
  

● All languages
● Decidable

Turing machines
● NP
● P
● Context-free

Context-free grammars, push-down automata
● Regular

Automata, non-deterministic automata, 

regular expressions

Big picture



  

● Recall ATM =

           {(M,w) : M is a TM and M accepts w}

is undecidable

● What about BTM = 

{(M,w) : M is a TM and M accepts w in ≤ 2500 

steps} ?

● Is BTM undecidable?



  

● Recall ATM =

           {(M,w) : M is a TM and M accepts w}

is undecidable

● What about BTM = 

{(M,w) : M is a TM and M accepts w in ≤ 2500 

steps} ?

● BTM is decidable: Just run M on w for 2500 steps.
● Is this practical?



  

● Today computer: one instruction each 10-10 seconds

● Physical limit:      one instruction each 10-43 seconds

● To run M for 2500 steps will always take

             >> 10-43 x 2500  seconds >> 5 billion years

● The sun will die before then

● Conclusion: To run M for 2500 steps is impractical,  

  regardless of hardware, programming language, etc.



  

● Complexity Theory studies which languages

can be decided within a reasonable amount of time,   

and which languages cannot.

● How to measure time?

Time of TM computation = number of TM steps

● We count steps as a function of the input length |w|

Makes sense: need |w| steps just to read input w



  

How long does this take to run?

Example: Recall the TM for  {ambmcm : m ≥ 0}:

M := “On input w:

(1) Scan tape and cross off one a, one b, and one c 

(2) If none of these symbols is found, ACCEPT

(3) If not all of these symbols is found,

     or if found in the wrong order, REJECT

(4) Go back to (1).”



  

Example: Recall the TM for  {ambmcm : m ≥ 0}:

M := “On input w:

(1) Scan tape and cross off one a, one b, and one c 

(2) If none of these symbols is found, ACCEPT

(3) If not all of these symbols is found,

     or if found in the wrong order, REJECT

(4) Go back to (1).”

(1) takes 2*|w| steps  (scan forward and back)

It is repeated at most ?? times



  

Example: Recall the TM for  {ambmcm : m ≥ 0}:

M := “On input w:

(1) Scan tape and cross off one a, one b, and one c 

(2) If none of these symbols is found, ACCEPT

(3) If not all of these symbols is found,

     or if found in the wrong order, REJECT

(4) Go back to (1).”

(1) takes 2*|w| steps  (scan forward and back)

It is repeated at most |w|/3 times (3 marks each time)

In total, the TM runs for at most ?? steps



  

Example: Recall the TM for  {ambmcm : m ≥ 0}:

M := “On input w:

(1) Scan tape and cross off one a, one b, and one c 

(2) If none of these symbols is found, ACCEPT

(3) If not all of these symbols is found,

     or if found in the wrong order, REJECT

(4) Go back to (1).”

(1) takes 2*|w| steps  (scan forward and back)

It is repeated at most |w|/3 times (3 marks each time)

In total, the TM runs for at most (2/3)*|w|2 steps.



  

How long does this take to run?

Example: Recall the TM for  {a   : m ≥ 0}:

M := “On input w,

          (1) if only one a, ACCEPT

          (2) cross off every other a on the tape

          (3) if the number of a's is odd, REJECT

          (4) Go back to 1)”      

2m



  

Example: Recall the TM for  {a   : m ≥ 0}:

M := “On input w,

          (1) if only one a, ACCEPT

          (2) cross off every other a on the tape

          (3) if the number of a's is odd, REJECT

          (4) Go back to 1)”      

2m

(2) takes 2*|w| steps  (scan forward and back)

It is repeated at most ?? times



  

Example: Recall the TM for  {a   : m ≥ 0}:

M := “On input w,

          (1) if only one a, ACCEPT

          (2) cross off every other a on the tape

          (3) if the number of a's is odd, REJECT

          (4) Go back to 1)”      

2m

(2) takes 2*|w| steps  (scan forward and back)

It is repeated at most log( |w| ) times, because each
    time half of remaining a's crossed off.

In total, the TM runs for at most ?? steps.



  

Example: Recall the TM for  {a   : m ≥ 0}:

M := “On input w,

          (1) if only one a, ACCEPT

          (2) cross off every other a on the tape

          (3) if the number of a's is odd, REJECT

          (4) Go back to 1)”      

2m

(2) takes 2*|w| steps  (scan forward and back)

It is repeated at most log( |w| ) times, because each
    time half of remaining a's crossed off.

In total, the TM runs for at most 2*|w|*log( |w| ) steps.



  

● Notation: Letter “n” usually stands for input length |w|

● Definition: Let t :  →  be a functionℕ ℕ
TIME( t(n) ) = { L : L can be decided by a TM

                            that runs for at most t(n) steps

                            on every input of length n}

● Example:     {ambmcm : m ≥ 0}  ∈TIME( (2/3)n2 )

                    {a2m
 : m ≥ 0}        TIME( 2n log(n)∈  )



  

● How robust is this notion of time?

