
Linear programming



● Input: System of inequalities or equalities over the reals R 

             A linear cost function

● Output: Value for variables that minimizes cost function

Example: Minimize 6x+4y

               Subject to   3x + 2y + 5z ≥ 1
                                  z = 2

● Note: Can equivalently maximize the negative of the cost 
function



● Max flow is a special case of LP

Variables: ?



● Max flow is a special case of LP

Variables: f(u,v)

Max ?



● Max flow is a special case of LP

Variables: f(u,v)

Max f(s,V)

subject to ?



● Max flow is a special case of LP

Variables: f(u,v)

Max f(s,V)

subject to f(v,V)=0
                f(u,v) ≤ c(u,v)
                f(u,v) = -f(v,u)



● Standard form:
  Min c.x
  Ax = b
  x ≥ 0

● Claim: The general form can be reduced to the standard

● Proof:

Express inequality ai . x ≥ bi  as ai . x - si = bi  and si ≥ 0

Express x  R                       as (x∈ + - x-) with x+ ≥ 0, x- ≥ 0

                                                                                             



● Definition: P := {x : Ax=b, x ≥ 0}, known as polytope
                    x is vertex if not  y ≠ 0 : x+y  P and x-y  P∃ ∈ ∈

● Claim: If min {c.x : x  P} is finite, it is achieved at a vertex.∈

● Proof:
Suppose x not a vertex.  Take y ≠ 0 : x+y  P and x-y  P.∈ ∈

Assume cy < 0, then x+y is a better solution

Assume cy > 0, then x-y is a better solution



● Definition: P := {x : Ax=b, x ≥ 0}, known as polytope
                    x is vertex if not  y ≠ 0 : x+y  P and x-y  P∃ ∈ ∈

● Claim: If min {c.x : x  P} is finite, it is achieved at a vertex.∈

● Proof:
Suppose x not a vertex.  Take y ≠ 0 : x+y  P and x-y  P.∈ ∈

Assume cy = 0.  Can assume yj < 0 for some j, since y ≠ 0.

Note x + λ y  P since Ay = 0 as A(x-y) = A(x+y) = b∈
Increase λ from 0 until one more variable is 0.
Note that if a var. was zero it still is, because x i = 0   y i = 0 

otherwise can't be x+y  P and x-y  P∈ ∈
Have new x' with one more zero variable, and no worse cost
Repeat whole argument on x'.
This will eventually stop as  (0, 0, …, 0) is a vertex.             



● This motivates looking for solutions at vertices

The simplex algorithm moves from vertex to vertex



● Most basic example of simplex algorithm:

min x + y : 2x + 3y=1, x, y ≥ 0.
Vertices = (0,1/3), (1/2,0).

Somehow start at vertex s1 := (1/2,0)

Write x = 2-1 ( 1 - 3y)    (var > 0 as function of var = 0)
Cost = x + y = 2-1 ( 1 - 3y) + y = 0.5 - 0.5y.

Can increment y and reduce the cost, as long as x ≥ 0

This takes us to s2 := (0,1/3)

Write y = 3-1(1-2x).
Cost = x + y = x + 1/3-2x/3 = x/3 + 1/3.

Note this holds for any solution.  s2 has x = 0 so is optimal.



● The simplex method:
min c.x : Ax=b, x ≥ 0.

Start with some solution s
B := {j : sj > 0}, let AB = columns of A corresponding to B

N := the other coordinates
Assume AB is invertible

min cB.xB + cN.xN  : AB xB +AN xN = b, x ≥ 0.

Write xB = AB -1 (b - AN xN )

Cost = cB  AB -1 (b - AN xN ) + cN xN 

         = cB  AB -1 b + xN (cN  - cB AB -1 AN )

                                         
                                                   r



● Cost = cB AB -1 b + xN r

● If rj < 0 for some j, increase corresponding var in xN
in current solution s as much as possible, to arrive to s'.

Now the increased variable is > 0, and another will be 0

s' has smaller cost.  Repeat.

● If r ≥ 0, note this holds for every solution.
Current solution has xN = 0, so it is optimal.

