Big picture

* All languages
* Decidable
Turing machines
NP
P
» Context-free
Context-free grammars, push-down automata
* Regular
Automata, non-deterministic automata,
regular expressions

Turing Machines

Like DFA but

» Access to infinite tape, mm!!!!

initially containing input
and blank (-) everywhere else
* Read and write on tape
* Move both ways on tape
* Accept, reject take action immediately

Turing Machines (TM)

Detalls:
\V

» Tape is infinite to the right only ﬂl!!
 TM has head V on one tape cell 1

* In one step TM can:
* change state
 read/write cell under head,
* move to the left or right of 1 cell
(If TM attempts to go left of first cell, stay put)

May write TM like DFA with transitions:

1—- R

. If in state g, and tape cell under head contains 1:

write blank (),

move head to the Right,
go to state q,

Example: L = {a"b"c" : n = 0} {a,b,c,x} — L

#—> R $

* Typically, we do not draw state diagrams of TM

e TWO reasons:

» State diagrams are very complicated, hence useless
* There is equivalent, easier notation (we'll see later)

» Sufficient to give high-level description of TM

Example: A TM for the language {a"b"c" : n = 0}

M :=“On input w.
1) Scan tape and cross off one a, one b, and one ¢
2) If none of these symbols is found, ACCEPT
3) If not all of these symbols is found,
or if found in the wrong order, REJECT

4) Go back to 1.”

» State diagram merely implements above

Example: A TM for the language {a"b"c" : n = 0}

M :=“On input w.

1) Scan tape and cross off one a, one b, and one ¢
2) If none of these syp/ipols is found, ACCEPT

3) If not all of these/Syrhbols is found,

or if found in tffe wrpng order, REJECT

4) Go back to

« State diagram merely jmplements above

Have extra tape symbols #, X

V

alalblblcle|-[-].

we don't write the symbol

twice if it doesn't change

N cxt — R

V
alafblblce|-|-]..

L={a"b"c":n =0} {a,b,cx} — L

V
alafblblce|-|-]..

Vv
#lafblblcle|-|-]..

Vv
#lafblblcle|-|-]..

Vv
#la|x|blcle|-|-]..

V
#la|x|blcle|-|-]..

Vv
#lafx|b|x|e|-|-]..

Vv
#la[x|b|x|e|-|-]..

Vv
#la[x|b|x|e|-|-]..

Vv
#la[x|b|x|e|-|-]..

Vv
#la[x|b|x|e|-|-]..

Vv
#la[x|b|x|e|-|-]..

Vv
#la[x|b|x|e|-|-]..

V

#la|x|blx|e|-[-].

Vv
#la[x|b|x|e|-|-]..

V
#1x[x[blx|e|-|-]..

V
#lx[x[blx|e|-|-]..

Vv
#lx[x|x|x|e|-|-]..

V
#lx[x|x|x|e|-|-]...

Vv
x| x x| [

Vv
el xx x| x]-[-]..

Vv
el xx x| x]-[-]..

Vv
el xx x| x]-[-]..

Vv
el xx x| x]-[-]..

Vv
el xx x| x]-[-]..

V

#lx x| x| x| |-

Vv
el xx x| x]-[-]..

Vv
el xx x| x]-[-]..

Vv
el xx x| x]-[-]..

Vv
el xx x| x]-[-]..

Vv
el xx x| x]-[-]..

Vv
el xx x| x]-[-]..

Now a REJECT
example

Vv
#lafblblble|-|-]..

Vv
#lafblblble|-|-]..

Vv
#la|x|blble|-|-]..

Vv
#la[x[blble|-|-]..

Vv
#la[x[blble|-|-]..

Vv
#lafx[blb|x|-|-]..

Vv
#lafx[blb|x|-|-]..

Vv
#lafx[blb|x|-|-]..

Vv
#lafx[blb|x|-|-]..

Vv
#lafx[blb|x|-|-]..

Vv
#lafx[blb|x|-|-]..

