Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola
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Ho Lee

1.1 Robustifying polynomials

In this lecture, we show how to make a polynomial robust to noise by proving
the following theorem by Sherstov [Shel3].

Theorem 1. Let p: {—1,1}" — [—1,1] be a degree-d polynomial. There
exists an explicit degree-O(d) polynomial p: R" — R such that for every
x € X", where X = [—4/3,-2/3]U[2/3,4/3],

Ip(sgn(zy), sgn(xs), ..., sgn(x,)) — p(x)] < 9—(d)

We will prove Theorem [1|in 3 steps: where (1) p is a monomial, (2) p is
a homogeneous polynomial of degree d, i.e., every monomial of p has degree
exactly d, and (3) p is a general polynomial. We first prove (1), then prove
(3) assuming (2), and defer the proof of (2) to the end.

1.2 Monomial

Let us now consider the case when p(x) := H?Zl x; is the parity function.
We will use the following Taylor’s expansion of the function (1 + ¢)*.

Claim 2. For every ¢ € (—1,1) and a € R, we have (1 +¢)* = > (%),
where ('j) = %(O‘Z_ZH) is the extension of the binomial coefficients to

the real numbers.
Using Claim [2| we obtain the follow Taylor’s expansion for sgn(t).
Claim 3. For 0 < [t| < v/2, sgn(t) =t 32, (7/3) (2 — 1)%,

(2
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We can now derive the Taylor approximation of H;l:l sgn(x;):

ﬁsgn(xj) = f[ (xj i (_1¢/2> (22 — 1)@')

_ (]f[lxj) 0<“sz<00]1_[1< 1/2) 22— 1),

We now define p. Let d = Cd for a sufficiently large constant C'. We
define p: R® — R to be the truncation of the above infinite series up to the
indices that satisfy i1 + -+ - + g < d’, that is,

B, .., za) ::<ﬁlxj)z+;<d,nl( 1/2> -

Clearly, p has degree d + 2d’ = O(d). It remains to analyze the approxi-
mation error. First we need a simple bound for (—11/ 2).
J

Claim 4. For every k > 1, (7}/%) = (=4)7F (%) < 1/2.

Proof. By definition,

(-1/2) (1/2)(=3/2) - (<1/2 -k +1)
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The inequality follows from (2:) < 2%/2. O

Note that the approximation error 6(z) := H;l:l sgn(x;) — p(x1,...,%q)
is simply the remaining sum in the infinite series after the truncation, that
is

:<j]jlxj> 3 H( 1/2> 2 1), (1)
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The R.H.S. is at most
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The first inequality is because |z;| < 4/3 for x € X. The second inequality
is because of Claim {4 and the last inequality is because |7 — 1] < 7/9 for
reX.

Now, for every k, there are (Hj_l) choices of i1, ..., 14 for which i1 4-- -+
iq = k. Hence, the summation is equal to

> % wor-y (MR
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< Y (2k)UT/9)
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— 2~Ud),

This finishes the proof for the case when p is a monomial.

1.3 General case assuming homogeneous case

We now prove Theorem |1 assuming the same conclusion holds for case (2),
when p is a homogeneous polynomial.

First we can rewrite p as p = Z?:o pi, Where p; is the degree-i homoge-
neous polynomial of p. Note that while p is bounded by 1, p; may not be. So,
we instead apply Theorem 1] to p;/||pillc, Where ||p;l|se := maxzeq—1,1y [pi(z)],
and obtain p; such that
—Q(d)

max |pi(x) — pi(sgn(z1), sgn(ws), - - sgn(zn)) < [pifloc - 2

— 1‘@3
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If we assume Z?:[]Hpi”oo < 29U and define p := Z?:o Di, then we have
d
p(sen(an), . ., sgn(wn)) — ple)] <D [pi(sen(an),. .., sgn(w,)) — p(o)]
i=0

d
<D Ipilloo - 277
i=0

(d+1)-44.27%D

We now prove that ZfzoﬂpiHoo < 29U whenever p has output [—1,1]. We
first prove the result for univariate polynomials and then reduce the above
problem to it. The univariate version in fact follows by a theorem due to
Vladimir Markov which gives a tight upper bound [?]:

Theorem 5. If p: [-1,1] — [—1,1] is a univariate degree-d polynomial,
then the sum of its d + 1 coefficients in absolute values is bounded by O((1+

V24 V).