● Recall

● Theorem: For every language L :

L decidable in JAVA  L decidable in TM

● Does anything like this hold for TIME?



  

● The time equivalence between JAVA, TM, and all 

other programming languages is not exact.

● There are languages that

    can be recognized in time n    in JAVA,

    but require at least    time n2  on TM

● But surprisingly the gap is not much bigger than that:



  

● Theorem:

There is an integer c such that, for every function t(n)

TIME( t(n) )   in JAVA ⊆ TIME( t(n)c ) on TM

TIME( t(n)c ) in JAVA ⊇ TIME( t(n)   ) on TM

● Example:

L  TIME(n)  in JAVA   L  TIME(∈ ⇨ ∈ ??) on TM

L  TIME(n∈ 2) in JAVA  L  TIME(⇨ ∈ ??) on TM

● Small values, like c = 3, are possible



  

● Theorem:

There is an integer c such that, for every function t(n)

TIME( t(n) )   in JAVA ⊆ TIME( t(n)c ) on TM

TIME( t(n)c ) in JAVA ⊇ TIME( t(n)   ) on TM

● Example:

L  TIME(n)  in JAVA   L  TIME(n∈ ⇨ ∈ c) on TM

L  TIME(n∈ 2) in JAVA  L  TIME(n⇨ ∈ 2c) on TM

● Small values, like c = 3, are possible



  

● Definition: Polynomial Time:

P := Uc TIME(nc) = TIME(n1) U TIME(n2) U ...

● This class is invariant under computational model:

P on JAVA is the same as P on TM

● Approximates intuitive notion of “efficient”

As close as we get to model your laptop

Most (all?) what you'll ever program is in P
● Previous examples: {ambmcm : m ≥ 0}  P∈
                                {a   : m ≥ 0}  P∈2m



  

● Definition: Polynomial Time:

P := Uc TIME(nc) = TIME(n1) U TIME(n2) U ...

● The Algorithms class studies languages in P

There, you also distinguish between time n2 and n3

For this distinction TM not fine enough

● This class studies what is NOT in P

We do not distinguish between time n2 and n3

We can work with TM



  

● What languages are not in P ?



  

● What languages are not in P ?

● Recall ATM:={(M,w) | M is a TM and M accepts w}

We proved ATM undecidable, so ATM  P.∉

● Despite intense research,

ATM is essentially the only language

we can prove to be outside of P



  

● Many other languages are believed to be not in P:

SAT, factoring, etc. 

● Among these, there is a class of interesting 

languages called NP-complete

● These include problems people care about solving,

because they occur frequently in practice

● If any one of these problems is in P, then all are!



  

● Next: Define several NP-complete problems:

SAT, CLIQUE, SUBSET-SUM, ...

● Prove polynomial-time reductions:

                                CLIQUE  P            SAT  P∈ ⇨ ∈
                                SUBSET-SUM  P  SAT  P∈ ⇨ ∈

● Definition: “A reduces to B in polynomial time” means:

                                                      B  P  A  P∈ ⇨ ∈

● Conceptually like       L decidable     ATM decidable⇨



  

● Definition of boolean formulas

(boolean) variable take either true or false (1 or 0)

literal   = variable or its negation              x, ¬x

clause = OR of literals                           (x V ¬ y V z)

CNF    = AND of clauses (x V ¬y V z) Λ (z) Λ (¬ x V y) 

3CNF  = CNF where each clause has 3 literals

                 (x V ¬y V z) Λ (z V y V w) Λ (¬ x V y V ¬ u)

A 3CNF is satisfiable if  assignment of 1 or 0 to ∃
variables that make the formula true

                      Satisfying assignment for above 3CNF?



  

● Definition of boolean formulas

(boolean) variable take either true or false (1 or 0)

literal   = variable or its negation               x, ¬x

clause = OR of literals                            (x V ¬ y V z)

CNF    = AND of clauses (x V ¬y V z) Λ (z) Λ (¬ x V y) 

3CNF  = CNF where each clause has 3 literals

                 (x V ¬y V z) Λ (z V y V w) Λ (¬ x V y V ¬ u)

A 3CNF is satisfiable if  assignment of 1 or 0 to ∃
variables that make the formula true

                                         x = 1, y = 1 satisfies above

Equivalently, assignment makes each clause true



  

● Definition 3SAT := { φ | φ is a satisfiable 3CNF}

● Example:  (x V y V z)  Λ  (z V ¬y V ¬x) ?? 3SAT:



  

● Definition 3SAT := { φ | φ is a satisfiable 3CNF}

● Example:  (x V y V z)  Λ  (z V ¬y V ¬x)  3SAT:∈
             Assignment x = 1, y = 0, z = 0 gives

