulas.
Interestingly, this extension is more complicated and uses additional ideas.
Roughly, the progress measure is going to be number of terms in the CNF (as
opposed to the width). A CNF is broken up into a small number of Tribes
functions, the above argument is applied to each Tribe, and then they are
put together using a general fact that they prove, that if f and g are fooled
by small-bias then also f ∧ g on disjoint inputs is fooled by small-bias.

In these lectures, we introduce k-wise indistinguishability and link this
notion to the approximate degree of a function. Then, we study the approxi-
mate degree of some functions, namely, the AND function and the AND-OR
function. For the latter function we begin to see a proof that is different
(either in substance or language) from the proofs in the literature. We begin
with some LATEXtips.

4 Bounded indistinguishability

We studied previously the following questions:

• What is the minimum k such that any k-wise independent distribution
P over {0, 1}n fools AC0 (i.e. EC(P ) ≈ EC(U) for all poly(n)-size
circuits C with constant depth)?

We saw that k = logO(d)(s/ε) is enough.

• What is the minimum k such that P fools the AND function?

Taking k = O(1) for ε = O(1) suffices (more precisely we saw that
k-wise independence fools the AND function with ε = 2−Ω(k)).

Consider now P and Q two distributions over {0, 1}n that are k-wise
indistinguishable, that is, any projection over k bits of P and Q have the
same distribution. We can ask similar questions:
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• What is the minimum k such that AC0 cannot distinguish P and Q (i.e.
EC(P ) ≈ EC(Q) for all poly(n)-size circuits C with constant depth)?

It turns out this requires k ≥ n1−o(1): there are some distributions that
are almost always distinguishable in this regime. (Whether k = Ω(n)
is necessary or not is an open question.)

Also, k = n
(

1− 1
polylog(n)

)
suffices to fool AC0 (in which case ε is

essentially exponentially small).

• What is the minimum k such that the AND function (on n bits) cannot
distinguish P and Q?

It turns out that k = Θ(
√
n) is necessary and sufficient. More precisely:

– There exists some P,Q over {0, 1}n that are c
√
n-wise indistin-

guishable for some constant c, but such that:∣∣∣∣Pr
P

[AND(P ) = 1]− Pr
Q

[AND(Q) = 1]

∣∣∣∣ ≥ 0.99 ;

– For all P,Q that are c′
√
n-wise indistinguishable for some bigger

constant c′, we have:∣∣∣∣Pr
P

[AND(P ) = 1]− Pr
Q

[AND(Q) = 1]

∣∣∣∣ ≤ 0.01 .

4.1 Duality.

Those question are actually equivalent to ones related about approximation
by real-valued polynomials:

Theorem 1. Let f : {0, 1}n → {0, 1} be a function, and k an integer. Then:

max
P,Qk-wise indist.

|Ef(P )− Ef(Q)| = min{ ε | ∃g ∈ Rk[X] : ∀x, |f(x)− g(x)| ≤ ε}.

Here Rk[X] denotes degree-k real polynomials. We will denote the right-
hand side εk(f).

Some examples:

• f = 1: then Ef(P ) = 1 for all distribution P , so that both sides of the
equality are 0.
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• f(x) =
∑

i xi mod 2 the parity function on n bits.

Then for k = n − 1, the left-hand side is at least 1/2: take P to be
uniform; and Q to be uniform on n − 1 bits, defining the nth bit to
be Qn =

∑
i<nQi mod 2 to be the parity of the first n − 1 bits. Then

Ef(P ) = 1/2 but Ef(Q) = 0.

Furthermore, we have:

Claim 2. εn−1(Parity) ≥ 1/2.

Proof. Suppose by contradiction that some polynomial g has degree k
and approximates Parity by ε < 1/2.

The key ingredient is to symmetrize a polynomial p, by letting

psym(x) :=
1

n!

∑
π∈Sn

f(πx),

where π ranges over permutations. Note that psym(x) only depends on
‖x‖ =

∑
i xi.

Now we claim that there is a univariate polynomial p′ also of degree k
such that

p′(
∑

xi) = psym(x1, x2, . . . , xn)

for every x.

To illustrate, let M be a monomial of p. For instance if M = X1, then
p′(i) = i/n, where i is the Hamming weight of the input. (For this we
think of the input as being ∈ {0, 1}. Similar calculations can be done
for ∈ {−1,−1}.)
If M = X1X2, then p′(i) = i

n
· i−1

n
which is quadratic in i.

And so on.

More generally psym(X1, . . . , Xn) is a symmetric polynomial. As {(
∑

j Xj)
`}`≤k

form a basis of symmetric polynomials of degree k, psym can be written
as a linear combination in this basis. Now note that {(

∑
j Xj)

`(x)}`≤k
only depends on ‖x‖; substituting i =

∑
j Xj gives that p′ is of degree

≤ k in i.

(Note that the degree of p′ can be strictly less than the degree of p (e.g.
for p(X1, X2) = X1 −X2: we have psym = p′ = 0).)
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Then, applying symmetrization on g, if g is a real polynomial ε-close
to Parity (in `∞ norm), then g′ is also ε-close to Parity’ (as a convex
combination of close values).

Finally, remark that for every integer k ∈ {0, . . . , bn/2c}, we have:
Parity′(2k) = 0 and Parity′(2k + 1) = 1. In particular, as ε < 1/2,
g′− 1/2 must have at least n zeroes, and must therefore be zero, which
is a contradiction.

�

We will now focus on proving the theorem.
Note that one direction is easy: if a function f is closely approximated by

a polynomial g of degree k, it cannot distinguish two k-wise indistinguishable
distributions P and Q:

E[f(P )] = E[g(P )]± ε
(∗)
= E[g(Q)]± ε
= E[f(Q)]± 2ε ,

where (∗) comes from the fact that P and Q are k-wise indistinguishable.
The general proof goes by a Linear Programming Duality (aka finite-

dimensional Hahn-Banach theorem, min-max, etc.). This states that:
If A ∈ Rn×m, x ∈ Rm, b ∈ Rn and c ∈ Rm, then:

min〈c, x〉 =
∑

i≤m cixi

subject to: Ax = b
x ≥ 0

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
max〈b, y〉

subject to: ATy ≤ c

We can now prove the theorem:

Proof. The proof will consist in rewriting the sides of the equality in the
theorem as outputs of a Linear Program. Let us focus on the left side of the
equality: maxP,Qk-wise indist. |Ef(P )− Ef(Q)|.

We will introduce 2n+1 variables, namely Px and Qx for every x ∈ {0, 1}n,
which will represent Pr[D = x] for D = P,Q.

We will also use the following, which can be proved similarly to the Vazi-
rani XOR Lemma:
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Claim 3. Two distributions P and Q are k-wise indistinguishable if and
only if: ∀S ⊆ {1, . . . , n} with |S| ≤ k,

∑
x PxχS(x) −

∑
xQxχS(x) = 0,

where χS(X) =
∏

S Xi is the Fourier basis of boolean functions.

The quantity maxP,Qk-wise indist. |Ef(P )− Ef(Q)| can then be rewritten:

−min
∑

x Pxf(x)−
∑

xQxf(x)

subject to:
∑

x Px = 1∑
xQx = 1

∀S ⊆ {1, . . . , n} s.t. |S| ≤ k,
∑

x(Px −Qx)χS(x) = 0

Following the syntax of LP Duality stated above, we have:

cT =

2n︷ ︸︸ ︷
· · · f(x) · · ·

2n︷ ︸︸ ︷
· · · − f(x) · · · ∈ R2n, (where x goes over {0, 1}n),

xT =

2n︷ ︸︸ ︷
· · ·Px · · ·

2n︷ ︸︸ ︷
· · ·Qx · · · ∈ R2n,

bT = 11

#S︷ ︸︸ ︷
0 · · · 0,

A =



2n︷ ︸︸ ︷
1 · · · · · · 1

2n︷ ︸︸ ︷
0 · · · · · · 0

0 · · · · · · 0 1 · · · · · · 1
· · · · · · · · · · · ·

... · · · · · · ... ... · · · · · · ...
· · ·χS(x) · · · · · · − χS(x) · · ·

... · · · · · · ... ... · · · · · · ...
· · · · · · · · · · · ·


,

where the rows ofA except the first two correspond to some S ⊆ {1, . . . , n}
such that |S| ≤ k.

We apply LP duality. We shall denote the new set of variables by

yT = d d′
#S︷ ︸︸ ︷

· · · dS · · ·.
We have the following program:

−max d+ d′

subject to: ∀x, d+
∑

x dSχS(x) ≤ f(x)
∀x, d′ −

∑
x dSχS(x) ≤ −f(x)
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Writing d′ = −d − ε, the objective becomes to minimize ε, while the
second set of constraints can be rewritten:

∀x, d+ ε+
∑
S

dSχS(x) ≥ f(x) .

