Kolmogorov Complexity

Suppose I say I tossed a coin 40 times and got:
10

What do you say?

Suppose I say I tossed a coin 40 times and got:
10

You don't believe me

Suppose I say I tossed a coin 40 times and got:
11101010101001010100111001010010111100010
What do you say?

Suppose I say I tossed a coin 40 times and got:
10

You don't believe me

Suppose I say I tossed a coin 40 times and got:
11101010101001010100111001010010111100010

Maybe

Why? What is the probability of the two strings?

Suppose I say I tossed a coin 40 times and got:

$\operatorname{Pr}[10]=2^{-40}$

You don't believe me

Suppose I say I tossed a coin 40 times and got:
$\operatorname{Pr}[11101010101001010100111001010010111100010]=2^{-40}$

Maybe

Why? The two strings have the same probability!

Classical probability theory does not capture intuitive notion of "random"

Observation:

10

can be programmed as

Classical probability theory does not capture intuitive notion of "random"

Observation:
10
can be programmed as
"Repeat `10' 20 times"
Program length much shorter than string.
String is compressible
This seems impossible for
11101010101001010100111001010010111100010

We are going to make a formal definition.
We need to calculate program lengths somewhat precisely
How do you represent a pair (x, y), where $x, y \in\{0,1\}^{*}$?
Can't just concatenate bits: ?

We are going to make a formal definition.
We need to calculate program lengths somewhat precisely
How do you represent a pair (x, y), where $x, y \in\{0,1\}^{*}$?
Can't just concatenate bits: you wouldn't know when x ends.
One solution:?

We are going to make a formal definition.
We need to calculate program lengths somewhat precisely
How do you represent a pair (x, y), where $x, y \in\{0,1\}^{*}$?
Can't just concatenate bits: you wouldn't know when x ends.
One solution: write each bit of x twice, use " 01 " as delimiter $|(x, y)|=$?

We are going to make a formal definition.
We need to calculate program lengths somewhat precisely
How do you represent a pair (x, y), where $x, y \in\{0,1\}^{*}$?
Can't just concatenate bits: you wouldn't know when x ends.
One solution: write each bit of x twice, use " 01 " as delimiter

$$
|(x, y)|=2|x|+|y|+2
$$

Better: ?

We are going to make a formal definition.
We need to calculate program lengths somewhat precisely
How do you represent a pair (x, y), where $x, y \in\{0,1\}^{*}$?
Can't just concatenate bits: you wouldn't know when x ends.
One solution: write each bit of x twice, use " 01 " as delimiter $|(x, y)|=2|x|+|y|+2$

Better: write the length of x in binary, then x, then y $|(x, y)|=$?

We are going to make a formal definition.
We need to calculate program lengths somewhat precisely
How do you represent a pair (x, y), where $x, y \in\{0,1\}^{*}$?
Can't just concatenate bits: you wouldn't know when x ends.
One solution: write each bit of x twice, use " 01 " as delimiter

$$
|(x, y)|=2|x|+|y|+2
$$

Better: write the length of x in binary, then x, then y

$$
\begin{aligned}
|(x, y)| & =2 \text { floor }(\log |x|+1)+|x|+|y|+2 \\
& \leq 2 \log |x|+|x|+|y|+4
\end{aligned}
$$

Exercise: do better

Definition:

The Kolmogorov complexity of x, denoted $K(x)$, is the minimum length of a pair (M, y) such that TM M on input y outputs x.

Fact: $\exists \mathrm{c}: \forall \mathrm{x}: \mathrm{K}(\mathrm{x}) \leq|\mathrm{x}|+\mathrm{c}$ Proof:

Definition:

The Kolmogorov complexity of x, denoted $K(x)$, is the minimum length of a pair (M, y) such that
TM M on input y outputs x.