We now prove the theorem above with the upper bound replaced by the
crude bound of 299 which is sufficient for our purpose.
Claim 6. If p: [-1,1] — [—1,1] is a univariate degree-d polynomial, then
the sum of its coefficients in absolute values is at most 20,

Proof. Let tg,tq,...,tq be the d + 1 points that are evenly spaced in the
interval [—1, 1], so t; := —1 4 2i/t. By interpolation, we can write p as

p(t) = ZW”M_

i—0 Hj;éi (ti - tj)

We first bound below Hj _i(ti — ;). Since every distinct pair ¢; and ¢; differ
by 2/d, This product is smallest when ¢; is closest to 0, and so is at least
(2/d)4($)!? when d is even and is at least (2/d)(41)(%2)!1? when d is odd.
By Stirling’s formula, in both cases we have

d

11 —1t) > @2/d)*(d/2e)* > e,
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Hence the sum of the coefficients in absolute values is at most

e T+ 1)) < (d+1)(2e)* < 200,

i=0 j#£i

We now bound above Z?:o“ Dilloo by a reduction to Claim @
Claim 7. ¢ |[pille < 20,

Proof. Fix any x € {—1,1}". Define the univariate polynomial ¢,: [—1,1] —
[—1,1] by ¢.(t) :== Z?:()pi(l’) -t'. We will show that |g,(t)| < 1 for every
x € {—1,1}". Then the rest simply follows from Claim []

Let Z = (Z1,...,Zy,) € {—1,1}" be independent random variables with
E[Z;] = t. Write p in its Fourier expansion p(z) = <4 D(S) [[;c5 i We
have

Ezlp(1 21, 0 Z0)) = Bz 3 5(5) [J w2

|S|1<d ies
1S|<d €S  ieS
= Z p(S) H% IS
1S|<d €S
d .
= Zpi(x)tZ
=0

This shows |¢,(¢)| < 1 as the L.H.S. is at most maxyc;_113» [p(y)| < 1. O

1.4 Homogeneous polynomial

Let p: {—1,1}" — [—1, 1] be a homogeneous polynomial of degree d. We can
write p as p(z) = > 54 P(S)xs(z), where xs(z) := [[;c52;. In this way we
can regard p as a function from R"™ to R. We will apply the robustification
in the monomial case to each yg. More specifically, we define p to be p(z) :=



Z‘S‘:dﬁ(S)Xg(x). Let d(xg) be the approximation error of yg, i.e., the
expression in Equation (I). Then Va € X™,

[plsgn(e:),sgn(ez), .. sen(en)) = 5(@)| = | S p(S) ([ sen(a) — [ =)

|S|=d jes jes
= | 3 #(8)3(as)|
|S|=d

Therefore to prove Theorem [I| in the homogeneous case we need to show
maxgexe | goaB(S)0(ws)| < 270,

We first show that one cannot get anything just by naively summing up
all the error §(zg) for each S.

Claim 8. There exists a homogeneous degree-d polynomial p: {—1,1}" —
[—1,1] such that p(S) = £(2n ()2

The error of p for the polynomial p in the claim would be 3 _, [p(5)] -
2-9(d) — (Z)(Qn(’;))—lﬂ .270(d) 5 1,

1.4.1 Error cancellation

We now do a more refined analysis on the error by proving the following
theorem, showing that the errors in different terms in fact cancel out each
other.

Theorem 9.(Warm-up) Let p: {—1,1}" — [—1, 1] be a homogeneous degree-
d polynomial. Let 6: {—1,1}¢ — R be a symmetric function. Then

max
ze{-1,1}"

R d*
> 0($)3(ws)| < I3l

|S|=d

where ||8]|, = Yo 0(5)| is the sum of the magnitude of the coefficients in
the Fourier expansion of (x) = 3¢ d(5) [[eq ;-

For the specific § given in Equation (1)) we have ||d]]; < 27¢“. Hence the
maximum error is d?/d! - 27¢? < 279 for a sufficiently large constant C.

But this is only a warm-up theorem: the maximum is taken over {—1,1}"
instead of X”. At the end we will briefly mention the changes required to
prove Theorem [If in the homogeneous case.



The crucial tool in proving Theorem [J is the following operator.

Definition 10. For every v € {0, 1}¢, we define the operator A,: R{I=H1" —
R{-1L1" by

d
(Ao f)(2) = Eefor1ye [Z de( Zzzxﬁ”, . %Zziaﬁ)] .