             (1 V 0 V 0)  Λ  ( 0 V 1 V 0) =  1  Λ  1   =  1

              (x V x V x)  Λ  (¬x V ¬x V ¬x)  ?? 3SAT



  

● Definition 3SAT := { φ | φ is a satisfiable 3CNF}

● Example:  (x V y V z)  Λ  (z V ¬y V ¬x)  3SAT:∈
             Assignment x = 1, y = 0, z = 0 gives

             (1 V 0 V 0)  Λ  ( 0 V 1 V 0) =  1  Λ  1   =  1

              (x V x V x)  Λ  (¬x V ¬x V ¬x)   3SAT∉
              x = 0 gives 0 Λ 1 = 0, x = 1 gives 1 Λ 0 = 0

● Conjecture: 3SAT  P∉
● Best known algorithm takes time exponential in | φ |



  

●  Definition:  a graph G = (V, E) consists of 

a set of nodes V (also called “vertices”)

a set of edges E that connect pairs of nodes
●  Example:

●  Definition: a t-clique is a set of t nodes all connected
●  Example:                                 

                                             is a 5-clique

1
2

3 4

V = {1, 2, 3, 4}

E = {(1,2), (2,3), (2,4)}



  

●  Definition:

CLIQUE = {(G,t) : G is a graph containing a t-clique}

●  Example:

G =                                      

(G, 3) ? CLIQUE                          



  

●  Definition:

CLIQUE = {(G,t) : G is a graph containing a t-clique}

●  Example:

G =                                      H =  

(G, 3)  C∈ LIQUE                          (H, 4) ? CLIQUE



  

●  Definition:

CLIQUE = {(G,t) : G is a graph containing a t-clique}

●  Example:

G =                                      H =  

(G, 3)  C∈ LIQUE                          (H, 4)  CLIQUE∉

● Conjecture: CLIQUE  P∉



  

● 3SAT and CLIQUE both believed  P∉

● They seem different problems. And yet:

● Theorem: CLIQUE  P  3SAT  P∈ ⇨ ∈

● If you think 3SAT  P, you also think CLIQUE  P∉ ∉

● Above theorem gives what reduction?



  

● 3SAT and CLIQUE both believed  P∉

● They seem different problems. And yet:

● Theorem: CLIQUE  P  3SAT  P∈ ⇨ ∈

● If you think 3SAT  P, you also think CLIQUE  P∉ ∉

● Above theorem gives

polynomial-time reduction of 3SAT to CLIQUE



  

● Theorem: CLIQUE  P  3SAT  P∈ ⇨ ∈

● Proof outline:

We give TM R that on input φ :
(1) Computes graph Gφ  and integer tφ  such that

                    φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
(2) R runs in polynomial time

Enough to prove the theorem?



  

● Theorem: CLIQUE  P  3SAT  P∈ ⇨ ∈

● Proof outline:

We give TM R that on input φ :
(1) Computes graph Gφ  and integer tφ  such that

                    φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
(2) R runs in polynomial time

Enough to prove the theorem because:

If  TM ∃ C that solves CLIQUE in polynomial-time

Then C( R( φ ) ) solves 3SAT in polynomial-time



  

● Definition of R:

“On input
           φ = (a1Vb1Vc1) Λ (a2Vb2Vc2) Λ … Λ (akVbkVck)

          Note ai bi ci are literals, φ has k clauses

● Compute Gφ and t φ  as follows:

● Nodes of Gφ : one for each ai , bi , ci

● Edges of Gφ : Connect all nodes except

                (A) Nodes in same clause

                (B) Contradictory nodes, such as x and ¬ x
● t φ := k”



  

Example:
       φ = (x V y V z)  Λ  (¬x V ¬y V z)  Λ  (x V y V ¬z)

x

y

z

¬x ¬y z

x

y

¬z

G
φ 
= t φ = 3



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈

● High-level view of proof of ⇨

We suppose φ has a satisfying assignment,

and we show a clique of size tφ in G φ



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
● Proof: ⇨
Suppose φ has satisfying assignment

● So each clause must have at least one true literal
● Pick corresponding nodes in G φ
● There are ??? nodes



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
● Proof: ⇨
Suppose φ has satisfying assignment

● So each clause must have at least one true literal
● Pick corresponding nodes in G φ
● There are k = t φ nodes

● They are a clique because in Gφ we connect all but

(A) Nodes in same clause

    ???

(B) Contradictory nodes.



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
● Proof: ⇨
Suppose φ has satisfying assignment

● So each clause must have at least one true literal
● Pick corresponding nodes in G φ
● There are k = t φ nodes

● They are a clique because in Gφ we connect all but

(A) Nodes in same clause

    Our nodes are picked from different clauses

(B) Contradictory nodes. ???