V

#la|x[blblx|-[-].

Vv
#lafx[blb|x|-|-]..

Vv
#1x[x[blblx|-|-]..

Vv
#lx[x[blblx|-[-]..

Vv
#lx[x|x[b]x|-[-]..

Vv
#lx[x|x]blx|-[-]..

Vv
#lx[x|x]blx|-[-]..

L={a"b"c":n =0} {a,b,cx} — L

2n

Example: TMfor L={a : N = 0}
= {a, aa, aaaa, aaaaaaaa, ... }
M :="On input w,
1) if only one a, ACCEPT
2) cross off every other a on the tape
3) if the number of a's is odd, REJECT
4) Go back to 1)”

For instance:
8as—4as—2as—1a—ACCEP
12 a's - 6a's - 3a's— REJECT

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv
#|alalal-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv
#|alalal-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv
#|a|x|a|-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv
#|a|x|a|-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv
#|a|x|a|-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv
#|a|x|a|-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv
#|a|x|a|-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

V

#|a|x|a|-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv
#|a|x|a|-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv
#[x|x|al-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv
#[x|x|al-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv
#[x|x|al-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv
#[x|x|al-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv
#[x|x|al-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv
#[x|x|al-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

V

#[x|x|al-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv
#[x|x|al-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv
#[x|x|al-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv
#[x|x|al-|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R
/

a— #R
(= 2= (g SR
next a
H

L

Vv
#lx]x[x]|=|-

Another example: L = {& : n > 0}

CyF
@ _—R skip the
next a
a—R

a— X, R

Q.
4 x—>R

/
‘ a —#R ‘ a— R__ (mark thex_’R

next a

V

ACCEPT! !!

Unlike DFA and PDA,
TM computation may never halt. That is, it may
continue forever without entering accept/reject states

This is when your computer “freezes”

\OD 0 R

V

Example

Unlike DFA and PDA,
TM computation may never halt. That is, it may
continue forever without entering accept/reject states

This is when your computer “freezes”

\OD 0 R

V

Example

Unlike DFA and PDA,
TM computation may never halt. That is, it may
continue forever without entering accept/reject states

This is when your computer “freezes”

?::ID{%HR

V
alal-|-[-]-

Example

Unlike DFA and PDA,
TM computation may never halt. That is, it may
continue forever without entering accept/reject states

This is when your computer “freezes”

7::I>{%HR

And so on!

V
alal-|-[-]-

Example

* Definition: A Turing Machine TM is a 7-tuple
(Q, 2, 1,06, 90, Gaccept: reject) WheTe:

* Q is a finite, non-empty set of states
* > is the input alphabet. Blank symbol &>
* [is the tape alphabet, > cI"'and &l

e 0: QXTI —-QxTI x{L, R}is the transition function
gy €Q is the start state

* Qaccent cQ is the accept state
* Oreject cQ is the reject state; daccept 7 Ureject

 Definition: A configuration of a TM specifies
contents of tape, state, head location

It is writtenas uqvwhereq €Q, u,v el*
Meaning: 1) TM in state g

2) head is on first symbol of v.

3) Tape contains uv, blanks not shown

 Definition: A configuration of a TM specifies
contents of tape, state, head location

It is writtenas uqvwhereq €Q, u,v el*
Meaning: 1) TM in state g

2) head is on first symbol of v.

3) Tape contains uv, blanks not shown

 Definition: A configuration C yields a configuration C'
if TM goes from C to C' in one step:

uaqbv yields uq'acv if ©(qg,b)=(d',c,L)
euagbyv yelds uacq'v if 0 (qg,b)=1(q,c,R)
*uUagqg Is treated likeuaq

*gbv yieldsq' cv ifd (q,b)=(q',c, L)

eqbv vieldscq'v if d (q,b) =(d', c, R)

* Definition:
Start configuration of TM on inputwis qow
Accept configuration: any configuration with Qaccept

Reject configuration: any configuration with reject

Halt (stop) configur.: Accept U Reject configur.

