
Sub-quadratic reductions



Detecting triangles = cycles of length 3
Input : G=(V,E)
Output: True if there is a triangle in G, False otherwise.

Example: (a,b,d) is a triangle in:



Using Matrix Multiplication
Input: Adjacency Matrix of G(V,E), M .

Recall: Mt
i,j = ?



Using Matrix Multiplication
Input: Adjacency Matrix of G(V,E), M .

Recall: Mt
i,j = number of paths of length t from i to j.

Algorithm:
?



Using Matrix Multiplication
Input: Adjacency Matrix of G(V,E), M .

Recall: Mt
i,j = number of paths of length t from i to j.

Algorithm:
● Compute M3 
● Check M3

i,i  for all 1 ≤ i ≤ n

   if one of them is not zero return True
   otherwise return False 

Running time:
2 |V|ω + O(|V|) = O(|V|ω).                       Recall ω ≤ 2.37   

Can we do better for sparse graphs?



Detecting triangles
Input : Adjacency List of G(V,E), 
Output: True if there is a triangle in G, False otherwise.

Main idea of algorithm:

First we check for a triangle that has a node of degree ≤ Δ.

Then we look for a triangle with three nodes of degree > Δ.

We can choose Δ as we please.



Algorithm
Let Δ := |E|

Triangles with some node with degree ≤ Δ 
For each edge (u,v) check if u or v has degree ≤ Δ
If so go through that node's neighbors w, and check if
(u,v,w) is a triangle.
Time: ?

(ω-1)/(ω+1)



Algorithm
Let Δ := |E|

Triangles with some node with degree ≤ Δ 
For each edge (u,v) check if u or v has degree ≤ Δ
If so go through that node's neighbors w, and check if
(u,v,w) is a triangle.
Time: O(|E| • Δ)

Triangles with every node with degree > Δ
Sum of degrees = ?

(ω-1)/(ω+1)



Algorithm
Let Δ := |E|

Triangles with some node with degree ≤ Δ 
For each edge (u,v) check if u or v has degree ≤ Δ
If so go through that node's neighbors w, and check if
(u,v,w) is a triangle.
Time: O(|E| • Δ)

Triangles with every node with degree > Δ
Sum of degrees = 2|E|.
So there are ≤ ??????? nodes with degree > Δ

(ω-1)/(ω+1)



Algorithm
Let Δ := |E|

Triangles with some node with degree ≤ Δ 
For each edge (u,v) check if u or v has degree ≤ Δ
If so go through that node's neighbors w, and check if
(u,v,w) is a triangle.
Time: O(|E| • Δ)

Triangles with every node with degree > Δ
Sum of degrees = 2|E|.
So there are ≤ 2|E|/ Δ nodes with degree > Δ
Hence using matrix multiplication this takes ???

(ω-1)/(ω+1)



Algorithm
Let Δ := |E|

Triangles with some node with degree ≤ Δ 
For each edge (u,v) check if u or v has degree ≤ Δ
If so go through that node's neighbors w, and check if
(u,v,w) is a triangle.
Time: O(|E| • Δ)

Triangles with every node with degree > Δ
Sum of degrees = 2|E|.
So there are ≤ 2|E|/ Δ nodes with degree > Δ
Hence using matrix multiplication this takes O((|E|/ Δ)ω).

Overall: O(|E| Δ + (|E|/ Δ) ω) =
             = |E| 1 + (ω - 1)/( ω +1) + |E|  ω(1 - (ω - 1)/( ω +1))

                 = |E|2 ω / ( ω + 1) < |E|1.41   using ω < 2.38

(ω-1)/(ω+1)



Recap: Can detect triangles in time O(|E|2 ω / ( ω + 1) )

So detecting triangles in time |E|4/3 reduces to multiplying      
n x n matrices in time O(n2 )

Before trying to prove ω = 2 you may want to try to detect 
triangles in time |E|4/3



3SUM
Input: A set of numbers S, |S|=n.  Size of numbers = nO(1)

Output:  1, if there are a,b,c  ∈ S such that a+b+c=0,
0, otherwise.

How long to solve 3SUM?



3SUM
Input: A set of numbers S, |S|=n. Size of numbers = nO(1)

Output:  1, if there are a,b,c  ∈ S such that a+b+c=0,
0, otherwise.