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
● Proof: ⇨
Suppose φ has satisfying assignment

● So each clause must have at least one true literal
● Pick corresponding nodes in G φ
● There are k = t φ nodes

● They are a clique because in Gφ we connect all but

(A) Nodes in same clause

    Our nodes are picked from different clauses

(B) Contradictory nodes. Our nodes correspond to 

true literals in assignment: if x true then ¬ x can't be



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈

● High-level view of proof of ⇦

● We suppose Gφ has a clique of size tφ,

● then we show a satisfying assignment for φ



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
● Proof: ⇦
● Suppose Gφ  has a clique of size tφ

● Note you have exactly one node per clause

because ???



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
● Proof: ⇦
● Suppose Gφ  has a clique of size tφ

● Note you have exactly one node per clause

because by (A) there are no edges within clauses

● Define assignment that makes those literals true

Possible ???



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
● Proof: ⇦
● Suppose Gφ  has a clique of size tφ

● Note you have exactly one node per clause

because by (A) there are no edges within clauses

● Define assignment that makes those literals true

Possible by (B): contradictory literals not connected

● Assignment satisfies φ because ???



  

● Claim: φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
● Proof: ⇦
● Suppose Gφ  has a clique of size tφ

● Note you have exactly one node per clause

because by (A) there are no edges within clauses

● Define assignment that makes those literals true

Possible by (B): contradictory literals not connected

● Assignment satisfies φ because every clause is true



  

Back to example:
       φ = (x V y V z)  Λ  (¬x V ¬y V z)  Λ  (x V y V ¬z)

x

z

¬y z

x

yy

¬x

¬z



  

Back to example:
       φ = (x V y V z)  Λ  (¬x V ¬y V z)  Λ  (x V y V ¬z)
               0    1    0          1     0     0         0    1     1

x

z

¬y z

x

y

Assignment
    x = 0 
    y = 1
    z = 0

y

¬x

¬z



  

Back to example:
       φ = (x V y V z)  Λ  (¬x V ¬y V z)  Λ  (x V y V ¬z)
               1    0    1          0     1     1         1    0     0

x

z

y

Assignment
    x = 1 
    y = 0
    z = 1

y

¬x

¬zz

¬y

x



  

● Theorem: CLIQUE  P  3SAT  P∈ ⇨ ∈

● Proof outline:

We give TM R that on input φ :
(1) Computes graph Gφ  and integer tφ  such that

                    φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
(2) R runs in polynomial time

● So far: defined R, proved (1). It remains to see (2)

● (2) is less interesting.



  

● R : “On input φ = (a1Vb1Vc1) Λ (a2Vb2Vc2) Λ … Λ (akVbkVck)

Nodes of Gφ : one for each ai bi ci

Edges of Gφ : Connect all nodes except

                 (A) Nodes in same clause

                 (B) Contradictory nodes, such as x and ¬ x
t φ := k”

● We do not directly count the steps of TM R

Too low-level, complicated, uninformative.

● We give a more high-level argument



  

● R : “On input φ = (a1Vb1Vc1) Λ (a2Vb2Vc2) Λ … Λ (akVbkVck)

Nodes of Gφ : one for each ai bi ci

Edges of Gφ : Connect all nodes except

                 (A) Nodes in same clause

                 (B) Contradictory nodes, such as x and ¬ x
t φ := k”

● To compute nodes: examine all literals.

Number of literals ≤ | φ |

● This is polynomial in the input length | φ |



  

● R : “On input φ = (a1Vb1Vc1) Λ (a2Vb2Vc2) Λ … Λ (akVbkVck)

Nodes of Gφ : one for each ai bi ci

Edges of Gφ : Connect all nodes except

                 (A) Nodes in same clause

                 (B) Contradictory nodes, such as x and ¬ x
t φ := k”

● To compute edges: examine all pairs of nodes.

         Number of pairs is ≤ (number of nodes)2 ≤ | φ |2

● Which is polynomial in the input length | φ |



  

● R : “On input φ = (a1Vb1Vc1) Λ (a2Vb2Vc2) Λ … Λ (akVbkVck)

Nodes of Gφ : one for each ai bi ci

Edges of Gφ : Connect all nodes except

                 (A) Nodes in same clause

                 (B) Contradictory nodes, such as x and ¬ x
t φ := k”

● Overall, we examine ≤ | φ | + | φ |2

● Which is polynomial in the input length | φ |
● This concludes the proof.