The expression d+
∑

S dSχS(X) is an arbitrary degree-k polynomial which
we denote by g(X). So our constrains become

g(x) ≤ f(x)

g(x) + ε ≥ f(x).

Where g ranges over all degree-k polynomials, and we are trying to min-
imize ε. Because g is always below f , but when you add ε it becomes bigger,
g is always within ε of f . �

4.2 Approximate Degree of AND.

Let us now study the AND function on n bits. Let us denote dε(f) the
minimal degree of a polynomial approximating f with error ε.

We will show that d1/3(AND) = Θ(
√
n).

Let us first show the upper bound:

Claim 4. We have:
d1/3(AND) = O(

√
n).

To prove this claim, we will consider a special family of polynomials:

Definition 5. (Chebychev polynomials of the first kind.)
The Chebychev polynomials (of the first kind) are a family {Tk}k∈N of

polynomials defined inductively as:

• T0(X) := 1,

• T1(X) := X,

• ∀k ≥ 1, Tk+1(X) := 2XTk − Tk−1.

Those polynomials satisfy some useful properties:

1. ∀x ∈ [−1, 1], Tk(x) = cos(k arccos(x)) ,
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2. ∀x ∈ [−1, 1],∀k, |Tk(x)| ≤ 1 ,

3. ∀x such that |x| ≥ 1, |T ′k(x)| ≥ k2 ,

4. ∀k, Tk(1) = 1 .

Property 2 follows from 1, and property 4 follows from a direct induction.
For a nice picture of these polynomials you should have come to class (or I
guess you can check wikipedia). We can now prove our upper bound:

Proof. Proof of Claim:
We construct a univariate polynomial p : {0, 1, . . . , n} → R such that:

• deg p = O(
√
n);

• ∀i < n, |P (i)| ≤ 1/3;

• |P (n)− 1| ≤ 1/3.

In other words, p will be close to 0 on [0, n−1], and close to 1 on n. Then,
we can naturally define the polynomial for the AND function on n bits to be
q(X1, . . . , Xn) := p(

∑
iXi), which also has degree O(

√
n). Indeed, we want

q to be close to 0 if X has Hamming weight less than n, while being close to
1 on X of Hamming weight n (by definition of AND). This will conclude the
proof.

Let us define p as follows:

∀i ≤ n, p(i) :=
Tk
(

i
n−1

)
Tk
(

n
n−1

) .
Intuitively, this uses the fact that Chebychev polynomials are bounded in
[−1, 1] (Property 2.) and then increase very fast (Property 3.).

More precisely, we have:

• p(n) = 1 by construction;

• for i < n, we have:

Tk
(

i
n−1

)
≤ 1 by Property 2.;

Tk
(

n
n−1

)
= Tk

(
1 + 1

n−1

)
≥ 1+ k2

n−1
by Property 3. and 4., and therefore

for some k = O(
√
n), we have: Tk

(
n
n−1

)
≥ 3.
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Let us now prove the corresponding lower bound:

Claim 6. We have:
d1/3(AND) = Ω(

√
n).

Proof. Let p be a polynomial that approximates the AND function with error
1/3. Consider the univariate symmetrization p′ of p.

We have the following result from approximation theory:

Theorem 7. Let q be a real univariate polynomial such that:

1. ∀i ∈ {0, . . . , n}, |q(i)| ≤ O(1);

2. q′(x) ≥ Ω(1) for some x ∈ [0, n].

Then deg q = Ω(
√
n).

To prove our claim, it is therefore sufficient to check that p′ satisfies
conditions 1. and 2., as we saw that deg p ≥ deg p′:

1. We have: ∀i ∈ {0, . . . , n}, |p′(i)| ≤ 1 + 1/3 by assumption on p;

2. We have p′(n− 1) ≤ 1/3 and p′(n) ≥ 2/3 (by assumption), so that the
mean value theorem gives some x such that p′(x) ≥ Ω(1).

This concludes the proof. �

4.3 Approximate Degree of AND-OR.

Consider the AND function on R bits and the OR function on N bits. Let
AND-OR: {0, 1}R×N → {0, 1} be their composition (which outputs the AND
of the R outputs of the OR function on N -bits (disjoint) blocks).

It is known that d1/3(AND-OR) = Θ(
√
RN). To prove the upper bound,

we will need a technique to compose approximating polynomials which we
will discuss later.

Now we focus on the lower bound. This lower bound was recently proved
independently by Sherstov and by Bun and Thaler. We present a proof
that is different (either in substance or in language) and which we find more
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intuitive. Our proof replaces the “dual block method” with the following
lemma.

Lemma 8. Suppose that
distributions A0, A1 over {0, 1}nA are kA-wise indistinguishable distribu-

tions; and
distributions B0, B1 over {0, 1}nB are kB-wise indistinguishable distribu-

tions.
Define C0, C1 over {0, 1}nA·nB as follows: Cb: draw a sample x ∈ {0, 1}nA

from Ab, and replace each bit xi by a sample of Bxi (independently).
Then C0 and C1 are kA · kB-wise indistinguishable.

Proof. Consider any set S ⊆ {1, . . . , nA · nB} of kA · kB bit positions; let us
show that they have the same distribution in C0 and C1.

View the nA ·nB as nA blocks of nB bits. Call a block K of nB bits heavy
if |S ∩K| ≥ kB; call the other blocks light.

There are at most kA heavy blocks by assumption, so that the distri-
bution of the (entire) heavy blocks are the same in C0 and C1 by kA-wise
indistinguishability of A0 and A1.

Furthermore, conditioned on any outcome for the Ab samples in Cb, the
light blocks have the same distribution in both C0 and C1 by kB-wise indis-
tinguishability of B0 and B1.

Therefore C0 and C1 are kA · kB-wise indistinguishable. �

4.4 Lower Bound of d1/3(AND-OR)

To prove the lower bound on the approximate degree of the AND-OR func-
tion, it remains to see that AND-OR can distinguish well the distributions
C0 and C1. For this, we begin with observing that we can assume without
loss of generality that the distributions have disjoint supports.

Claim 9. For any function f , and for any k-wise indistinguishable distribu-
tions A0 and A1, if f can distinguish A0 and A1 with probability ε then there
are distributions B0 and B1 with the same properties (k-wise indistinguisha-
bility yet distinguishable by f) and also with disjoint supports. (By disjoint
support we mean for any x either Pr[B0 = x] = 0 or Pr[B1 = x] = 0.)

Proof. Let distribution C be the “common part” of A0 and A1. That is
to say, we define C such that Pr[C = x] := min{Pr[A0 = x],Pr[A1 = x]}
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multiplied by some constant that normalize C into a distribution.
Then we can write A0 and A1 as

A0 = pC + (1− p)B0 ,

A1 = pC + (1− p)B1 ,

where p ∈ [0, 1], B0 and B1 are two distributions. Clearly B0 and B1 have
disjoint supports.

Then we have

E[f(A0)]− E[f(A1)] = pE[f(C)] + (1− p)E[f(B0)]

− pE[f(C)]− (1− p)E[f(B1)]

= (1− p)
(
E[f(B0)]− E[f(B1)]

)
≤ E[f(B0)]− E[f(B1)] .

Therefore if f can distinguish A0 and A1 with probability ε then it can also
distinguish B0 and B1 with such probability.

Similarly, for all S 6= ∅ such that |S| ≤ k, we have

0 = E[χS(A0)]− E[χS(A1)] = (1− p)
(
E[χS(B0)]− E[χS(B1)]

)
= 0 .

Hence, B0 and B1 are k-wise indistinguishable. �

Equipped with the above lemma and claim, we can finally prove the
following lower bound on the approximate degree of AND-OR.

Theorem 10. d1/3(AND-OR) = Ω(
√
RN).

Proof. Let A0, A1 be Ω(
√
R)-wise indistinguishable distributions for AND

with advantage 0.99, i.e. Pr[AND(A1) = 1] > Pr[AND(A0) = 1] + 0.99. Let
B0, B1 be Ω(

√
N)-wise indistinguishable distributions for OR with advantage

0.99. By the above claim, we can assume that A0, A1 have disjoint supports,
and the same for B0, B1. Compose them by the lemma, getting Ω(

√
RN)-

wise indistinguishable distributions C0, C1. We now show that AND-OR can
distinguish C0, C1:

• C0: First sample A0. As there exists a unique x = 1R such that
AND(x) = 1, Pr[A1 = 1R] > 0. Thus by disjointness of support
Pr[A0 = 1R] = 0. Therefore when sampling A0 we always get a string
with at least one “0”. But then “0” is replaced with sample from B0.
We have Pr[B0 = 0N ] ≥ 0.99, and when B0 = 0N , AND-OR= 0.
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• C1: First sample A1, and we know that A1 = 1R with probability at
least 0.99. Each bit “1” is replaced by a sample from B1, and we know
that Pr[B1 = 0N ] = 0 by disjointness of support. Then AND-OR= 1.