We can solve 3SUM in time O(n2).

It is believed that n2 is optimal

Next: detecting triangles in time t
         reduces to solving 3SUM in time O(t).

So, solving 3SUM in time n1.4 would beat best-known 
triangle-detection algorithms (which run in n1.41 time )



Next: detecting triangles in time t reduces
         to solving 3SUM in time O(t).

● The reduction is randomized.

● We are going to give an algorithm R such that:
if there is a triangle, R accepts with probability 1,
otherwise R accepts with probability ≤ 1/100

● This gap can be amplified arbitrarily by ????



Next: detecting triangles in time t reduces
         to solving 3SUM in time O(t).

● The reduction is randomized.

● We are going to give an algorithm R such that:
if there is a triangle, R accepts with probability 1,
otherwise R accepts with probability ≤ 1/100

● This gap can be amplified arbitrarily by repeating the 
algorithm a few times and taking Or

● It is possible to make R deterministic; we sketch that later



Detecting Triangles
Input:  Adjacency list of graph G(V,E). |E|=m.
Output:  1 if there is a triangle, 0 otherwise

Algorithm R:

1. Uniformly and independently assign a u-bit number to each 
node:  a  V, X∈ a  {0,1}∈ u

2. For each edge (a,b)  E, ∈ compute Y(a,b)=(Xa – Xb)  and 

Y(b,a)=(Xb – Xa). 

3. Return answer of 3SUM on set Y:={Y(a,b),Y(b,a)| (a,b)  E}∈ .



Analysis of R

● Suppose there is a triangle in G, say {(a,b), (c,b), (c,a)}.

● Note: graph is undirected, but the input is imposing an order 
which we eliminate by computing both Y(a,b), Y(b,a).

● The 3SUM instance contains numbers 

Y(a,b)+Y(b,c)+Y(c,a) = (Xa  – Xb) + (Xc  – Xb) + (Xc  –  Xa)

What is the probability that the sum will be 0?



Analysis of R

● Suppose there is a triangle in G, say {(a,b), (c,b), (c,a)}.

● Note: graph is undirected, but the input is imposing an order 
which we eliminate by computing both Y(a,b), Y(b,a).

● The 3SUM instance contains numbers 

Y(a,b)+Y(b,c)+Y(c,a) = (Xa  – Xb) + (Xc  – Xb) + (Xc  –  Xa)

Pr[R(G)=1] =1

That is, if there is a triangle we catch it.



Analysis of R
● Assume G does not have triangle
We want to show Pr[R(G)=1] <1/100

S0 := some 3 numbers in Y sum to zero.

● S(e1,e2,e3 ) := the values corresponding to three distinct 

edges e1=(a1,b1 ),e2=(a2,b2 ),e3=(a3,b3 ), sum to zero.

Pr[R(G)=1] = Pr[S0]=

  = Pr[exists e1,e2,e3  E∈ , S(e1,e2,e3 )] ≤∑ Pr[S(e1,e2,e3 )]
e1,e2,e3



Pr[S(e1,e2,e3 )] = Pr [Ye1+Ye2+Ye3=0]

  = Pr [Xa1+Xa2+Xa3=Xb1+Xb2+Xb3]

There are no triangles in G  some node appears only once
    one of the variables in Xa1+Xa2+Xa3=Xb1+Xb2+Xb3    

        appears only once. Let that variable be Xa1 

For any fixed choices of the other variables,
there is ≤ 1 choice for Xa1that satisfies the equation.

So Pr[S(e1,e2,e3 )] ≤ 1/2u 

Hence, Pr[S0]≤∑ Pr[S(e1,e2,e3 )] ≤  |E|3 / 2u 

Setting u = 3 log |E| + 7 we have Pr[R(G)=1] ≤ 1/100



Making the reduction deterministic.

Need to construct m numbers Xa such that

(Xa  – Xb) + (Xc  – Xd) + (Xe  –  Xf) = 0

     each number is repeated twice, with opposite signs

This guarantees that they correspond to a triangle.

Note, numbers must have magnitude ≤ poly(m)
Otherwise, both easy and uninteresting (exercise: why?)