  

● Theorem: CLIQUE  P  3SAT  P∈ ⇨ ∈

● We have concluded the proof of above theorem

● Recall outline:

We give TM R that on input φ :
(1) Computes graph Gφ  and integer tφ  such that

                    φ  3SAT ∈  (Gφ , tφ)  CLIQUE∈
(2) R runs in polynomial time



  

●  Definition: 
SUBSET-SUM = {(a1, a2, ..., an,t) :  i1,i2,...,ik  n

                               such that ai1+ai2+....+aik = t }

●  Example:
● (5, 2, 14, 3, 9, 25) ? SUBSET-SUM



  

●  Definition: 
SUBSET-SUM = {(a1, a2, ..., an,t) :  i1,i2,...,ik  n

                               such that ai1+ai2+....+aik = t }

●  Example:
● (5, 2, 14, 3, 9, 25)  SUBSET-SUM∈

          because 2 + 14 + 9 = 25
● (1, 3, 4, 9, 15) ? SUBSET-SUM



  

●  Definition: 
SUBSET-SUM = {(a1, a2, ..., an,t) :  i1,i2,...,ik  n

                               such that ai1+ai2+....+aik = t }

●  Example:
● (5, 2, 14, 3, 9, 25)  SUBSET-SUM∈

          because 2 + 14 + 9 = 25
● (1, 3, 4, 9, 15)  ∉SUBSET-SUM

          because no subset of {1,3,4,9} sums to 15

●  Conjecture: SUBSET-SUM  P∉



  

● Theorem: SUBSET-SUM  P  3SAT  P∈ ⇨ ∈

● Proof outline:

We give TM R that on input φ :
(1) Computes numbers a1, a2, ..., an,t  such that

            φ  3SAT ∈   (a1, a2, ..., an,t)  SUBSET-SUM∈
(2) R runs in polynomial time



  

● Theorem: SUBSET-SUM  P  3SAT  P∈ ⇨ ∈

● Warm-up for definition of R:
● On input φ with v variables and k clauses:

● R will produce a list of numbers.
● Numbers will have many digits, v + k

    and look like this:  1000010011010011

First v (most significant) digits correspond to 

variables
● Other k (least significant) correspond to clauses



  

● Theorem: SUBSET-SUM  P  3SAT  P∈ ⇨ ∈
● Definition of R:
● “On input φ with v variables and k clauses :
● For each variable x include
    ax

T = 1 in x's digit, and 1 in every digit of a clause
                              where x appears without negation

    ax
F = 1 in x's digit, and 1 in every digit of a clause

                              where x appears negated

● For each clause C, include twice
    aC = 1 in C's digit, and 0 in others

● Set t = 1 in first v digits, and 3 in rest k digits”



  

Example:
       φ = (x V y V z)  Λ  (¬x V ¬y V z)  Λ  (x V y V ¬z)

3 variables + 3 clauses    6 digits for each number
            var    var    var  clause  clause  clause
              x       y       z        1          2           3          

ax
T =    1       0       0        1          0           1

ax
F =    1       0       0        0          1           0

ay
T =    0       1       0        1          0           1

ay
F =    0       1       0        0          1           0

az
T =    0       0       1        1          1           0

az
F =    0       0       1        0          0           1

ac1 =    0       0       0        1          0           0
ac2 =    0       0       0        0          1           0
ac3 =    0       0       0        0          0           1

t   =      1       1       1        3          3           3

two copies of
each of these



  

● Claim: φ  3SAT ∈   R( φ )   SUBSET-SUM∈
● Proof: ⇨
Suppose φ has satisfying assignment

● Pick ax
T if x is true, ax

F if x is false

● The sum of these numbers yield 1 in first v digits

because ???



  

● Claim: φ  3SAT ∈   R( φ )   SUBSET-SUM∈
● Proof: ⇨
Suppose φ has satisfying assignment

● Pick ax
T if x is true, ax

F if x is false

● The sum of these numbers yield: 1 in first v digits
because ax

T , ax
F have 1 in x's digit, 0 in others

                                          and 1, 2, or 3 in last k 

digits

because ???



  

● Claim: φ  3SAT ∈   R( φ )   SUBSET-SUM∈
● Proof: ⇨
Suppose φ has satisfying assignment

● Pick ax
T if x is true, ax

F if x is false

● The sum of these numbers yield 1 in first v digits
because ax

T , ax
F have 1 in x's digit, 0 in others

                                         and 1, 2, or 3 in last k digits

because each clause has true literal, and
ax

T has 1 in clauses where x appears not negated

ax
F has 1 in clauses where x appears negated

● By picking ????   ?????  ???????  ?? sum reaches t



  

● Claim: φ  3SAT ∈   R( φ )   SUBSET-SUM∈
● Proof: ⇨
Suppose φ has satisfying assignment

● Pick ax
T if x is true, ax

F if x is false

● The sum of these numbers yield 1 in first v digits
because ax

T , ax
F have 1 in x's digit, 0 in others

                                         and 1, 2, or 3 in last k digits

because each clause has true literal, and
ax

T has 1 in clauses where x appears not negated

ax
F has 1 in clauses where x appears negated

● By picking appropriate subset of aC sum reaches t



  

● Claim: φ  3SAT ∈   R( φ )   SUBSET-SUM∈
● Proof:  ⇦
● Suppose a subset sums to t = 1111111111333333333
● No carry in sum, because ???