* Definition: TM M accepts (rejects, halts on) input w if
dconfigurations C,, C,, ..., C, :

C, is start configuration
C yieldsC, , Vi<k
C, is accept (reject, halt) configuration

Example: L= {d : n > 0}

q,aaaa

Example: L= {d : n > 0}
q,aaaa
Q. aaa

Example: L= {d : n > 0}
q,aaaa
Q. aaa
#a g, aa

Example: L ={& : n> 0}
q,aaaa
Q. aaa
#a g, aa
#ax g, a

Example: L ={& : n> 0}
q,aaaa
Q. aaa
#a g, aa
#ax g, a
#axa q,

Example: L ={& : n> 0}
q,aaaa
Q. aaa
#a g, aa
#ax g, a
#axa q,
#ax g, a

Example: L ={& : n> 0}
q,aaaa
Q. aaa
#a g, aa
#ax g, a
#axa q,
#ax g, a
#a q, Xa

Example: L ={& : n> 0}
q,aaaa
Q. aaa
#a g, aa
#ax g, a
#axa q,
#ax g, a
#a q, Xa
#q, axa

Example: L ={& : n> 0}
q,aaaa
Q. aaa
#a g, aa
#ax g, a
#axa q,
#ax g, a
#a q, Xa
#q, axa
q, #axa

Example: L ={& : n> 0}
q,aaaa
Q. aaa
#a g, aa
#ax g, a
#axa q,
#ax g, a
#a q, Xa
#q, axa
q, #axa
#q, axa

Example: L ={& : n> 0}
q,aaaa
Q. aaa
#a g, aa
#ax g, a
#axa q,
#ax g, a
#a q, Xa
#q, axa
q, #axa
#q, axa
#X q, Xa

Example: L ={& : n> 0}
q,aaaa #XX Q. a
Q. aaa
#a g, aa
#ax g, a
#axa q,

#ax g, a
#a q, Xa
#q, axa
q, #axa
#q, axa
#X q, Xa

Example: L ={& : n> 0}
q,aaaa #XX Q. a
Q. aaa #Xxa q,
#a g, aa
#ax g, a
#axa q,
#ax g, a
#a q, Xa
#q, axa
q, #axa
#q, axa
#X q, Xa

Example: L ={& : n> 0}
q,aaaa #XX Q. a
Q. aaa #Xxa q,
#a g, aa #XX q, a
#ax g, a
#axa q,
#ax g, a
#a q, Xa
#q, axa
q, #axa
#q, axa
#X q, Xa

Example: L ={& : n> 0}
q,aaaa #XX Q. a
Q. aaa #Xxa q,
#a g, aa #XX q, a
#ax q, a #X q, Xa
#axa q,
#ax g, a
#a q, Xa
#q, axa
q, #axa
#q, axa
#X q, Xa

Example: L= {d : n > 0}

q,aaaa
Q. aaa
#a g, aa
#ax g, a
#axa q,
#ax g, a
#a q, Xa
#q, axa
q, #axa
#q, axa
#X q, Xa

HXX q, a
#Xxa q,
#XX q, a
#X q, Xa
#q, Xxa

Example: L= {d : n > 0}

q,aaaa
Q. aaa
#a g, aa
#ax g, a
#axa q,
#ax g, a
#a q, Xa
#q, axa
q, #axa
#q, axa
#X q, Xa

#XX Q. a
#Xxa q,
#XX q, a
#X q, Xa
#q, Xxa
q, #xxa

Example: L= {d : n > 0}

q,aaaa
Q. aaa
#a g, aa
#ax g, a
#axa q,
#ax g, a
#a q, Xa
#q, axa
q, #axa
#q, axa
#X q, Xa

#XX Q. a
#Xxa q,
#XX q, a
#X q, Xa
#q, Xxa
q, #xxa
q, XXa

Example: L ={& : n> 0}

q,aaaa
Q. aaa
#a g, aa
#ax g, a
#axa q,
#ax g, a
#a q, Xa
#q, axa
q, #axa
#q, axa
#X q, Xa