Note that we can identify f with its multilinear extension on [—1,1]"
using its Fourier expansion so the term “f(}i 2?21 ZiTy é Zle zw}f)”
makes sense. We will use the following properties of A,.

Claim 11. The operator A, is

(1) linear;

(2) for every f we have ||A,f|loo < || f|loo, and

(3) for every subset S C {1,...,n} of size d,

d' Ur (5
AUXS( ) = dd E 0 S—{1,...d} bijective[ij ( )] :

jes

Proof. (1) is clear.
For (2), we have for every x € {—1,1}",

d d
(Auf)(@)] = Eengrya [2 de< > zay é Zzwfé)] '
X . i=1 1 . i=1
RPN 116 D et |
=1 =1

< max .
s 1)
It remains to show that max,c(—1,1» f(2) < maxzeq—1,13» f(x). This fol-
lows from the following claim, which says for multilinear polynomials, the
maximum value can always be attained in {—1,1}".

Claim 12. Let p: [-1,1]" — [—1,1] be any multilinear polynomial. Then
maxye(—1,1j» [P(2)] = maxze(—1,1} [p(x)].



Proof. It suffices to show that max,c;_11» [p(7)] < maxge—11y [p(x)|. Fix
any r = (z1,...,2,) € [—1,1]". Let X = (Xy,...,X,) € {—1,1}" be n

independent random variables with E[X;] = x; for each i € {1,2,...,n}.
Since p is multilinear, we have that E[p(X)] = p(z). Hence there exists a
fixing of X € {—1,1}" such that p(x) < p(X). O

For (3), without loss of generality assume S = {1,...,d}. Then

d d
1 v
Ayxs(z) = Eoe(-1,1}4 [21 Tt Rd H <c_i Z Zﬂf)]
j=1 i=1
1 CE
ZE.EZE{—l,l}d [led Z Zil..'zid'HfL‘j”]-

1<iy,...,ig<d j=1

If some z;, does not appear in the product z;, - - - z;,, then we can factor out
E[z] from the expression and so the whole summand is zero. Hence the
summation only contains terms that are distinct, i.e., z;; = z;(; for some
permutation 7. So the expression becomes

1 .
% . Eze{fl,l}d |:Zl 24 Z ZT(I) e ZT(d) . Hx] (J):|

T bijective j=1
d
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= — €T ,TU)
de Z l l J

T bijective j=1
d

d! vo
= ET bijective X )
dd ) J )

j=1

where the first equality is because each z; € {—1,1} appears twice and z? =
L. O

We now prove Theorem [9}
Proof of Theorem[9. First we apply Claim [11] (3) with v = 1¥0?~*. We have
d? Ur(5) 1
a . AlkgdkaS(x) = ET bijective [ H xj ] - @ Z XT(:E)

jes TCS:|T|=k



Because ¢ is symmetric, the coefficients 6(T') are equal for subsets T' of the
same size. So,

> {1 k) Y XT(x):ZS({l,...,k:})(Z) Z,Alkod eXs(z).

Hence we can express the error term as

ICLESED S T) Sl (LITRNIND SRRt

1S|=d |S|=d k=0 TCS,|S|=k
d R d
- Z p(S) Z (Z) o({1,...,k}) - % - Ayrga-rxs()
|S|=d k=0
d _d R
— % (Z) o({1,...,k})- Alkod_k< > ﬁ(S)xS(x)>
k=0 |S|=d

- Cg; (Z) O({1,...,k}) - Aprgarp(z).

where the last equality is because Ajrga-+ is linear. Since || Ayp|loo < [|P]|co <

1, we have
. d*
|3 iS)o(as)| < 16l
|S|=d ’

O

To generalize the proof to real-valued inputs X", where X’ = [—1.1, —0.9]U
[0.9,1.1]. In the definition of the operator A,, we replace v € {0,1}¢ with
v € N%, and the j-th argument of the input for f becomes

d
Z 24 x —1)v -4,
This term is bounded by 1 in absolute value for z € X, hence Property (2)

in Claim |11]still holds. Finally, Property (3) in Claim [11{ becomes

d!
ga s

Q.IP—‘

A’UXS (Z’) =

JES



Similarly, for the specific  in Equation we can prove

A~ ~ —1/2 —1/2 P d?
|S|=d |S|=d Vi fog>d 1 d !
_ _ d
s () (e
U1 Uq d!
v Aog>d!

which can be bounded by 2= given @’ = C - d for sufficiently large C.
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