Fact: $\exists \mathrm{c}: \forall \mathrm{x}: \mathrm{K}(\mathrm{x}) \leq|\mathrm{x}|+\mathrm{c}$
Proof: Define $\mathrm{M}:=$ "On input y , output y ." $|(\mathrm{M}, \mathrm{x})| \leq|\mathrm{M}|+|\mathrm{x}|$
Fact: $\exists \mathrm{c}: \forall \mathrm{x}: \mathrm{K}(\mathrm{xx}) \leq \mathrm{K}(\mathrm{x})+\mathrm{c} \leq|\mathrm{x}|+\mathrm{c}$
Proof:

Definition:

The Kolmogorov complexity of x, denoted $\mathrm{K}(\mathrm{x})$, is the minimum length of a pair (M, y) such that TM M on input y outputs x.

Fact: $\exists \mathrm{c}: \forall \mathrm{x}: \mathrm{K}(\mathrm{x}) \leq|\mathrm{x}|+\mathrm{c}$
Proof: Define $\mathrm{M}:=$ "On input y , output y. " $|(\mathrm{M}, \mathrm{x})| \leq|\mathrm{M}|+|\mathrm{x}|$
Fact: $\exists \mathrm{c}: \forall \mathrm{x}: \mathrm{K}(\mathrm{xx}) \leq \mathrm{K}(\mathrm{x})+\mathrm{c} \leq|\mathrm{x}|+\mathrm{c}$
Proof: Let (M, y) be a shortest pair such that $M(y)=x$. Consider M^{\prime} that on input (M, y) runs $\mathrm{M}(\mathrm{y})$ to get x , and then makes two copies of x.
So $M^{\prime}((M, y))=x x$, and $\left|\left(M^{\prime},(M, y)\right)\right| \leq 2\left|M^{\prime}\right|+|(M, y)| \leq K(x)+c$.
Exercise: $\exists \mathrm{c} \forall \mathrm{x}: \mathrm{K}\left(\mathrm{x}^{2}+17\right) \leq \mathrm{K}(\mathrm{x})+\mathrm{c}$

Fact: $\exists \mathrm{c}: \forall \mathrm{x}, \mathrm{y}: \mathrm{K}(\mathrm{xy}) \leq 2 \log (\mathrm{~K}(\mathrm{x}))+\mathrm{K}(\mathrm{x})+\mathrm{K}(\mathrm{y})+\mathrm{c}$

Proof:
Let $M_{x}\left(x^{\prime}\right)=x$ where $\left|\left(M_{x}, x^{\prime}\right)\right|=K(x)$
$M_{y}\left(y^{\prime}\right)=y$ where $\left|\left(M_{y^{\prime}} y^{\prime}\right)\right|=K(y)$
Consider M that first runs $M_{x}\left(x^{\prime}\right)$ then $M_{y}\left(y^{\prime}\right)$
$\left|\left(M,\left(\left(M_{x}, x^{\prime}\right),\left(M_{y^{\prime}}, y^{\prime}\right)\right)\right)\right|=$
$=2|M|+\left|\left(\left(M_{x}, x^{\prime}\right),\left(M_{y}, y^{\prime}\right)\right)\right|$
$=2|M|+2 \log (K(x))+K(x)+K(y)$,
using pairing (...) that we discussed

Exercise: $\forall c \exists x, y: K(x y) \geq K(x)+K(y)+c$

Definition: A string x is incompressible if $\mathrm{K}(\mathrm{x}) \geq|\mathrm{x}|$.
Fact:
$\forall \mathrm{n}$ there are incompressible strings of length n .
Proof:

Definition: A string x is incompressible if $\mathrm{K}(\mathrm{x}) \geq|\mathrm{x}|$.

Fact:

$\forall \mathrm{n}$ there are incompressible strings of length n .
Proof: JUST COUNT
The number of descriptions (M, x) of length $<n$ is at most
$2^{0}+2^{1}+2^{2}+\ldots+2^{n-1}<2^{n}=$ number of length-n strings
Exercise:

- The set of incompressible strings is undecidable

Exercise:

- $K(x)$ is not computable