We are going to sketch the idea and leave details to exercises



Need to construct m numbers Xa such that

(Xa  – Xb) + (Xc  – Xd) + (Xe  –  Xf) = 0

     each number is repeated twice, with opposite signs

● Construct m sets S1 , S2 , …, Sm  {1, 2, …, u log m} :⊆
|Sa | = c log m,  a∀
| Sa ∩ Sb | < (c/5) log m,  a ≠ b,∀
for some constants u and c

● Then set Xa to be the number with u digits in base 10,

    where digit i is 1 if i  S∈ a , 0 otherwise

● Exercise: Show that such Xa satisfy above (hint: no carry)

● Exercise: Construct such sets in time exponential in m
   (can be made time O(m), which is what is needed)



All-pairs shortest paths
Dynamic programming approach:
di,j

(m) = shortest paths of lengths ≤ m

di,j
(m) = mink { di,k

(m-1) + w(k,j) }

(Includes k = j, w(j,j) = 0)

Compute |V| x |V| matrix d(m) from d(m-1) in time |V|3.

  d|V| computables in time |V|4 

How to speed up?

Recall



All-pairs shortest paths
Note:
di,j

(m) = mink { di,k
(m-1) + w(k,j) }

Is just like matrix multiplication: d(m) = d(m-1) W,
except + → min
            x → +

Like matrix multiplication, this is associative. So,
instead of doing d|V| = (...)W)W)W can do ?

Recall



All-pairs shortest paths
Note:
di,j

(m) = mink { di,k
(m-1) + w(k,j) }

Is just like matrix multiplication: d(m) = d(m-1) W,
except + → min
            x → +

Like matrix multiplication, this is associative. So,
instead of doing d|V| = (...)W)W)W can do repeated squaring:

Compute d(2) = W2

                   d(4) = d(2) x d(2) = W2 x W2

               d(8) = d(4) x d(4) 
               ...
To get d|V| need ?

Recall



All-pairs shortest paths
Note:
di,j

(m) = mink { di,k
(m-1) + w(k,j) }

Is just like matrix multiplication: d(m) = d(m-1) W,
except + → min
            x → +

Like matrix multiplication, this is associative. So,
instead of doing d|V| = (...)W)W)W can do repeated squaring:

Compute d(2) = W2

                   d(4) = d(2) x d(2) = W2 x W2

               d(8) = d(4) x d(4) 
               ...
To get d|V| need log |V| multiplications only  |V| 3 log |V| time

Recall



● We used (Min,+) Matrix product in time t to solve APSP in 
time t log |V|

In particular, computing APSP in time |V|2 log |V| reduces to 
computing (Min,+) Matrix product in time |V|2 

● Next: Use APSP to solve (Min, +) Matrix product.

(Min, +) Matrix product:
Input: Matrices Anxn and Bnxn.

Output: Cnxn such that Ci,j = mink {Ai,k
 + Bk,j }.

We need to convert A and B to an instance of APSP.



1. Let entries of  A and B  ∈ [-M,M]
create a tripartite graph G (I,J,K , E), with n nodes in each 
part I, J and K,

  i  I , k  k , (i,j)  E and ∈ ∈ ∈ w(i,k)= Ai,k
 +6M.

 k  k, j  J , (j,k)  E and∈ ∈ ∈  w(k,j)= Bk,j
 +6M. 

2.Run the algorithm for APSP on G. 
3.set Ci,j := {length of the shortest path from i to j}-12M.

Why ?
  



Note:
Any path of length ≥ 3 weights ≥ 3(-M + 6M) ≥ 15M,
Any path of length ≤ 2 weights ≤ 2(M + 6M) ≤ 14M.

  i  I , j  J∈ ∈  there is a path of length 2 from i to j.
Therefore the shortest path from i to j is:
   mink {w(i,k)+w(k,j) }, 

= mink {Ai,k+6M+Bk,j+6M},

= mink {Ai,k+Bk,j}+12M

  



● Running time:
Creating graph G : Takes O(n2)

So we compute (Min,+) Matrix product of nxn matrices in time
O(n2) + APSP-TIME(3n).

● Putting both reductions together:

APSP and (Min,+) Matrix product are basically the same 
problem.

Either both of them can be solved in time n3-ε, or neither can

  