Therefore we have d1/3(AND-OR) = Ω(
√
RN). �

4.5 Lower Bound of d1/3(SURJ)

In this subsection we discuss the approximate degree of the surjectivity func-
tion. This function is defined as follows.

Definition 11. The surjectivity function SURJ:
(
{0, 1}logR

)N → {0, 1},
which takes input (x1, . . . , xN) where xi ∈ [R] for all i, has value 1 if and
only if ∀j ∈ [R],∃i : xi = j.

First, some history. Aaronson first proved that the approximate degree
of SURJ and other functions on n bits including “the collision problem” is
nΩ(1). This was motivated by an application in quantum computing. Before
this result, even a lower bound of ω(1) had not been known. Later Shi
improved the lower bound to n2/3, see [AS04]. The instructor believes that
the quantum framework may have blocked some people from studying this
problem, though it may have very well attracted others. Recently Bun and
Thaler [BT17] reproved the n2/3 lower bound, but in a quantum-free paper,
and introducing some different intuition. Soon after, together with Kothari,
they proved [BKT17] that the approximate degree of SURJ is Θ(n3/4).

We shall now prove the Ω(n3/4) lower bound, though one piece is only
sketched. Again we present some things in a different way from the papers.

For the proof, we consider the AND-OR function under the promise that
the Hamming weight of the RN input bits is at mostN . Call the approximate
degree of AND-OR under this promise d≤N1/3 (AND-OR). Then we can prove
the following theorems.

Theorem 12. d1/3(SURJ) ≥ d≤N1/3 (AND-OR).

Theorem 13. d≤N1/3 (AND-OR) ≥ Ω(N3/4) for some suitable R = Θ(N).

In our settings, we consider R = Θ(N). Theorem 12 shows surprisingly
that we can somehow “shrink” Θ(N2) bits of input into N logN bits while
maintaining the approximate degree of the function, under some promise.
Without this promise, we just showed in the last subsection that the ap-
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proximate degree of AND-OR is Ω(N) instead of Ω(N3/4) as in Theorem
13.

Proof of Theorem 12. Define an N × R matrix Y s.t. the 0/1 variable yij is
the entry in the i-th row j-th column, and yij = 1 iff xi = j. We can prove
this theorem in following steps:

1. d1/3(SURJ(x)) ≥ d1/3(AND-OR(y)) under the promise that each row
has weight 1;

2. let zj be the sum of the j-th column, then d1/3(AND-OR(y)) under the
promise that each row has weight 1, is at least d1/3(AND-OR(z)) under
the promise that

∑
j zj = N ;

3. d1/3(AND-OR(z)) under the promise that
∑

j zj = N , is at least d=N
1/3 (AND-

OR(y));

4. we can change “= N” into “≤ N”.

Now we prove this theorem step by step.

1. Let P (x1, . . . , xN) be a polynomial for SURJ, where xi = (xi)1, . . . , (xi)logR.
Then we have

(xi)k =
∑

j:k-th bit of j is 1

yij.

Then the polynomial P ′(y) for AND-OR(y) is the polynomial P (x) with
(xi)k replaced as above, thus the degree won’t increase. Correctness
follows by the promise.

2. This is the most extraordinary step, due to Ambainis [Amb05]. In this
notation, AND-OR becomes the indicator function of ∀j, zj 6= 0. Define

Q(z1, . . . , zR) := E
y: his rows have weight 1
and is consistent with z

P (y).

Clearly it is a good approximation of AND-OR(z). It remains to show
that it’s a polynomial of degree k in z’s if P is a polynomial of degree
k in y’s.
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Let’s look at one monomial of degree k in P : yi1j1yi2j2 · · · yikjk . Observe
that all i`’s are distinct by the promise, and by u2 = u over {0, 1}. By
chain rule we have

E[yi1j1 · · · yikjk ] = E[yi1j1 ]E[yi2j2|yi1j1 = 1] · · ·E[yikjk |yi1j1 = · · · = yik−1jk−1
= 1].

By symmetry we have E[yi1j1 ] =
zj1

N
, which is linear in z’s. To get

E[yi2j2|yi1j1 = 1], we know that every other entry in row i1 is 0, so we

give away row i1, average over y’s such that

{
yi1j1 = 1
yij = 0 j 6= j1

under

the promise and consistent with z’s. Therefore

E[yi2j2|yi1j1 = 1] =

{
zj2

N−1
j1 6= j2,

zj2
−1

N−1
j1 = j2.

In general we have

E[yikjk |yi1j1 = · · · = yik−1jk−1
= 1] =

zjk −#` < k : j` = jk
N − k + 1

,

which has degree 1 in z’s. Therefore the degree of Q is not larger than
that of P .

3. Note that ∀j, zj =
∑

i yij. Hence by replacing z’s by y’s, the degree
won’t increase.

4. We can add a “slack” variable z0, or equivalently y01, . . . , y0N ; then the
condition

∑R
j=0 zj = N actually means

∑R
j=1 zj ≤ N .

�

Proof idea for Theorem 13. First, by the duality argument we can verify that
d≤N1/3 (f) ≥ d if and only if there exists d-wise indistinguishable distributions
A,B such that:

• f can distinguish A,B;

• A and B are supported on strings of weight ≤ N .
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Claim 14. d≤
√
N

1/3 (ORN) = Ω(N1/4).

The proof needs a little more information about the weight distribution
of the indistinguishable distributions corresponding to this claim. Basically,
their expected weight is very small.

Now we combine these distributions with the usual ones for And using
the lemma mentioned at the beginning.

What remains to show is that the final distribution is supported on Ham-
ming weight ≤ N . Because by construction the R copies of the distributions
for Or are sampled independently, we can use concentration of measure to
prove a tail bound. This gives that all but an exponentially small measure of
the distribution is supported on strings of weight ≤ N . The final step of the
proof consists of slightly tweaking the distributions to make that measure
0. �

5 Pseudorandom groups and communication

complexity

Groups have many applications in theoretical computer science. Barrington
[Bar89] used the permutation group S5 to prove a very surprising result,
which states that the majority function can be computed efficiently using
only constant bits of memory (something which was conjectured to be false).
More recently, catalytic computation [BCK+14] shows that if we have a lot
of memory, but it’s full with junk that cannot be erased, we can still compute
more than if we had little memory. We will see some interesting properties
of groups in the following.

Some famous groups used in computer science are:

• {0, 1}n with bit-wise addition;

• Zm with addition mod m ;

• Sn, which are permutations of n elements;

• Wreath product G := (Zm × Zm) o Z2 , whose elements are of the form
(a, b)z where z is a “flip bit”, with the following multiplication rules:

– (a, b)1 = 1(b, a) ;

– z · z′ := z + z′ in Z2 ;
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– (a, b) · (a′, b′) := (a+ a′, b+ b′) is the Zm × Zm operation;

An example is (5, 7)1 · (2, 1)1 = (5, 7)1 · 1(1, 2) = (6, 9)0 . Generally we
have

(a, b)z · (a′, b′)z′ =
{

(a+ a′, b+ b′)z + z′ z = 1 ,
(a+ b′, b+ a′)z + z′ z = 0 ;

• SL2(q) := {2×2 matrices over Fq with determinant 1}, in other words,

group of matrices

(
a b
c d

)
such that ad− bc = 1.

The group SL2(q) was invented by Galois. (If you haven’t, read his
biography on wikipedia.)

Quiz. Among these groups, which is the “least abelian”? The latter can
be defined in several ways. We focus on this: If we have two high-entropy
distributions X, Y over G, does X · Y has more entropy? For example, if
X and Y are uniform over some Ω(|G|) elements, is X · Y close to uniform
over G? By “close to” we mean that the statistical distance is less that a
small constant from the uniform distribution. For G = ({0, 1}n,+), if Y = X
uniform over {0}× {0, 1}n−1, then X · Y is the same, so there is not entropy
increase even though X and Y are uniform on half the elements.

Definition 1.[Measure of Entropy] For ‖A‖2 = (
∑

xA(x)2)
1
2 , we think of

‖A‖2
2 = 100 1

|G| for “high entropy”.

Note that ‖A‖2
2 is exactly the “collision probability”, i.e. Pr[A = A′].

We will consider the entropy of the uniform distribution U as very small, i.e.
‖U‖2

2 = 1
|G| ≈ ‖0‖

2
2. Then we have

‖A− U‖2
2 =

∑
x

(
A(x)− 1

|G|

)2

=
∑
x

A(x)2 − 2A(x)
1

|G|
+

1

|G|2

= ‖A‖2
2 −

1

|G|
= ‖A‖2

2 − ‖U‖2
2

≈ ‖A‖2
2 .
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Theorem 2.[[Gow08], [BNP08]] If X, Y are independent over G, then

‖X · Y − U‖2 ≤ ‖X‖2‖Y ‖2

√
|G|
d
,

where d is the minimum dimension of irreducible representation of G.