  

● Claim: φ  3SAT ∈   R( φ )   SUBSET-SUM∈
● Proof:  ⇦
● Suppose a subset sums to t = 1111111111333333333
● No carry in sum, because only 3 literals per clause
● So digits behave “independently”
● For each pair ax

T  ax
F exactly one is included

otherwise ???



  

● Claim: φ  3SAT ∈   R( φ )   SUBSET-SUM∈
● Proof:  ⇦
● Suppose a subset sums to t = 1111111111333333333
● No carry in sum, because only 3 literals per clause
● So digits behave “independently”
● For each pair ax

T  ax
F exactly one is included

otherwise would not get 1 in that digit
● Define x true if ax

T included, false otherwise

● For any clause C, the aC contribute ≤ 2 in C's digit

● So each clause must have a true literal

otherwise ???



  

● Claim: φ  3SAT ∈   R( φ )   SUBSET-SUM∈
● Proof:  ⇦
● Suppose a subset sums to t = 1111111111333333333
● No carry in sum, because only 3 literals per clause
● So digits behave “independently”
● For each pair ax

T  ax
F exactly one is included

otherwise would not get 1 in that digit
● Define x true if ax

T included, false otherwise

● For any clause C, the aC contribute ≤ 2 in C's digit

● So each clause must have a true literal

otherwise sum would not get 3 in that digit



  

Back to example:
       φ = (x V y V z)  Λ  (¬x V ¬y V z)  Λ  (x V y V ¬z)

 
            var    var    var  clause  clause  clause
              x       y       z        1          2           3          

ax
T =    1       0       0        1          0           1

ax
F =    1       0       0        0          1           0

ay
T =    0       1       0        1          0           1

ay
F =    0       1       0        0          1           0

az
T =    0       0       1        1          1           0

az
F =    0       0       1        0          0           1

ac1 =    0       0       0        1          0           0
ac2 =    0       0       0        0          1           0
ac3 =    0       0       0        0          0           1

t   =      1       1       1        3          3           3

(2x)

(2x)

(2x)



  

Back to example:
       φ = (x V y V z)  Λ  (¬x V ¬y V z)  Λ  (x V y V ¬z)

               0    1    0          1     0     0         0    1     1
            var    var    var  clause  clause  clause
              x       y       z        1          2           3          

ax
T =    1       0       0        1          0           1

ax
F =    1       0       0        0          1           0

ay
T =    0       1       0        1          0           1

ay
F =    0       1       0        0          1           0

az
T =    0       0       1        1          1           0

az
F =    0       0       1        0          0           1

ac1 =    0       0       0        1          0           0  (choose twice)

ac2 =    0       0       0        0          1           0  (choose twice)

ac3 =    0       0       0        0          0           1

t   =      1       1       1        3          3           3

(2x)

(2x)

(2x)

Assignment
    x = 0 
    y = 1
    z = 0



  

Back to example:
       φ = (x V y V z)  Λ  (¬x V ¬y V z)  Λ  (x V y V ¬z)

               1    1    1          0     0     1         1    1     0
            var    var    var  clause  clause  clause
              x       y       z        1          2           3          

ax
T =    1       0       0        1          0           1

ax
F =    1       0       0        0          1           0

ay
T =    0       1       0        1          0           1

ay
F =    0       1       0        0          1           0

az
T =    0       0       1        1          1           0

az
F =    0       0       1        0          0           1

ac1 =    0       0       0        1          0           0

ac2 =    0       0       0        0          1           0  (choose twice)

ac3 =    0       0       0        0          0           1

t   =      1       1       1        3          3           3

(2x)

(2x)

(2x)

Assignment
    x = 1 
    y = 1
    z = 1



  

● It remains to argue that ???



  

● It remains to argue that R runs in polynomial time

● To compute numbers ax
T ax

F  :

For each variable x, examine k ≤ | φ | clauses

Overall, examine v k ≤ | φ |
2
 clauses

● To compute numbers aC examine k ≤ | φ | clauses

● In total | φ |
2 

+ | φ |, which is polynomial in input 

length 
● End of proof that SUBSET-SUM  P  3SAT  P∈ ⇨ ∈



  

●  Definition: A 3-coloring of a graph is a coloring of   

each node, using at most 3 colors,

such that no adjacent nodes have the same color.

●  Example:

a 3-coloring not a 3-coloring



  

●  Definition:

3COLOR = {G | G is a graph with a 3-coloring}

●  Example:

G =                                      

      G  ??  3COLOR                     



  

●  Definition:

3COLOR = {G | G is a graph with a 3-coloring}

●  Example:

G =                                      H =  

      G  ∈  3COLOR                     H  ?  3COLOR
                                            



  

●  Definition:

3COLOR = {G | G is a graph with a 3-coloring}

●  Example:

G =                                      H =  

      G  ∈  3COLOR                     H    3COLOR∉
                                            (> 3 nodes, all connected)

● Conjecture: 3COLOR  P∉



  

● Theorem: 3COLOR  P  3SAT  P∈ ⇨ ∈

● Proof outline:

Give algorithm R that on input φ :

(1) Computes a graph G
φ
 such that

               φ  3SAT ∈    G
φ
  3COLOR.∈

(2) R runs in polynomial time

Enough to prove the theorem ?