#XX Q. a
#Xxa q,
#XX q, a
#X q, Xa
#q, Xxa
q, #xxa
q, XXa
#X q_ Xa

Example: L ={& : n> 0}

q,aaaa
Q. aaa
#a g, aa
#ax g, a
#axa q,
#ax g, a
#a q, Xa
#q, axa
q, #axa
#q, axa
#X q, Xa

#XX Q. a
#Xxa q,
#XX q, a
#X q, Xa
#q, Xxa
q, #xxa
q, XXa
#X q_ Xa
#XX Q. a

Example: L= {d : n > 0}

q,aaaa
Q. aaa
#a g, aa
#ax g, a
#axa q,
#ax g, a
#a q, Xa
#q, axa
q, #axa
#q, axa
#X q, Xa

#XX Q. a
#Xxa q,

#XX q, a
#X q, Xa
#q, Xxa
q, #xxa

q, XXa
#X q_ Xa
#XX Q. a
#XXX Q.

Example: L= {d : n > 0}

q,aaaa
Q. aaa
#a g, aa
#ax g, a
#axa q,
#ax g, a
#a q, Xa
#q, axa
q, #axa
#q, axa
#X q, Xa

#XX Q. a
#Xxa q,
#XX q, a
#X q, Xa
#q, Xxa
q, #xxa
q, XXa
#X q_ Xa
#XX Q. a
#XXX Q.
HXXX_ Q

ACCEPT

 Definition: A language L is decidable
if da TM M such that for every input w
w €L =M accepts w
w &L =M rejects w

e |s this the same as

w L & M accepts w
27077

 Definition: A language L is decidable
if da TM M such that for every input w
w €L =M accepts w
w &L =M rejects w

e This is NOT the same as

w L & M accepts w
because M may LOOP FOREVER (freeze, crash,...)

* We ask something more: TM halts on every input
Such a TM is called a decider

* Definition: The language of TM M is
L(M) = {w : M accepts w}

* Recall this means w €L(M) <& M accepts w

* Definition: A language L is recognizable if A TM M :
L =L(M)

e However we are more interested in decidable L

* So far, DFA, CFG, TM recognize languages

» Since TM can write on tape, they can also compute
functions

 Definition: A functionf: * — >* is computable if
da TM M such that on every inputw €) *
TM halts with f(w) on the tape

e All common functions such as +, x, /, etc.
are computable

* Note: Consider for example +: Nx N— N
+(2,9) = 11
+(15,8) = 23
How to represent an input pair (a,b) eNx N?

* Any reasonable representation will do
For example, use extra symbols for () and ,

 Example: Computing +: Nx N— N

V

(1ls] [slsh)[-[-] ..

 Example: Computing +: Nx N— N

Vv
(1ls] [slsh)[-[-] ..

Goes on for many steps until...

 Example: Computing +: Nx N— N

V

HASSEEESEMN

* How powerful are TM?

* One can show that regular, and context-free
languages are decidable

 We saw TM decide some non-context free
languages

* We saw TM also compute functions

 What else can a TM do?

» Suprisingly, TM are very powerful

* Pick your favorite programming language, say JAVA

* Theorem: For every language L :
L decidable in JAVA <~ L decidable in TM

* Everything you program, you candoona IM
Program, algorithm, TM, etc. all mean the same!

* S0 why not use JAVA? Who cares about TM?