Note: New solution s is vertex, because if s+y and s-y  P ∈
then yN is 0; but xB is a function of xN so that stays same too.



Note: We assumed AB is invertible

This is not always the case, e.g. if you have too many zero 
variables.  In general, this may make the simplex algorithm 
take exponential time or even never terminate.

There exist more complicated, polynomial-time algorithms

However the simplex works well in practice

Research in the area is still very active.



● Example: 

Minimize 6x
1 
+ 4x

2

              Subject to 2x
1
 + 3x

2   
= 9

                         x
1
 +   x

3
  = 3

  x
1
, x

2
, x

3  
≥ 0

min c.x : Ax=b, x ≥ 0.

A = 2   3   0 b = [9   3]T c = [6   4   0]
1   0   1

Start with  s = (3, 1, 0)



min c.x : Ax=b, x ≥ 0.

A = 2   3   0 b = [9   3]T c = [6   4   0]
1   0   1

Let's start with s = (3, 1, 0)

B := {j : s
j
 > 0} = {1, 2} AB= 2   3 AN =  0 A

B
-1 =    0      1

N := {3} 1   0 1  1/3  -2/3

r = (cN  - cB AB -1 AN ) cB = [6   4]  cN  = [0]

  = 0 - 10/3
  = -10/3

r < 0, so increase x3 as much as possible,

arrive to s' = (0, 3, 3)



min c.x : Ax=b, x ≥ 0.

A = 2   3   0 b = [9   3]T c = [6   4   0]
1   0   1

Now we are at s' = (0, 3, 3). Repeat.

B := {j : s
j
 > 0} = {2, 3}  AB= 3   0 AN =  2 A

B
-1 =   1/3    0

N := {1} 0   1 1      0    1

r = (cN  - cB AB -1 AN ) cB = [4   0] cN  = [6]

  = 6

Since r ≥ 0, s' = (0, 3, 3) is an optimal solution,
and the optimal value is 12.



● Duality:
z : min x1 + 2x2 + 4 x3    = cx

subject to x1  + x2 + 2x3 = 5

               2x1 + x2  + 3x3 = 8

               x ≥ 0

Want: Best lower bound on z:

Can you think of any lower bound?



● Duality:
z : min x1 + 2x2 + 4 x3    = cx

subject to x1  + x2 + 2x3 = 5

               2x1 + x2  + 3x3 = 8

               x ≥ 0

Want: Best lower bound on z:
1st equation  z ≥ ?



● Duality:
z : min x1 + 2x2 + 4 x3    = cx

subject to x1  + x2 + 2x3 = 5

               2x1 + x2  + 3x3 = 8

               x ≥ 0

Want: Best lower bound on z:
1st equation  z ≥ 5

A better lower bound?



● Duality:
z : min x1 + 2x2 + 4 x3    = cx

subject to x1  + x2 + 2x3 = 5

               2x1 + x2  + 3x3 = 8

               x ≥ 0

Want: Best lower bound on z:
1st equation  z ≥ 5
3(1st) - 2nd  x 1 + 2x2 + 3x3 = 7 ≤ z

This process can be automated:
Find max 5 y1 + 8 y2 

subject to y1 + 2y2 ≤ 1 (1st column ≤ c1 )

                y1  + y2  ≤ 2 (2nd ≤ c2 )

               2y1 + 3y2 ≤ 4 (3rd ≤ c3 )



● Duality:

Consider primal: min cx : Ax=b, x ≥ 0

Suppose we multiply each equation by a number yj and sum:

We get y Ax = y b.

Now, if yA ≤ c, then yAx ≤ cx, because x ≥ 0

Note yAx = yb.

So a generic lower bound is given by
dual: max yb : yA ≤ c
equivalently,
max yb: AT y ≤ c

Note: the dual of the dual is the primal.



● Linear programming duality theorem:

min cx : Ax=b, x ≥ 0   =   max by : AT y ≤ c

when they are both finite.

A.k.a. min-max theorem, Hahn–Banach theorem



● Main tool in proving duality: Farkas' lemma.