  

● Theorem: 3COLOR  P  3SAT  P∈ ⇨ ∈

● Proof outline:

Give algorithm R that on input φ :

(1) Computes a graph G
φ
 such that

               φ  3SAT ∈    G
φ
  3COLOR.∈

(2) R runs in polynomial time

Enough to prove the theorem because:

If  TM ∃ C that solves 3COLOR in polynomial-time

Then C( R( φ ) ) solves 3SAT in polynomial-time



  

●  Theorem: 3COLOR  P  3SAT  P∈ ⇨ ∈
● Definition of R:

● “On input φ, construct Gφ as follows:

● Add 3 special nodes
called the “palette”.

● For each variable,
add 2 literal nodes.

● For each clause,
add 6 clause nodes.

T = “true”
F = “false”
B = “base”

x ¬x

T

F

B



  

●  Theorem: 3COLOR  P  3SAT  P∈ ⇨ ∈
● Definition of R (continued):

● For each variable x, connect:

● For each clause (a V b V c),
connect:

● End of definition of R.

x ¬x

T

F

B

T

F

B

a b c



  

Example:   φ = (x V y V z)  Λ  (¬x V ¬y V z)  

T

F

B

x ¬x y ¬y z ¬z

Gφ=



  

● Claim: φ  3SAT ∈  Gφ  3COLOR∈

● Before proving the claim, we make some remarks,

● and prove a Fact that will be useful



  

Remark

● Idea: T's color represents TRUE
         F's color represents FALSE

● In a 3-coloring, all variable nodes
must be colored T or F because?

x ¬x

T

F

B



  

Remark

● Idea: T's color represents TRUE
         F's color represents FALSE

● In a 3-coloring, all variable nodes
must be colored T or F because
connected to B.

Also, x and ¬x must have different colors
because?

x ¬x

T

F

B



  

Remark

● Idea: T's color represents TRUE
         F's color represents FALSE

● In a 3-coloring, all variable nodes
must be colored T or F because
connected to B.

Also, x and ¬x must have different colors
because they are connected. 

So we can “translate” a 3-coloring of Gφ

into a true/false assignment to variables of φ

x ¬x

T

F

B



  a b c

T

F

B

Fact: Graph below 3-colorable  a, b, or c colored T



  

T

F

B

Fact: Graph below 3-colorable  a, b, or c colored T

Proof of :⇨ Suppose by contradiction that

a, b, and c are all colored F then P colored how?

P

a b c



  a b c

T

F

B

Fact: Graph below 3-colorable  a, b, or c colored T

Proof of :⇨ Suppose by contradiction that

a, b, and c are all colored F then P colored F.
Then Q colored how?

P

Q



  

T

F

B

Fact: Graph below 3-colorable  a, b, or c colored T

Proof of :⇨ Suppose by contradiction that

a, b, and c are all colored F then  P colored F.
Then Q colored F. But this is not a valid 3-coloring
                                                                               Done 
                       

P

Q

a b c



  

T

F

B

Fact: Graph below 3-colorable  a, b, or c colored T

Proof of  :⇦  We show a 3-coloring for each way in 

which a, b, and c may be colored 

a b c



  

Fact: Graph below 3-colorable  a, b, or c colored T

Proof of  :⇦  We show a 3-coloring for each way in 

which a, b, and c may be colored                        

Done 



  

● Claim: φ  3SAT ∈  Gφ  3COLOR∈
● Proof: ⇨
● Color palette nodes green, red, blue: T, F, B.
● Suppose φ has satisfying assignment.

● Color literal nodes T or F accordingly                        
Ok because ?

x ¬x

T

F

B



  

● Claim: φ  3SAT ∈  Gφ  3COLOR∈
● Proof: ⇨
● Color palette nodes green, red, blue: T, F, B.
● Suppose φ has satisfying assignment.

● Color literal nodes T or F accordingly

Ok because they don't touch

T or F in palette, and x and ¬ x

are given different colors

● Color clause nodes using previous Fact.
Ok because?

x ¬x

T

F

B



  

● Claim: φ  3SAT ∈  Gφ  3COLOR∈
● Proof: ⇨
● Color palette nodes green, red, blue: T, F, B.
● Suppose φ has satisfying assignment.

● Color literal nodes T or F accordingly

Ok because they don't touch

T or F in palette, and x and ¬ x

are given different colors

● Color clause nodes using previous Fact.
Ok because each clause has some true literal

x ¬x

T

F

B



  

● Claim: φ  3SAT ∈  Gφ  3COLOR∈
● Proof: ⇦
● Suppose Gφ has a 3-coloring

● Assign all variables to true or false accordingly.
This is a valid assignment because?