« JAVA and TM are equivalent. However,

* To design programs, JAVA is more convenient.
Higher-level, shorter programs, human readable
You do this in the Algorithms class

* To understand fundamental limits of computing TM
IS more convenient.
Simpler description, configurations, head movement
You do this in This class

* Main reason why TM better than JAVA for our aims

M computation is local:
all action happens in tape symbols adjacent to head

* Not true for JAVA:
no head, any tape (memory) symbol can change

 Locality is exploited in several results we will see

* et us now make this more precise

* Fact: [Locality of TM computation]
TM configuration C, yields C_, ,

<~ V], the 6 symbols

are consistent with TM transition function ©

-Example C;, =(#a g|aaabcx_ _
Ci1 =[#ax|gpaabcecx_ _

Consistent: 6(q,, 0) = (q, X, R) for some o €[, g €Q

Note: o = a here, but that is not among the 6 symbols

* Fact: [Locality of TM computation]
TM configuration C; yields C., .

<~ V], the 6 symbols

are consistent with TM transition function ©

-ExampleC;, = #a g, alaabcx_ _
Ci.i =#Hax glaabcx_ _

Consistent: 8(q,, a) = (a3, X, R)

Note: Only one choice here!

* Fact: [Locality of TM computation]
TM configuration C, yields C_, ,

<~ V], the 6 symbols

are consistent with TM transition function ©

-Example C;, = #a|q, aalabcx_ _
Ci1 = #a|x qajabcecx _ _

Consistent: 8(q,, a) = (a3, X, R)

Note: Again only one choice here!

* Fact: [Locality of TM computation]
TM configuration C, yields C_, ,

<~ V], the 6 symbols

are consistent with TM transition function ©

-Example C;, = #aqfaaalbcx_ _
Cip =#ax|qaalbcx _ _

Consistent: 8(q, a) = (g3, 0, R) for some q €Q, o €l
Note: q = g,, but that is not among the 6 symbols

* Fact: [Locality of TM computation]
TM configuration C; yields C., .

<~ V], the 6 symbols

are consistent with TM transition function ©

Consistent: Vj, hence C, yields C,_ ,

* Fact: [Locality of TM computation]
TM configuration C; yields C., .

* Not consistent

* |s there anything beyond JAVA / TM?

* Church-Turing Thesis:
Anything that is “effectively computable”
IS computable ona TM

* This is not a theorem. It is the belief that every
computational model humans may ever consider
(DNA computing, qguantum computing, etc.)
will still be equivalent to TM

» So far, simple-looking languages like
OMN:n=20) {w:we{0,1}*}, {ablck:i<j<j)

*Next: {D:DisaDFAand }
{(Mw):MisaTMand ... }
{G:Gisagraphand...}

* How to represent D, (M,w), G is not important
Any reasonable representation will do!

* Example, use formal definitions over) ={a,b,c,....}

* |s there anything a TM cannot do?

* Definition:ATM = {(M,w) : M is a TM and M accepts w}

* We are going to prove ATM undecidable:

* Interpretation: Your friend comes to you with a piece
a code M and some input w and says: M accepts w!

* Nobody can tell! ...can't you just run M on w?

* |s there anything a TM cannot do?

* Definition:ATM = {(M,w) : M is a TM and M accepts w}

* We are going to prove ATM undecidable:

* Interpretation: Your friend comes to you with a piece
a code M and some input w and says: M accepts w!

* Nobody can tell! ...can't you just run M on w?
NO. M on w may never halt. But a decider must halt!

* Theorem: ATM={(M,w) : M is a TM and M accepts w}
IS undecidable
» |dea: Proof by contradiction

* Theorem: ATM={(M,w) : M is a TM and M accepts w}
IS undecidable

» |dea: Proof by contradiction
(1) We assume we have a decider D for ATM
(2) Using D, we derive a logical contradiction.

How ?

