
Network flow



Definition: A flow network is a directed graph G = (V,E) with 
two nodes s and t, and a function c(u,v) ≥ 0 on each directed 
edge (u,v)

● s is called the source
● t is called the sink
● c: E→R+ is called the capacity function
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● A flow f : V x V → R satisfies:

Skew symmetry: f(u,v) = - f(v,u) for every pair (u,v)

Capacity constraint f(u,v) ≤ c(u,v) for each (u,v)  E∈

Conservation of flows: f(u,V) = 0 for every u  {s,t},∉
Where we define f(X,Y) := ∑ f(x,y) over x  X and y  Y∈ ∈

●The value of flow f is  | f | = f(s,V)

It represents the amount of flow passing from the source to 
the sink.
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Maximum flow problem

Input: A flow network G with s and t, a capacity function c
Output: A flow f so that | f | is maximum.

Applications: railway traffic, food supply, airline scheduling, 
image segmentation, baseball elimination...



Residual network

● A flow f induces a residual network G
f 
, consisting of the 

original graph G, and residual capacity function c
f
 :

For every (u,v) such that (u,v) or (v,u)  E we set∈
c

f
(u,v) := c(u,v) – f(u,v) ≥ 0.

Note: the residual network may put non-zero capacity on 
edges which were non-existing or had zero capacity.

● An augmenting path is a path from s to t in the residual 
network
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Ford—Fulkerson Algorithm

Given G, s, t, c(·,·). Start with f ≡ 0

Repeat while there is an augmenting path P in G
f 

Let m = min
(u,v) P∈ c

f
(u,v).

         Define f'(u,v) = m if (u,v) in P, f'(u,v) = 0 otherwise.

Augment the flow by setting f = f + f'
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● Demo
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Definition: An s-t cut (S,T) is a partition S, T = V – S such that 
s in S and t in T.

Meaning: removing the edges between S and T disconnects  
s and t

Example:

S

T

t

20

40 40

40

30s



Definition: An s-t cut (S,T) is a partition S, T = V – S such that 
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Meaning: removing the edges between S and T disconnects  
s and t

Example:

S

T

t

20

40 40

40

30s



Definition: An s-t cut (S,T) is a partition S, T = V – S such that 
s in S and t in T.

Meaning: removing the edges between S and T disconnects  
s and t

The capacity of an s-t cut (S,T) is c(S,T) := ∑
u S, v T∈ ∈  c(u,v)

Example: 
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c(S,T) := 40 + 30 + 40 = 110



Analysis of Ford—Fulkerson algorithm:

Lemma: Let f be a flow. For any cut (S,T), f(S,T) = | f |

Proof:

Let's move x from S to T.

We lose f(x,T), and we gain f(S,x).

But f(x,T) = - f(x,S) because f(x,V) = 0.                       qed



Theorem (Max flow-min cut): The following are equivalent:
1. |f| is maximum
2. the residual network has no augmenting paths
3. | f | = c(S,T) for some cut (S,T)

Proof:
1 → 2: otherwise could increment the flow as said before.

2 → 3: define S := vertices reachable from s on residual 
network. Note t  S. By previous lemma, | f | = f(S,T).∉

Now note for each edge (u,v) in S×T, f(u,v) = c(u,v), otherwise 
v would be in S.

3 → 1: if f is not maximum, could have a better flow. But by 
lemma it would augment the flow on this cut, thus violate 
capacity constraints. □



Analysis of running time

Fact: Let f be a flow in G. Let f' be a flow on residual network 
G

f
. Then f + f' is a flow on G

f
 with |f + f'| = |f| + |f'| > |f|.
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Analysis of running time

Fact: Let f be a flow in G. Let f' be a flow on residual network 
G

f
. Then f + f' is a flow on G

f
 with |f + f'| = |f| + |f'| > |f|.

Assume the capacities are all integers.