By this theorem, for high entropy distributions X and Y , we get ‖X ·Y −
U‖2 ≤ O(1)√

|G|d
, thus we have

‖X · Y − U‖1 ≤
√
|G|‖X · Y − U‖2 ≤

O(1)√
d
. (1)

If d is large, then X · Y is very close to uniform. The following table shows
the d’s for the groups we’ve introduced.

G {0, 1}n Zm (Zm × Zm) o Z2 An SL2(q)

d 1 1 should be very small log |G|
log log |G| |G|1/3

Here An is the alternating group of even permutations. We can see that
for the first groups, Equation (1) doesn’t give non-trivial bounds.

But for An we get a non-trivial bound, and for SL2(q) we get a strong
bound: we have ‖X · Y − U‖2 ≤ 1

|G|Ω(1) .

We now study the communication complexity of some problems on groups.
We give the definition of a protocol when two parties are involved and gen-
eralize later to more parties.

Definition 3. A 2-party c-bit deterministic communication protocol is a
depth-c binary tree such that:

• the leaves are the output of the protocol

• each internal node is labeled with a party and a function from that
party’s input space to {0, 1}

Computation is done by following a path on edges, corresponding to out-
puts of functions at the nodes.

A public-coin randomized protocol is a distribution on deterministic pro-
tocols.
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5.1 2-party communication protocols

We start with a simple protocol for the following problem.
Let G be a group. Alice gets x ∈ G and Bob gets y ∈ G and their goal is

to check if x · y = 1G, or equivalently if x = y−1.
There is a simple deterministic protocol in which Alice simply sends her

input to Bob who checks if x·y = 1G. This requires O(log |G|) communication
complexity.

We give a randomized protocol that does better in terms on communica-
tion complexity. Alice picks a random hash function h : G → {0, 1}`. We
can think that both Alice and Bob share some common randomness and thus
they can agree on a common hash function to use in the protocol. Next, Alice
sends h(x) to Bob, who then checks if h(x) = h(y−1).

For ` = O(1) we get constant error and constant communication.

5.2 3-party communication protocols

There are two ways to extend 2-party communication protocols to more par-
ties. We first focus on the Number-in-hand (NIH), where Alice gets x, Bob
gets y, Charlie gets z, and they want to check if x · y · z = 1G. In the NIH
setting the communication depends on the group G.

5.3 A randomized protocol for the hypercube

LetG = ({0, 1}n,+) with addition modulo 2. We want to test if x+y+z = 0n.
First, we pick a linear hash function h, i.e. satisfying h(x+ y) = h(x) +h(y).
For a uniformly random a ∈ {0, 1}n set ha(x) =

∑
aixi (mod 2). Then,

• Alice sends ha(x)

• Bob send ha(y)

• Charlie accepts if and only if ha(x) + ha(y)︸ ︷︷ ︸
ha(x+y)

= ha(z)

The hash function outputs 1 bit. The error probability is 1/2 and the
communication is O(1). For a better error, we can repeat.
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5.4 A randomized protocol for Zm

Let G = (Zm,+) where m = 2n. Again, we want to test if x + y + z = 0
(mod m). For this group, there is no 100% linear hash function but there are
almost linear hash function families h : Zm → Z` that satisfy the following
properties:

1. ∀a, x, y we have ha(x) + ha(y) = ha(x+ y)± 1

2. ∀x 6= 0 we have Pra[ha(x) ∈ {±2,±1, 0}] ≤ 2−Ω(`)

3. ha(0) = 0

Assuming some random hash function h (from a family) that satisfies the
above properties the protocol works similar to the previous one.

• Alice sends ha(x)

• Bob sends ha(y)

• Charlie accepts if and only if ha(x) + ha(y) + ha(z) ∈ {±2,±1, 0}
We can set ` = O(1) to achieve constant communication and constant

error.
Analysis
To prove correctness of the protocol, first note that ha(x)+ha(y)+ha(z) =

ha(x+ y + z)± 2, then consider the following two cases:

• if x+ y + z = 0 then ha(x+ y + z)± 2 = ha(0)± 2 = 0± 2

• if x+ y + z 6= 0 then Pra[ha(x+ y + z) ∈ {±2,±1, 0}] ≤ 2−Ω(`)

It now remains to show that such hash function families exist.
Let a be a random odd number modulo 2n. Define

ha(x) := (a · x� n− `) (mod 2`)

where the product a · x is integer multiplication. In other words we output
the bits n− `+ 1, n− `+ 2, . . . , n of the integer product a · x.

We now verify that the above hash function family satisfies the three
properties we required above.

Property (3) is trivially satisfied.
For property (1) we have the following. Let s = a · x and t = a · y

and u = n − `. The bottom line is how (s � u) + (t � u) compares with
(s+ t)� u. In more detail we have that,
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• ha(x+ y) = ((s+ t)� u) (mod 2`)

• ha(x) = (s� u) (mod 2`)

• ha(x) = (t� u) (mod 2`)

Notice, that if in the addition s+ t the carry into the u+ 1 bit is 0, then

(s� u) + (t� u) = (s+ t)� u

otherwise
(s� u) + (t� u) + 1 = (s+ t)� u

which concludes the proof for property (1).
Finally, we prove property (2). We start by writing x = s · 2c where s is

odd. Bitwise, this looks like (· · · · · · 1 0 · · · 0︸ ︷︷ ︸
c bits

).

The product a·x for a uniformly random a, bitwise looks like (uniform 1 0 · · · 0︸ ︷︷ ︸
c bits

).

We consider the two following cases for the product a · x:

1. If a ·x = (uniform 1

2 bits︷︸︸︷
00︸ ︷︷ ︸

` bits

· · · 0), or equivalently c ≥ n−`+2, the output

never lands in the bad set {±2,±1, 0} (some thought should be given to
the representation of negative numbers – we ignore that for simplicity).

2. Otherwise, the hash function output has `−O(1) uniform bits. Again
for simplicity, let B = {0, 1, 2}. Thus,

Pr[output ∈ B] ≤ |B| · 2−`+O(1)

In other words, the probability of landing in any small set is small.

5.5 Other groups

What happens in other groups? Do we have an almost linear hash function
for 2× 2 matrices? The answer is negative. For SL2(q) and An the problem
of testing equality with 1G is hard.

We would like to rule out randomized protocols, but it is hard to reason
about them directly. Instead, we are going to rule out deterministic protocols
on random inputs. For concreteness our main focus will be SL2(q).
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First, for any group element g ∈ G we define the distribution on triples,
Dg := (x, y, (x · y)−1g), where x, y ∈ G are uniformly random elements. Note
the product of the elements in Dg is always g.

Towards a contradiction, suppose we have a randomized protocol P for
the xyz =? 1G problem. In particular, we have

Pr[P (D1) = 1] ≥ Pr[P (Dh) = 1] +
1

10
.

This implies a deterministic protocol with the same gap, by fixing the ran-
domness.

We reach a contradiction by showing that for every deterministic proto-
cols P using little communication (will quantify later), we have

|Pr[P (D1) = 1]− Pr[P (Dh) = 1]| ≤ 1

100
.

We start with the following lemma, which describes a protocol using
product sets.

Lemma 4. (The set of accepted inputs of) A deterministic c-bit protocol
can be written as a disjoint union of 2c “rectangles,” that is sets of the form
A×B × C.

Proof. (sketch) For every communication transcript t, let St ⊆ G3 be the set
of inputs giving transcript t. The sets St are disjoint since an input gives
only one transcript, and their number is 2c, i.e. one for each communication
transcript of the protocol. The rectangle property can be proven by induction
on the protocol tree. �

Next, we show that these product sets cannot distinguish these two dis-
tributions D1, Dh, and for that we will use the pseudorandom properties of
the group G.

Lemma 5. For all A,B,C ⊆ G and we have

|Pr[A×B × C(D1) = 1]− Pr[A×B × C(Dh) = 1]| ≤ 1

dΩ(1)
.

Recall the parameter d from the previous lectures and that when the
group G is SL2(q) then d = |G|Ω(1).
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Proof. Pick any h ∈ G and let x, y, z be the inputs of Alice, Bob, and Charlie
respectively. Then

Pr[A×B×C(Dh) = 1] = Pr[(x, y) ∈ A×B]·Pr[(x·y)−1 ·h ∈ C|(x, y) ∈ A×B]

If either A or B is small, that is Pr[x ∈ A] ≤ ε or Pr[y ∈ B] ≤ ε, then
also Pr[P (Dh) = 1] ≤ ε because the term Pr[(x, y) ∈ A × B] will be small.
We will choose ε later.