(3) We conclude that assumption (1) is false,
D cannot exist, and so ATM iIs undecidable

* Theorem: ATM={(M,w) : M is a TM and M accepts w}
IS undecidable
» |dea: Proof by contradiction
(1) We assume we have a decider D for ATM
(2) Using D, we derive a logical contradiction.
Construct another decider D'
Show an input Y that D' neither accepts nor rejects
So D' cannot be a decider. Contradiction
What is Y?
(3) We conclude that assumption (1) is false,
D cannot exist, and so ATM iIs undecidable

* Theorem: ATM={(M,w) : M is a TM and M accepts w}
IS undecidable
» |dea: Proof by contradiction
(1) We assume we have a decider D for ATM
(2) Using D, we derive a logical contradiction.
Construct another decider D'
Show an input Y that D' neither accepts nor rejects
So D' cannot be a decider. Contradiction
Y is D' itself! We run D' on its source code
(3) We conclude that assumption (1) is false,
D cannot exist, and so ATM iIs undecidable

* Theorem: ATM={(M,w) : M is a TM and M accepts w}
IS undecidable
* Proof
Assume D decides ATM
Build D':="0n input M: Run D(M,M).
If it accepts, REJECT
If if rejects, ACCEPT.”
D' is a decider because 7?7?77

* Theorem: ATM={(M,w) : M is a TM and M accepts w}
IS undecidable
* Proof
Assume D decides ATM
Build D':="0n input M: Run D(M,M).
If it accepts, REJECT
If if rejects, ACCEPT.”
D' Is a decider because D is. However:

D' accepts D' =777

* Theorem: ATM={(M,w) : M is a TM and M accepts w}
IS undecidable
* Proof
Assume D decides ATM
Build D':="0n input M: Run D(M,M).
If it accepts, REJECT
If if rejects, ACCEPT.”
D' Is a decider because D is. However:
D' accepts D' =D(D',D') rejects =777

* Theorem: ATM={(M,w) : M is a TM and M accepts w}
IS undecidable
* Proof
Assume D decides ATM
Build D':="0n input M: Run D(M,M).
If it accepts, REJECT
If if rejects, ACCEPT.”
D' Is a decider because D is. However:
D' accepts D' =D(D',D') rejects =D' rejects D’
D' rejects D' =777

* Theorem: ATM={(M,w) : M is a TM and M accepts w}
IS undecidable
* Proof
Assume D decides ATM
Build D':="0n input M: Run D(M,M).
If it accepts, REJECT
If if rejects, ACCEPT.”
D' Is a decider because D is. However:
D' accepts D' =D(D',D') rejects =D' rejects D’
D' rejects D' =D(D',D') accepts = 777

* Theorem: ATM={(M,w) : M is a TM and M accepts w}
IS undecidable
* Proof
Assume D decides ATM
Build D':="0n input M: Run D(M,M).
If it accepts, REJECT
If if rejects, ACCEPT.”
D' Is a decider because D is. However:
D' accepts D' =D(D',D') rejects =D' rejects D’

D' rejects D' =D(D',D') accepts ==D' accepts D’
A contradiction either way. So D cannot exist.

* Theorem: ATM={(M,w) : M is a TM and M accepts w}
IS undecidable

* To prove some other language L undecidable, show

L decidable == ATM decidable

This is sufficient by theorem above and contrapositive

e Such an implication is called a reduction of ATM to L

* Theorem: H={(M,w): Mis a TM and M halts on w}
IS undecidable

* Interpretation: You have a piece of JAVA code that
you are not sure if it works or if it is going to crash
(crash = loop forever, freeze, get stuck, etc.)

* Nobody, by looking at the code, can tell!
H is undecidable

* Theorem: H={(M,w): Mis a TM and M halts on w}
IS undecidable

* Proof:

Suppose D decides H. We build D' that decides ATM

D' :="0On input (M,w): Run D(M,w)

If it rejects, REJECT
Otherwise, run M on w until it halts

f M accepts, ACCEPT
f M rejects, REJECT.”
* D' accepts (M,w)<= M does not reject nor freeze on w

Done

* Theorem: L={M : Mis a TM and M accepts 001}
IS undecidable
* Proof:
First, fora TM M and an input w, we define
M',, as ;= "On input X,
If x # 001, ACCEPT
Otherwise, run M on w,
If it accepts, ACCEPT
if it rejects, REJECT.”