In each iteration,
finding an augmentation path takes time O(|E|)
| f | increments by at least 1

Running time O( |E| max |f|)

Question: Is O( |E| max |f|) tight?
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Analysis of running time

Question: Is O( |E| max |f|) tight? Yes.

s t

9997

9997 9997

9997

1
2

22

2



Edmonds—Karp algorithm

● Same as Ford-Fulkerson, but each time use a shortest path 
in residual network

Let's run it on the previous example.



Edmonds—Karp algorithm

Edmonds—Karp on previous example:
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Edmonds—Karp on previous example:
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Edmonds—Karp algorithm

Edmonds—Karp on previous example:
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Analysis of Edmonds—Karp algorithm

Correctness: ???



Analysis of Edmonds—Karp algorithm

Correctness: Follows from previous analysis.

Running time:



Analysis of Edmonds—Karp algorithm

Correctness: Follows from previous analysis.

Running time:

Let δ
f
(s,v) be the distance from s to v in G

f

Lemma: Each time we update the flow, δ
f
(s,v) does not 

decrease

i.e. δ
f'
(s,v) ≥ δ

f
(s,v) for every v, for every f' after f

Meaning: shortest path distances increase after each  
iteration.



Proof: We show that δ
f'
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f
(s,v) if f' is right after f.
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Suppose not. Let v be the vertex v among B:={v: δ
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That means the augmentation from f to f' must have (v, u) on 
the augmented path.
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Proof: We show that δ
f'
(s,v) ≥ δ

f
(s,v) if f' is right after f.
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That means the augmentation from f to f' must have (v, u) on 
the augmented path.

But augmentations are along shortest paths, so 
δ

f
(s,v) = δ

f
(s,u) – 1

≤ δ
f'
(s,u) – 1 (because u  B)∉

= δ
f'
(s,v) – 1 – 1 (because δ

f'
(s,u) < δ

f'
(s,v))

which contradicts our assumption.  □
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Theorem: Total # of flow augmentations in Edmond—Karp is 
O( |V| |E|)

Proof: Call (u,v) critical in residual network G
f
 if c

f
(u,v) is 

minimial among all edges on an augmenting path.

Note there is always a critical edge. After the flow 
augmentation, the edge will be saturated and thus will 
disappear from the network.

It can only come back to the critical edge if edge (v,u) is used 
on a flow augmentation of a new residual network G

f'
.

But then δ
f'
(s,u) = δ

f'
(s,v) + 1

(since always use shortest augmentation path)
≥ δ

f
(s,v) + 1 (by previous lemma)

= δ
f
(s,u) + 1 + 1

(again because you augment along shortest path).
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● Note that between two times that (u,v) becomes critical, the 
distance of u increases by 2.

Thus (u,v) becomes critical O(|V|) times.

Thus, the total # of augmentation is O(|V| |E|). □



● Note that between two times that (u,v) becomes critical, the 
distance of u increases by 2.

Thus (u,v) becomes critical O(|V|) times.

Thus, the total # of augmentation is O(|V| |E|). □

Remark

This is NOT saying every augmentation increases the 
distance of some node

This is saying every 2 augmentations of same edge increase 
distance of starting point.
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Application: Maximum matching

Definition: Given a bipartite graph (L R,E)∪ . M E is a ⊂
matching if no edges in M share a vertex.

Input: a bipartite graph (L R,E)∪

Output: max |M|

Example:

 |M| = 2  |M| = 3
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Application: Maximum matching

We turn it into a maximum flow problem

● Direct every edge from L to R
● Add a source and a sink
● Add edges between s and vertices in L, and between t and 
the vertices in R
● Set capacities of all edges to 1

s t
1
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Application: Maximum matching

We turn it into a maximum flow problem

Claim: Matching of size M  flow of value M∃ ⇔∃

Proof: 

⇒: Clear
⇐: Let f be a flow. There are |f| units.

The |f| units form |f| edge-disjoint paths from s to t 
because all edges have capacity 1. 

So there are exactly |f| edges (u,v) in (L∪R,E) with f(u,v) 
= 1.

No two vertices in L and R shares these edges because 
each edge touching s or t has capacity 1. So the |f| edges 
form a matching.□