Otherwise, A and B are large, which implies that x and y are uniform over
at least ε|G| elements. Recall from Lecture 9 that this implies ‖x · y−U‖2 ≤
‖x‖2 · ‖y‖2 ·

√
|G|
d

, where U is the uniform distribution.

By Cauchy–Schwarz we obtain,

‖x · y − U‖1 ≤ |G| · ‖x‖2 · ‖y‖2 ·
√

1

d
≤ 1

ε
· 1√

d
.

The last inequality follows from the fact that ‖x‖2, ‖y‖2 ≤
√

1
ε|G| .

This implies that ‖(x · y)−1 − U‖1 ≤ 1
ε
· 1√

d
and ‖(x · y)−1 · h − U‖1 ≤

1
ε
· 1√

d
, because taking inverses and multiplying by h does not change anything.

These two last inequalities imply that,

Pr[(x · y)−1 ∈ C|(x, y) ∈ A×B] = Pr[(x · y)−1 ·h ∈ C|(x, y) ∈ A×B]± 2

ε

1√
d

and thus we get that,

Pr[P (D1) = 1] = Pr[P (Dh) = 1]± 2

ε

1√
d
.

To conclude, based on all the above we have that for all ε and independent
of the choice of h, it is either the case that

|Pr[P (D1) = 1]− Pr[P (Dh) = 1]| ≤ 2ε

or

|Pr[P (D1) = 1]− Pr[P (Dh) = 1]| ≤ 2

ε

1√
d

and we will now choose the ε to balance these two cases and finish the proof:

2

ε

1√
d

= 2ε⇔ 1√
d

= ε2 ⇔ ε =
1

d1/4
.

�
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The above proves that the distribution Dh behaves like the uniform dis-
tribution for product sets, for all h ∈ G.

Returning to arbitrary deterministic protocols P , write P as a union of
2c disjoint rectangles by the first lemma. Applying the second lemma and
summing over all rectangles we get that the distinguishing advantage of P
is at most 2c/d1/4. For c ≤ (1/100) log d the advantage is at most 1/100 and
thus we get a contradiction on the existence of such a correct protocol. We
have concluded the proof of this theorem.

Theorem 6. Let G be a group, and d be the minimum dimension of an
irreducible representation of G. Consider the 3-party, number-in-hand com-
munication protocol f : G3 → {0, 1} where f(x, y, z) = 1 ⇔ x · y · z = 1G.
Its randomized communication complexity is Ω(log d).

For SL2(q) the communication is Ω(log |G|). This is tight up to constants,
because Alice can send her entire group element.

For the groupAn the known bounds on d yield communication Ω(log log |G|).
This bound is tight for the problem of distinguishing D1 from Dh for h 6= 1,
as we show next. The identity element 1G for the group An is the identity per-
mutation. If h 6= 1G then h is a permutation that maps some element a ∈ G
to h(a) = b 6= a. The idea is that the parties just need to “follow” a, which is
logarithmically smaller than G. Specifically, let x, y, z be the permutations
that Alice, Bob and Charlie get. Alice sends x(a) ∈ [n]. Bob gets x(a) and
sends y(x(a)) ∈ [n] to Charlie who checks if z(y(x(a))) = 1. The communi-
cation is O(log n). Because the size of the group is |G| = Θ(n!) = Θ

((
n
e

)n)
,

the communication is O(log log |G|).
This is also a proof that d cannot be too large for An, i.e. is at most

(log |G|)O(1).

5.6 More on 2-party protocols

We move to another setting where a clean answer can be given. Here we only
have two parties. Alice gets x1, x2, . . . , xn, Bob gets y1, y2, . . . , yn, and they
want to know if x1 · y1 · x2 · y2 · · ·xn · yn = 1G.

When G is abelian, the elements can be reordered as to check whether
(x1 · x2 · · · xn) · (y1 · y2 · · · yn) = 1G. This requires constant communication
(using randomness) as we saw in Lecture 12, since it is equivalent to the
check x · y = 1G where x = x1 · x2 · · · xn and y = y1 · y2 · · · yn.

We will prove the next theorem for non-abelian groups.
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Theorem 7. For every non-abelian group G the communication of deciding
if x1 · y1 · x2 · y2 · · ·xn · yn = 1G is Ω(n).

Proof. We reduce from unique disjointness, defined below. For the reduction
we will need to encode the And of two bits x, y ∈ {0, 1} as a group product.
(This question is similar to a puzzle that asks how to hang a picture on the
wall with two nails, such that if either one of the nails is removed, the picture
will fall. This is like computing the And function on two bits, where both bits
(nails) have to be 1 in order for the function to be 1.) Since G is non-abelian,
there exist a, b ∈ G such that a · b 6= b · a, and in particular a · b · a−1 · b−1 = h
with h 6= 1. We can use this fact to encode And as

ax · by · a−x · b−y =

{
1, if And(x,y)=0

h, otherwise
.

In the disjointness problem Alice and Bob get inputs x, y ∈ {0, 1}n respec-
tively, and they wish to check if there exists an i ∈ [n] such that xi ∧ yi = 1.
If you think of them as characteristic vectors of sets, this problem is asking if
the sets have a common element or not. The communication of this problem
is Ω(n). Moreover, in the variant of this problem where the number of such
i’s is 0 or 1 (i.e. unique), the same lower bound Ω(n) still applies. This is like
giving Alice and Bob two sets that either are disjoint or intersect in exactly
one element, and they need to distinguish these two cases.

Next, we will reduce the above variant of the set disjointness to group
products. For x, y ∈ {0, 1}n we product inputs for the group problem as
follows:

x→ (ax1 , a−x1 , . . . , axn , a−xn)

y → (by1 , b−y1 , . . . , byn , b−yn).

Now, the product x1 ·y1 ·x2 ·y2 · · · xn ·yn we originally wanted to compute
becomes

ax1 · by1 · a−x1 · b−y1︸ ︷︷ ︸
1 bit

· · · · · · axn · byn · a−xn · b−yn .

If there isn’t an i ∈ [n] such that xi ∧ yi = 1, then each product term
axi · byi · a−xi · b−yi is 1 for all i, and thus the whole product is 1.

Otherwise, there exists a unique i such that xi ∧ yi = 1 and thus the
product will be 1 · · · 1 · h · 1 · · · 1 = h, with h being in the i-th position. If
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Alice and Bob can test if the above product is equal to 1, they can also solve
the unique set disjointness problem, and thus the lower bound applies for the
former. �

We required the uniqueness property, because otherwise we might get a
product hc that could be equal to 1 in some groups.

6 Number-on-forehead communication com-

plexity

In number-on-forehead (NOH) communication complexity each party i sees
all of the input (x1, . . . , xk) except its own input xi. For background, it is
not known how to prove negative results for k ≥ log n parties. We shall focus
on the problem of separating deterministic and randomizes communication.
For k = 2, we know the optimal separation: The equality function requires
Ω(n) communication for deterministic protocols, but can be solved using
O(1) communication if we allow the protocols to use public coins. For k = 3,
the best known separation between deterministic and randomized protocol
is Ω(log n) vs O(1) [BDPW10]. In the following we give a new proof of this
result, for a simpler function: f(x, y, z) = 1 if and only if x · y · z = 1 for
x, y, z ∈ SL2(q).

For context, let us state and prove the upper bound for randomized com-
munication.

Claim 1. f has randomized communication complexity O(1).

Proof. In the NOH model, computing f reduces to 2-party equality with no
additional communication: Alice computes y · z =: w privately, then Alice
and Bob check if x = w−1. �

To prove a Ω(log n) lower bound for deterministic protocols, where n =
log |G|, we reduce the communication problem to a combinatorial problem.

Definition 2. A corner in a group G is {(x, y), (xz, y), (x, zy)} ⊆ G2, where
x, y are arbitrary group elements and z 6= 1G.

For intuition, consider the case when G is Abelian, where one can replace
multiplication by addition and a corner becomes {(x, y), (x+z, y), (x, y+z)}
for z 6= 0.
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We now state the theorem that gives the lower bound.

Theorem 3. Suppose that every subset A ⊆ G2 with µ(A) := |A|/|G2| ≥
δ contains a corner. Then the deterministic communication complexity of
f(x, y, z) = 1 ⇐⇒ x · y · z = 1G is Ω(log(1/δ)).

It is known that when G is Abelian, then δ ≥ 1/polyloglog|G| implies a
corner. We shall prove that when G = SL2(q), then δ ≥ 1/polylog|G| implies
a corner. This in turn implies communication Ω(log log |G|) = Ω(log n).

Proof. We saw that a number-in-hand (NIH) c-bit protocol can be written
as a disjoint union of 2c rectangles. Likewise, a number-on-forehead c-bit
protocol P can be written as a disjoint union of 2c cylinder intersections
Ci := {(x, y, z) : fi(y, z)gi(x, z)hi(x, y) = 1} for some fi, gi, hi : G

2 → {0, 1}:

P (x, y, z) =
2c∑
i=1

fi(y, z)gi(x, z)hi(x, y).