 Note: M, accepts 001 < 7

* Theorem: L={M : Mis a TM and M accepts 001}
IS undecidable
* Proof:
First, fora TM M and an input w, we define
M',, as ;= "On input X,
If x # 001, ACCEPT
Otherwise, run M on w,
If it accepts, ACCEPT
if it rejects, REJECT.”

 Note: M, accepts 001 < M accepts w

* Theorem: L={M : Mis a TM and M accepts 001}
IS undecidable

* Proof:

Suppose D decides L. We build D' that decides ATM

D' :="0On input (M,w):

Build M'yy, and Run D(M'y)

fit accepts, ACCEPT
fit rejects, REJECT.”

* D' accepts (M,w) & 7

* Theorem: L={M : Mis a TM and M accepts 001}
IS undecidable
* Proof:
Suppose D decides L. We build D' that decides ATM
D' :="0On input (M,w):
Build M'yy, and Run D(M'y)
If it accepts, ACCEPT
If it rejects, REJECT.”

. D' accepts (M,w) <> D accepts M',, &

?

* Theorem: L={M : Mis a TM and M accepts 001}
IS undecidable
* Proof:
Suppose D decides L. We build D' that decides ATM
D' :="0On input (M,w):
Build M'yy, and Run D(M'y)
If it accepts, ACCEPT
If it rejects, REJECT.”

- D' accepts (M,w) <> D accepts M, <>
M',, accepts 001 < ?

* Theorem: L={M : Mis a TM and M accepts 001}
IS undecidable
* Proof:
Suppose D decides L. We build D' that decides ATM
D' :="0On input (M,w):
Build M'yy, and Run D(M'y)
If it accepts, ACCEPT
If it rejects, REJECT.”

« D' accepts (M,w) <> D accepts M',, <
M',,, accepts 001 < M accepts w Done

* \What about
{(M,w) : Mis aTM and L(M) is finite
L(M) =0
IL(M)| = 56 or 127

* All undecidable

* TM are so powerful that you

cannot decide anything about what they do!

* The undecidability proofs seen so far
have not used anything specific about TM.
Same proofs work with JAVA instead of TM

 TM are more useful than JAVA in pinpointing
the simplest languages that are undecidable

* \We now give a few examples

{D:DisaDFAand L(D)=) *}
Decidable?

+{G:GisCFGand L(G)=Y *}

{D:DisaDFAand L(D)=) *}
Decidable? Yes
How?

+{G:GisCFGand L(G)=Y *}

{D:DisaDFAand L(D)=) *}
Decidable? Yes
How? Check if every state reachable from start
state Is accept

{G:GisCFGand L(G)=) *}
Decidable?

{D:DisaDFAand L(D)=) *}
Decidable? Yes
How? Check if every state reachable from start
state Is accept

{G:GisCFGand L(G)=) *}
Decidable”? No
Why?

{D:DisaDFAand L(D)=) *}
Decidable? Yes
How? Check if every state reachable from start
state Is accept

o {G:GIsCFGandL(G)=) *}
Decidable”? No
Why? Can use it to decide ATM, which is undecidable
ldea: simulate TM via CFG
Would be much more complicated with JAVA

* Theorem: L:={G: G is CFG and L(G)=) *} undecidable

* Proof: Suppose D decides L
* We construct D' that decides ATM:
D' :="0On input (M,w):
construct CFG G : L(G) #)™ & M accepts w
run D on G
if it accepts, REJECT
if it rejects, ACCEPT”

» Key of proof is construction of G

e Given (M,w)want G: L(G) # >* <& M accepts w

* We construct G : L(G) = all strings that are NO
accepting computations of M on w

* Represent computation by sequence of

configurations
separated by #: C #C,#C, ...