● Recall fundamental theorem of linear algebra

 ∃ x : Ax = b XOR   y such that yA = A∃ T y = 0 and b.y ≠ 0

i.e., b is in the span of the columns iff b is orthogonal to any 
vector that is orthogonal to the columns of A

● Farkas lemma:
 ∃ x : Ax ≤ b XOR  y ≥ 0 : yA = A∃ T y = 0 but b.y = -1

● Given Farkas' lemma, proof of duality is mostly notation



Duality proof:
p* := min {cx : Ax=b, x ≥ 0}
d* := max {by: AT y ≤ c }

Weak duality: p* ≥ d*

Proof: Let c x* = p*, by* = d*, where x* and y* feasible.

Then AT y* ≤ c  A T y* x* ≤ c*x = p*.

But AT y* x* = y* b = d*.



Duality proof:
p* := min {cx : Ax=b, x ≥ 0}
d* := max {by: AT y ≤ c }

Strong duality: p* ≤ d*
We want y : AT y ≤ c and b.y ≥ p*.
We express this as   AT   y  ≤   c
                                 -b            -p*

If no such y, by Farkas  z ≥ 0 : [A -b] z = 0, [c -p*]z = -1 < 0∃
Write z = [x, λ ]                               Ax = λ b,            cx < λ p*

Case λ > 0.  Let x' := x/ λ.  Then Ax' = b and cx' < p*

Case λ = 0. Then Ax = 0, cx < 0. So A(x+x*) = b, c(x+x*) < p*

In either case we contradict the optimality of p*.                 



Farkas:  x : Ax ≤ b XOR  y ≥ 0 : yA = A∃ ∃ T y = 0 and b.y = -1

Proof By induction on number of variables

Base case: zero variables.

The system is of the form 0 ≤ b.

If bi ≥ 0  i then we have a solution but can't get b.y = - 1∀

Otherwise bi < 0 for some i.  In this case there is no solution.

Then letting yi = 1/bi and the rest 0 we get b.y = -1.



Farkas:  x : Ax ≤ b XOR  y ≥ 0 : yA = A∃ ∃ T y = 0 and b.y = -1

Proof Induction step  Write x = (x',t).
Up to non-negative scaling, each equation in Ax ≤ b is one of:
ai

+(x') + t ≤ bi , ai
-(x') - t ≤ bi , ai

0(x') ≤ bi 

For any x', above system solvable in t iff
ai

0(x') ≤ bi  i, and a∀ i
-(x') - bi ≤ bj - aj

+(x')  i, j∀

If such an x' exists, we have a solution x = (x',t).

There is no y ≥ 0 : yA = 0 and b.y = -1,
since otherwise, as seen before,
from Ax ≤ b we obtain that 0 = yAx ≤ by = -1



Farkas:  x : Ax ≤ b XOR  y ≥ 0 : yA = A∃ ∃ T y = 0 and b.y = -1

Proof Induction step  Write x = (x',t).
Up to non-negative scaling, each equation in Ax ≤ b is one of:
ai

+(x') + t ≤ bi , ai
-(x') - t ≤ bi , ai

0(x') ≤ bi 

For any x', above system solvable in t iff
ai

0(x') ≤ bi  i, and a∀ i
-(x') - bi ≤ bj - aj

+(x')  i, j∀

If such an x' does not exist:
Above system is A' x' ≤ b'.

By induction,  y' : y' A' = 0 and b' y' = -1.∃
Since ai

-(x') + aj
+(x') = ai

+(x') + t + (ai
-(x') - t) this gives a 

corresponding y such that yA = 0 and b.y = -1. 



Problem                     Method
(increasing generality)

Linear programming Simplex (P)

Semi-definite programming     Interior point (P)               
                                  Multiplicative weights update (P) (A)

Convex programming Ellipsoid (enough to have separator)
                                   Gradient descent (A)

(P) = Somewhat practical

(A) = Approximate solutions: runtime is poly(1/eps) to satisfy constraints 
within eps.  (As opposed to log(1/eps) runtime, which allows for exact 
solutions.)

All problems admit duality formulations (strong duality for Lagrangian)

Reference: Convex Optimization – Boyd and Vandenberghe