The proof idea of the above fact is to consider the 2c transcripts of P , then one
can see that the inputs giving a fixed transcript are a cylinder intersection.

Let P be a c-bit protocol. Consider the inputs {(x, y, (xy)−1)} on which
P accepts. Note that at least 2−c fraction of them are accepted by some
cylinder intersection C. Let A := {(x, y) : (x, y, (xy)−1) ∈ C} ⊆ G2. Since
the first two elements in the tuple determine the last, we have µ(A) ≥ 2−c.

Now suppose A contains a corner {(x, y), (xz, y), (x, zy)}. Then

(x, y) ∈ A =⇒ (x, y, (xy)−1) ∈ C =⇒ h(x, y) = 1,

(xz, y) ∈ A =⇒ (xz, y, (xzy)−1) ∈ C =⇒ f(y, (xyz)−1) = 1,

(x, zy) ∈ A =⇒ (x, zy, (xzy)−1) ∈ C =⇒ g(x, (xyz)−1) = 1.

This implies (x, y, (xzy)−1) ∈ C, which is a contradiction because z 6= 1 and
so x · y · (xzy)−1 6= 1G. �

7 Corners in pseudorandom groups

In this section we prove the corners theorem for pseudorandom groups, fol-
lowing Austin [Aus16]. Our exposition has several non-major differences with
that in [Aus16], which may make it more computer-science friendly. The in-
structor suspects a proof can also be obtained via certain local modifications
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and simplifications of Green’s exposition [Gre05b, Gre05a] of an earlier proof
for the abelian case. We focus on the case G = SL2(q) for simplicity, but the
proof immediately extends to other pseudorandom groups.

Theorem 1. Let G = SL2(q). Every subset A ⊆ G2 of density µ(A) ≥
1/ loga |G| contains a corner, i.e., a set of the form {(x, y), (xz, y), (x, zy) | z 6=
1}.

7.1 Proof Overview

For intuition, suppose A is a product set, i.e., A = B × C for B,C ⊆ G.
Let’s look at the quantity

Ex,y,z←G[A(x, y)A(xz, y)A(x, zy)]

where A(x, y) = 1 iff (x, y) ∈ A. Note that the random variable in the
expectation is equal to 1 exactly when x, y, z form a corner in A. We’ll show
that this quantity is greater than 1/|G|, which implies that A contains a
corner (where z 6= 1). Since we are taking A = B × C, we can rewrite the
above quantity as

Ex,y,z←G[B(x)C(y)B(xz)C(y)B(x)C(zy)]

= Ex,y,z←G[B(x)C(y)B(xz)C(zy)]

= Ex,y,z←G[B(x)C(y)B(z)C(x−1zy)]

where the last line follows by replacing z with x−1z in the uniform distri-
bution. If µ(A) ≥ δ, then µ(B) ≥ δ and µ(C) ≥ δ. Condition on x ∈ B,
y ∈ C, z ∈ B. Then the distribution x−1zy is a product of three independent
distributions, each uniform on a set of measure greater than δ. By pseudo-
randomness x−1zy is 1/|G|Ω(1) close to uniform in statistical distance. This
implies that the above quantity equals

µ(A) · µ(C) · µ(B) ·
(
µ(C)± 1

|G|Ω(1)

)
≥ δ3

(
δ − 1

|G|Ω(1)

)
≥ δ4/2

> 1/|G|.
Given this, it is natural to try to write an arbitrary A as a combination

of product sets (with some error). We will make use of a more general result.
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7.2 Weak Regularity Lemma

Let U be some universe (we will take U = G2). Let f : U → [−1, 1] be
a function (for us, f = 1A). Let D ⊆ {d : U → [−1, 1]} be some set of
functions, which can be thought of as “easy functions” or “distinguishers.”

Theorem 2.[Weak Regularity Lemma] For all ε > 0, there exists a function
g :=

∑
i≤s ci · di where di ∈ D, ci ∈ R and s = 1/ε2 such that for all d ∈ D

Ex←U [f(x) · d(x)] = Ex←U [g(x) · d(x)]± ε.

The lemma is called ‘weak’ because it came after Szemerédi’s regularity
lemma, which has a stronger distinguishing conclusion. However, the lemma
is also ‘strong’ in the sense that Szemerédi’s regularity lemma has s as a
tower of 1/ε whereas here we have s polynomial in 1/ε. The weak regularity
lemma is also simpler. There also exists a proof of Szemerédi’s theorem (on
arithmetic progressions), which uses weak regularity as opposed to the full
regularity lemma used initially.

Proof. We will construct the approximation g through an iterative process
producing functions g0, g1, . . . , g. We will show that ||f − gi||22 decreases by
≥ ε2 each iteration.

1. Start: Define g0 = 0 (which can be realized setting c0 = 0).

2. Iterate: If not done, there exists d ∈ D such that |E[(f − g) · d]| > ε.
Assume without loss of generality E[(f − g) · d] > ε.

3. Update: g′ := g + λd where λ ∈ R shall be picked later.

Let us analyze the progress made by the algorithm.

||f − g′||22 = Ex[(f − g′)2(x)]

= Ex[(f − g − λd)2(x)]

= Ex[(f − g)2] + Ex[λ
2d2(x)]− 2Ex[(f − g) · λd(x)]

≤ ||f − g||22 + λ2 − 2λEx[(f − g)d(x)]

≤ ||f − g||22 + λ2 − 2λε

≤ ||f − g||22 − ε2

where the last line follows by taking λ = ε. Therefore, there can only be 1/ε2

iterations because ||f − g0||22 = ||f ||22 ≤ 1. �
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7.3 Getting more for rectangles

Returning to the lower bound proof, we will use the weak regularity lemma to
approximate the indicator function for arbitrary A by rectangles. That is, we
take D to be the collection of indicator functions for all sets of the form S×T
for S, T ⊆ G. The weak regularity lemma gives us A as a linear combination
of rectangles. These rectangles may overlap. However, we ideally want A to
be a linear combination of non-overlapping rectangles.

Claim 3. Given a decomposition of A into rectangles from the weak regular-
ity lemma with s functions, there exists a decomposition with 2O(s) rectangles
which don’t overlap.

Proof. Exercise. �

In the above decomposition, note that it is natural to take the coefficients
of rectangles to be the density of points in A that are in the rectangle. This
gives rise to the following claim.

Claim 4. The weights of the rectangles in the above claim can be the average
of f in the rectangle, at the cost of doubling the distinguisher error.

Consequently, we have that f = g + h, where g is the sum of 2O(s) non-
overlapping rectangles S × T with coefficients Pr(x,y)∈S×T [f(x, y) = 1].

Proof. Let g be a partition decomposition with arbitrary weights. Let g′ be
a partition decomposition with weights being the average of f . It is enough
to show that for all rectangle distinguishers d ∈ D

|E[(f − g′)d]| ≤ |E[(f − g)d]|.

By the triangle inequality, we have that

|E[(f − g′)d]| ≤ |E[(f − g)d]|+ |E[(g − g′)d]|.

To bound E[(g − g′)d]|, note that the error is maximized for a d that re-
spects the decomposition in non-overlapping rectangles, i.e., d is the union
of some non-overlapping rectangles from the decomposition. This can be
argues using that, unlike f , the value of g and g′ on a rectangle S × T
from the decomposition is fixed. But, for such d, g′ = f ! More formally,
E[(g − g′)d] = E[(g − f)d]. �
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We need to get a little more from this decomposition. The conclusion of
the regularity lemma holds with respect to distinguishers that can be written
as U(x) ·V (y) where U and V map G→ {0, 1}. We need the same guarantee
for U and V with range [−1, 1]. This can be accomplished paying only a
constant factor in the error, as follows. Let U and V have range [−1, 1].
Write U = U+ − U− where U+ and U− have range [0, 1], and the same for
V . The error for distinguisher U · V is at most the sum of the errors for
distinguishers U+ · V+, U+ · V−, U− · V+, and U− · V−. So we can restrict
our attention to distinguishers U(x) · V (y) where U and V have range [0, 1].
In turn, a function U(x) with range [0, 1] can be written as an expectation
EaUa(x) for functions Ua with range {0, 1}, and the same for V . We conclude
by observing that

Ex,y[(f − g)(x, y)EaUa(x) · EbVb(y)] ≤ max
a,b

Ex,y[(f − g)(x, y)Ua(x) · Vb(y)].

7.4 Proof

Let us now finish the proof by showing a corner exists for sufficiently dense
sets A ⊆ G2. We’ll use three types of decompositions for f : G2 → {0, 1},
with respect to the following three types of distinguishers, where Ui and Vi
have range {0, 1}:

1. U1(x) · V1(y),

2. U2(xy) · V2(y),

3. U3(x) · V3(xy).

The last two distinguishers can be visualized as parallelograms with a 45-
degree angle between two segments. The same extra properties we discussed
for rectangles hold for them too.