- Example: q 000101#1q,00101#10q,0101

e Construct G: L(G) = all stringsoverA={#} UT U Q
that are NOT accepting computations of M on w

(a) C4 is not the start configuration, or

(b) C, is not an accept configuration, or
(c) di: C; does not yield C,

* We construct CFG for (a), (b), and (c) separately
then use closure under U

«(a) CFG G, : L(G,) = strings C,#C,#C4#.. #C)
such that C, is not the start configuration

- Recall start configuration is q w

- Consider Regular Expression R = q w #A*

L(R) = strings starting with (start configuration)#
* not L(R) is regular, hence context-free

* All these transformations can be performed by TM

« (b) CFG Gy, : L(G,) = strings C#C#C#.. #C)
such that C is not an accept configuration

«Consider RER = A" Jaccept (A-{#})"
L(R) = strings where C, contains accept state

* not L(R) is regular, hence context-free

* All these transformations can be performed by TM

(c) CFG G, : L(G,) = strings C#C#C#.. #C,
such that di : C, does not yield C.

* Here we: use power of CFG, and
exploit locality of TM computation

» Technical detail: we show i : C; does not yield Ci+1R

» Write TM computation as: C,#C,R#C#C,R#...

(c) CFG G, : L(G,) = strings C#C#C#.. #C,
such that 3i: C; does not yield C;,,R

* Next is the idea; there are a few details to be filled in

* Construct G, : L(G.) = A™ abc (A-{#})t H (A-{#})t fed A*

forany t= 0, any 6 symbols|abc
def

that are inconsistent with TM transition function o

* Note: Essentially this is CFG for w#wR seen before

* Recap:

* Theorem: L:={G: G is CFG and L(G)=) *} undecidable

» Key of proof is, on input (M,w), construct CFG G :
L(G) = all strings that are NOT accepting
computations of M on w

» Use locality of TM computation (easier than JAVA)

* Conceptually simple, but a few details

 Theorem: ECF={(G,G"): G, G' CFG and L(G) = L(G') }
undecidable

* Meaning: You think you have a 5-line grammar that is
equivalent to another 5000-page grammar

* Nobody can tell if they are indeed equivalent

* Theorem: ECF={(G,G"): G, G' CFG and L(G) = L(G') }
undecidable
* Proof. Suppose D decides ECF
We construct D' that decides {G: G CFG, L(G)=)"}
D' :=“On input G:
Build CFG G'=S —» ¢ | Sa Vae)
Run D(G,G")
fit accepts, ACCEPT
fit rejects, REJECT.”

L(G")=>" soD accepts G & L(G)=L(G")=> *

» Undecidability in logic

» Consider sentences over N={1,2,3,...}
using variables x, y, z
operations +, multiplication,
equality =
connectives AV
quantifiers 4, V

 Example: dx>1 dy>1:5039 = xy
Meaning: ?

» Undecidability in logic

» Consider sentences over N={1,2,3,...}
using variables x, y, z
operations +, multiplication,
equality =
connectives AV
quantifiers 4, V

 Example: dx>1 dy>1:5039 = xy
Meaning: 5039 is not prime (a false sentence)

eVgdp>qnot(dx>14dy>1:p=xy)
There are infinitely many primes
Proved by Euclid ~ 2300 years ago

*YaVbVcVn>2 a"+b"#ch
Fermat's last theorem, stated in 1637
Proved by Andrew Wiles in 1995 (358 years later)

eVgdp>qnot(dx>1dy>1:p=xyV p+2 =xy)
Twin prime conjecture

* Theorem [Godel, Church]
TRUTH ={S : S is a true sentence over N}
IS undecidable

* Proof sketch:

Given TM M and input w,
build a formula SM,W such that:

Sy true <& M accepts w

use integers to encode configurations of TM

* Note: without multiplication, TRUTH is decidable

» Undecidability in mathematics

Polynomials: p(x,y,z) = x2 + 56 y + 13xy3z

e H10 = { p(X4, ..., Xp) : P(X4, ..., X,) IS @ polynomial and
and da,, ..., a, €Nsuch that p(a4, ..., a,) = 0}

e Hilbert asked for a “decider” for H10 in 1900

* Theorem [Matiyasevich, 1970] H10 is undecidable