Recall that we want to show

Ex,y,g[f(x, y)f(xg, y)f(x, gy)] >
1

|G|
.

We’ll decompose the i-th occurrence of f via the i-th decomposition listed
above. We’ll write this decomposition as f = gi + hi. We do this in the
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following order:

f(x, y) · f(xg, y) · f(x, gy)

= f(x, y)f(xg, y)g3(x, gy) + f(x, y)f(xg, y)h3(x, gy)

...

= g1g2g3 + h1g2g3 + fh2g3 + ffh3

We first show that E[g1g2g3] is big (i.e., inverse polylogarithmic in expec-
tation) in the next two claims. Then we show that the expectations of the
other terms are small.

Claim 5. For all g ∈ G, the values Ex,y[g1(x, y)g2(xg, y)g3(x, gy)] are the
same (over g) up to an error of 2O(s) · 1/|G|Ω(1).

Proof. We just need to get error 1/|G|Ω(1) for any product of three func-
tions for the three decomposition types. By the standard pseudorandomness
argument we saw in previous lectures,

Ex,y[c1U1(x)V1(y) · c2U2(xgy)V2(y) · c3U3(x)V3(xgy)]

= c1c2c3Ex,y[(U1 · U3)(x)(V1 · V2)(y)(U2 · V3)(xgy)]

= c1c2c3 · µ(U1 · U3)µ(V1 · V2)µ(U2 · V3)± 1

|G|Ω(1)
.

�

Recall that we start with a set of density ≥ 1/ loga |G|.
Claim 6. Eg,x,y[g1g2g3] > Ω(1/ log4a |G|).

Proof. By the previous claim, we can fix g = 1G. We will relate the ex-
pectation over x, y to f by a trick using the Hölder inequality: For random
variables X1, X2, . . . , Xk,

E[X1 . . . Xk] ≤
k∏
i=1

E[Xci
i ]1/ci such that

∑
1/ci = 1.

To apply this inequality in our setting, write

E[f ] = E

[
(f · g1g2g3)1/4 ·

(
f

g1

)1/4

·
(
f

g2

)1/4

·
(
f

g3

)1/4
]
.
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By the Hölder inequality, we get that

E[f ] ≤ E[f · g1g2g3]1/4E
[
f

g1

]1/4

E
[
f

g2

]1/4

E
[
f

g3

]1/4

.

Note that

Ex,y
f(x, y)

g1(x, y)
= Ex,y

f(x, y)

Ex′,y′∈Cell(x,y)[f(x′, y′)]

= Ex,y

Ex′,y′∈Cell(x,y)[f(x′, y′)]

Ex′,y′∈Cell(x,y)[f(x′, y′)]

= 1

where Cell(x, y) is the set in the partition that contains (x, y). Finally, by
non-negativity of f , we have that E[f ·g1g2g3]1/4 ≤ E[g1g2g3]. This concludes
the proof. �

We’ve shown that the g1g2g3 term is big. It remains to show the other
terms are small. Let ε be the error in the weak regularity lemma with respect
to distinguishers with range [−1, 1].

Claim 7. |E[ffh3]| ≤ ε1/4.

Proof. Replace g with gy−1 in the uniform distribution to get

E4
x,y,g[f(x, y)f(xg, y)h3(x, gy)]

= E4
x,y,g[f(x, y)f(xgy−1, y)h3(x, g)]

= E4
x,y[f(x, y)Eg[f(xgy−1, y)h3(x, g)]]

≤ E2
x,y[f

2(x, y)]E2
x,yE2

g[f(xgy−1, y)h3(x, g)]

≤ E2
x,yE2

g[f(xgy−1, y)h3(x, g)]

= E2
x,y,g,g′ [f(xgy−1, y)h3(x, g)f(xg′y−1, y)h3(x, g′)],

where the first inequality is by Cauchy-Schwarz.
Now replace g → x−1g, g′ → x−1g and reason in the same way:

= E2
x,y,g,g′ [f(gy−1, y)h3(x, x−1g)f(g′y−1, y)h3(x, x−1g′)]

= E2
g,g′,y[f(gy−1, y) · f(g′y−1, y)Ex[h3(x, x−1g) · h3(x, x−1g′)]]

≤ Ex,x′,g,g′ [h3(x, x−1g)h3(x, x−1g′)h3(x′, x′−1g)h3(x′, x′−1g′)].
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Replace g → xg to rewrite the expectation as

E[h3(x, g)h3(x, x−1g′)h3(x′, x′−1xg)h3(x′, x′−1g′)].

We want to view the last three terms as a distinguisher U(x) · V (xg).
First, note that h3 has range [−1, 1]. This is because h3(x, y) = f(x, y) −
Ex′,y′∈Cell(x,y)f(x′, y′) and f has range {0, 1}.

Fix x′, g′. The last term in the expectation becomes a constant c ∈ [−1, 1].
The second term only depends on x, and the third only on xg. Hence for
appropriate functions U and V with range [−1, 1] this expectation can be
rewritten as

E[h3(x, g)U(x)V (xg)],

which concludes the proof. �

There are similar proofs to show the remaining terms are small. For
fh2g3, we can perform simple manipulations and then reduce to the above
case. For h1g2g3, we have a slightly easier proof than above.

7.4.1 Parameters

Suppose our set has density δ ≥ 1/ loga |G|. We apply the weak regularity
lemma for error ε = 1/ logc |G|. This yields the number of functions s =
2O(1/ε2) = 2O(log2c |G|). For say c = 1/3, we can bound Ex,y,g[g1g2g3] from
below by the same expectation with g fixed to 1, up to an error 1/|G|Ω(1).
Then, Ex,y,g=1[g1g2g3] ≥ E[f ]4 = 1/ log4a |G|. The expectation of terms with

h is less than 1/ logc/4 |G|. So the proof can be completed for all sufficiently
small a.

8 Static data structures

In this section we study lower bounds on data structures. First, we define
the setting. We have n bits of data, stored in s bits of memory (the data
structure) and want to answer m queries about the data. Each query is
answered with d probes. There are two types of probes:

• bit-probe which return one bit from the memory, and
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• cell-probe in which the memory is divided into cells of log n bits, and
each probe returns one cell.

The queries can be adaptive or non-adaptive. In the adaptive case, the
data structure probes locations which may depend on the answer to previous
probes. For bit-probes it means that we answer a query with depth-d decision
trees.

Finally, there are two types of data structure problems:

• The static case, in which we map the data to the memory arbitrarily
and afterwards the memory remains unchanged.

• The dynamic case, in which we have update queries that change the
memory and also run in bounded time.

In this lecture we focus on the non-adaptive, bit-probe, and static setting.
Some trivial extremes for this setting are the following. Any problem (i.e.,
collection of queries) admits data structures with the following parameters:

• s = m and d = 1, i.e. you write down all the answers, and

• s = n and d = n, i.e. you can always answer a query about the data if
you read the entire data.

Next, we review the best current lower bound, a bound proved in the
80’s by Siegel [Sie04] and rediscovered later. We state and prove the lower
bound in a different way. The lower bound is for the problem of k-wise
independence.

Problem 1. The data is a seed of size n = k logm for a k-wise independent
distribution over {0, 1}m. A query i is defined to be the i-th bit of the sample.

The question is: if we allow a little more space than seed length, can we
compute such distributions fast?

Theorem 2. For the above problem with k = m1/3 it holds that

d ≥ Ω

(
lgm

lg(s/n)

)
.

It follows, that if s = O(n) then d is Ω(lgm). But if s = n1+Ω(1) then
nothing is known.
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Proof. Let p = 1/m1/4d. We have the memory of s bits and we are going
to subsample it. Specifically, we will select a bit of s with probability p,
independently.

The intuition is that we will shrink the memory but still answer a lot
of queries, and derive a contradiction because of the seed length required to
sample k-wise independence.

For the “shrinking” part we have the following. We expect to keep p · s
memory bits. By a Chernoff bound, it follows that we keep O(p · s) bits
except with probability 2−Ω(p·s).

For the “answer a lot of queries” part, recall that each query probes d
bits from the memory. We keep one of the m queries if it so happens that
we keep all the d bits that it probed in the memory. For a fixed query, the
probability that we keep all its d probes is pd = 1/m1/4.

We claim that with probability at least 1/mO(1), we keep
√
m queries.

This follows by Markov’s inequality. We expect to not keep m−m3/4 queries
on average. We now apply Markov’s inequality to get that the probability
that we don’t keep at least m−

√
m queries is at most (m−m3/4)/(m−

√
m).

Thus, if 2−Ω(p·s) ≤ 1/mO(1), then there exists a fixed choice of memory
bits that we keep, to achieve both the “shrinking” part and the “answer a
lot of queries” part as above. This inequality is true because s ≥ n > m1/3

and so p · s ≥ m−1/4+1/3 = mΩ(1). But now we have O(p · s) bits of memory
while still answering as many as

√
m queries.

The minimum seed length to answer that many queries while maintaining
k-wise independence is k log

√
m = Ω(k lgm) = Ω(n). Therefore the memory

has to be at least as big as the seed. This yields

O(ps) ≥ Ω(n)

from which the result follows. �

This lower bound holds even if the s memory bits are filled arbitrarily
(rather than having entropy at most n). It can also be extended to adaptive
cell probes.

We will now show a conceptually simple data structure which nearly
matches the lower bound. Pick a random bipartite graph with s nodes on the
left and m nodes on the right. Every node on the right side has degree d. We
answer each probe with an XOR of its neighbor bits. By the Vazirani XOR
lemma, it suffices to show that any subset S ⊆ [m] of at most k memory bits
has an XOR which is unbiased. Hence it suffices that every subset S ⊆ [m]
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with |S| ≤ k has a unique neighbor. For that, in turn, it suffices that S

has a neighborhood of size greater than d|S|
2

(because if every element in the
neighborhood of S has two neighbors in S then S has a neighborhood of size
< d|S|/2). We pick the graph at random and show by standard calculations
that it has this property with non-zero probability.

Pr

[
∃S ⊆ [m], |S| ≤ k, s.t. |neighborhood(S)| ≤ d|S|

2

]
= Pr

[
∃S ⊆ [m], |S| ≤ k, and ∃T ⊆ [s], |T | ≤ d|S|

2
s.t. all neighbors of S land in T

]
≤

k∑
i=1

(
m

i

)
·
(

s

d · i/2

)
·
(
d · i
s

)d·i
≤

k∑
i=1

(e ·m
i

)i
·
(

e · s
d · i/2

)d·i/2
·
(
d · i
s

)d·i
=

k∑
i=1

(e ·m
i

)i
·
(
e · d · i/2

s

)d·i/2

=
k∑
i=1

e ·mi ·
(
e · d · i/2

s

)d/2
︸ ︷︷ ︸

C


i

.

It suffices to have C ≤ 1/2, so that the probability is strictly less than 1,
because

∑k
i=1 1/2i = 1−2−k. We can match the lower bound in two settings:

• if s = mε for some constant ε, then d = O(1) suffices,

• s = O(k · logm) and d = O(lgm) suffices.

Remark 3. It is enough if the memory is (d ·k)-wise independent as opposed
to completely uniform, so one can have n = d · k · log s. An open question is
if you can improve the seed length to optimal.

As remarked earlier the lower bound does not give anything when s is
much larger than n. In particular it is not clear if it rules out d = 2. Next
we show a lower bound which applies to this case.
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Problem 4. Take n bits to be a seed for 1/100-biased distribution over
{0, 1}m. The queries, like before, are the bits of that distribution. Recall
that n = O(lgm).

Theorem 5. You need s = Ω(m).

Proof. Every query is answered by looking at d = 2 bits. But t = Ω(m)
queries are answered by the same 2-bit function f of probes (because there
is a constant number of functions on 2-bits). There are two cases for f :

1. f is linear (or affine). Suppose for the sake of contradiction that t >
s. Then you have a linear dependence, because the space of linear
functions on s bits is s. This implies that if you XOR those bits,
you always get 0. This in turn contradicts the assumption that the
distributions has small bias.

2. f is AND (up to negating the input variables or the output). In this
case, we keep collecting queries as long as they probe at least one new
memory bit. If t > s when we stop we have a query left such that both
their probes query bits that have already been queried. This means
that there exist two queries q1 and q2 whose probes cover the probes
of a third query q3. This in turn implies that the queries are not close
to uniform. That is because there exist answers to q1 and q2 that fix
bits probed by them, and so also fix the bits probed by q3. But this
contradicts the small bias of the distribution.

�
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growth and mixing in finite groups. In ACM-SIAM Symp. on
Discrete Algorithms (SODA), pages 248–257, 2008.

[Bra10] Mark Braverman. Polylogarithmic independence fools AC0 cir-
cuits. J. of the ACM, 57(5), 2010.

[BT17] Mark Bun and Justin Thaler. A nearly optimal lower bound on
the approximate degree of AC0. CoRR, abs/1703.05784, 2017.

64



[EGL+92] Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and
Boban Velickovic. Approximations of general independent distri-
butions. In ACM Symp. on the Theory of Computing (STOC),
pages 10–16, 1992.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, cir-
cuits, and the polynomial-time hierarchy. Mathematical Systems
Theory, 17(1):13–27, 1984.

[GLS12] Dmitry Gavinsky, Shachar Lovett, and Srikanth Srinivasan. Pseu-
dorandom generators for read-once accˆ0. In IEEE Conf. on
Computational Complexity (CCC), pages 287–297, 2012.

[GMR+12] Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan,
and Salil Vadhan. Better pseudorandom generators from milder
pseudorandom restrictions. In IEEE Symp. on Foundations of
Computer Science (FOCS), 2012.

[Gow08] W. T. Gowers. Quasirandom groups. Combinatorics, Probability
& Computing, 17(3):363–387, 2008.

[Gre05a] Ben Green. An argument of Shkredov in the
finite field setting, 2005. Available at peo-
ple.maths.ox.ac.uk/greenbj/papers/corners.pdf.

[Gre05b] Ben Green. Finite field models in additive combinatorics. Surveys
in Combinatorics, London Math. Soc. Lecture Notes 327, 1-27,
2005.

[H̊as87] Johan H̊astad. Computational limitations of small-depth circuits.
MIT Press, 1987.

[H̊as14] Johan H̊astad. On the correlation of parity and small-depth cir-
cuits. SIAM J. on Computing, 43(5):1699–1708, 2014.

[IMP12] Russell Impagliazzo, William Matthews, and Ramamohan Pa-

turi. A satisfiability algorithm for AC0. In ACM-SIAM Symp. on
Discrete Algorithms (SODA), pages 961–972, 2012.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant
depth circuits, Fourier transform, and learnability. J. of the
ACM, 40(3):607–620, 1993.

65



[LN90] Nathan Linial and Noam Nisan. Approximate inclusion-
exclusion. Combinatorica, 10(4):349–365, 1990.

[Nis91] Noam Nisan. Pseudorandom bits for constant depth circuits.
Combinatorica. An Journal on Combinatorics and the Theory of
Computing, 11(1):63–70, 1991.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded com-
putation. Combinatorica, 12(4):449–461, 1992.

[NN90] J. Naor and M. Naor. Small-bias probability spaces: efficient con-
structions and applications. In 22nd ACM Symp. on the Theory
of Computing (STOC), pages 213–223. ACM, 1990.

[Raz87] Alexander Razborov. Lower bounds on the dimension of schemes
of bounded depth in a complete basis containing the logical addi-
tion function. Akademiya Nauk SSSR. Matematicheskie Zametki,
41(4):598–607, 1987. English translation in Mathematical Notes
of the Academy of Sci. of the USSR, 41(4):333-338, 1987.

[Raz09] Alexander A. Razborov. A simple proof of Bazzi’s theorem. ACM
Transactions on Computation Theory (TOCT), 1(1), 2009.

[Sie04] Alan Siegel. On universal classes of extremely random constant-
time hash functions. SIAM J. on Computing, 33(3):505–543,
2004.

[Ta-17] Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced
codes. In ACM Symp. on the Theory of Computing (STOC),
pages 238–251, 2017.

[Tal17] Avishay Tal. Tight bounds on the fourier spectrum of AC0. In
Conf. on Computational Complexity (CCC), pages 15:1–15:31,
2017.

66


	Bounded independence
	Background
	k-wise independent distribution
	Lower bounds
	Who is fooled by k-wise independence?
	k-wise independence fools AND

	Bounded Independence Fools AC0
	Approximation 1

	Approximation 2
	Bounded Independence Fools AC0

	Small-bias distributions
	Constructions of small bias distributions
	An improved small bias distribution via bootstrapping
	Connecting small bias to k-wise independence
	Fourier analysis of boolean functions 101
	Small bias distributions are close to k-wise independent
	An improved construction

	Tribes Functions and the GMRTV Generator
	Bounded indistinguishability
	Duality.
	Approximate Degree of AND.
	Approximate Degree of AND-OR.
	Lower Bound of d1/3(AND-OR)
	Lower Bound of d1/3(SURJ)

	Pseudorandom groups and communication complexity
	2-party communication protocols
	3-party communication protocols
	A randomized protocol for the hypercube
	A randomized protocol for Zm
	Other groups
	More on 2-party protocols

	Number-on-forehead communication complexity
	Corners in pseudorandom groups
	Proof Overview
	Weak Regularity Lemma
	Getting more for rectangles
	Proof
	Parameters


	Static data structures