  

● Claim: φ  3SAT ∈  Gφ  3COLOR∈
● Proof: ⇦
● Suppose Gφ has a 3-coloring

● Assign all variables to true or false accordingly.
This is a valid assignment because by Remark,
x and ¬x are colored T or F and don't conflict.

● This gives some true literal per clause because?



  

● Claim: φ  3SAT ∈  Gφ  3COLOR∈
● Proof: ⇦
● Suppose Gφ has a 3-coloring

● Assign all variables to true or false accordingly.
This is a valid assignment because by Remark,
x and ¬x are colored T or F and don't conflict.

● This gives some true literal per clause because

clause is colored correctly, and by previous Fact

● All clauses are satisfied, so φ is satisfied.



  

B

z ¬z

Example:   φ = (x V y V z)  Λ  (¬x V ¬y V z)  

x ¬x y ¬y

Gφ=
Satisfying assignment: x = 0, y = 0, z = 1

T

F

BB

B



  

● It remains to argue that ???



  

● It remains to argue that R runs in polynomial time

● To add variable nodes and edges, 

cycle over v ≤ | φ | variables

● To add clause nodes and edges,
cycle over c ≤ | φ | clauses

● Overall, ≤ | φ | + | φ |,
which is polynomial in input length | φ |

● This is the only interesting detail
● Conclude proof that 3COLOR  P  3SAT  P∈ ⇨ ∈



  

● We saw polynomial-time reductions

  from 3SAT to CLIQUE

                        SUBSET-SUM

                        3COLOR

● There are many other polynomial-time reductions

● They form a fascinating web

● Coming up with reductions is “art”



  

● All languages
● Decidable

Turing machines
● NP
● P
● Context-free

Context-free grammars, push-down automata
● Regular

Automata, non-deterministic automata, 

regular expressions

Big picture



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

        w  L ∈    ∃y , |y| ≤ |w|c , M accepts (w,y) }

● y is called “witness”

● NP means Non-deterministic Polynomial time.

“Non-deterministic” refers to “  ∃y”

● Do not confuse NP with (not P)



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

        w  L ∈    ∃y , |y| ≤ |w|c , M accepts (w,y) }

● Claim: P  NP⊆
● Proof:

              ?



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

        w  L ∈    ∃y , |y| ≤ |w|c , M accepts (w,y) }

● Claim: P  NP⊆
● Proof:

Ignore y                                                         Done



  

● Let us see again why P  NP⊆

● NP = { L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● P := ?



  

● Let us see again why P  NP⊆

● NP = { L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● P := Uc TIME(nc) = TIME(n1) U TIME(n2) U …

     =



  

● Let us see again why P  NP⊆

● NP = { L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● P := Uc TIME(nc) = TIME(n1) U TIME(n2) U …

     = {L :  integer c : ∃ L  TIME (n∈ c
) }

     =



  

● Let us see again why P  NP⊆

● NP = { L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● P := Uc TIME(nc) = TIME(n1) U TIME(n2) U …

     = {L :  integer c : L  TIME (n∃ ∈ c
) }

     = {L :  integer c,  TM M that runs in time n∃ ∃ c 
:

              M decides L }



  

● Let us see again why P  NP⊆

● NP = { L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈   y , |y| ≤ |w|∃ c , M accepts (w,y) }

● P := Uc TIME(nc) = TIME(n1) U TIME(n2) U …

     = {L :  integer c : L  TIME (n∃ ∈ c
) }

     = {L :  integer c,  TM M that runs in time n∃ ∃ c 
:

               w  L <=> M accepts w}∈

● Same definition, except for “  y ∃ ” part



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: 3SAT  NP∈
● Proof: Input w = φ. y is ?



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: 3SAT  NP∈
● Proof: Input w = φ. y is a truth assignment
● |y| ≤ ?



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: 3SAT  NP∈
● Proof: Input w = φ. y is a truth assignment
● |y| ≤ number of variables ≤ | φ |
● M checks ?



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: 3SAT  NP∈
● Proof: Input w = φ. y is a truth assignment
● |y| ≤ number of variables ≤ | φ |
● M checks if all clauses in φ satisfied by y
● M examines ≤ ? clauses         polynomial time      ⇨



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: 3SAT  NP∈
● Proof: Input w = φ. y is a truth assignment
● |y| ≤ number of variables ≤ | φ |
● M checks if all clauses in φ satisfied by y
● M examines ≤ | φ | clauses  polynomial time   Done⇨



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: CLIQUE  NP∈
● Proof: Input w = (G,t). y is ?



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: CLIQUE  NP∈
● Proof: Input w = (G,t). y is a set of t nodes
● |y| ≤ ?



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: CLIQUE  NP∈
● Proof: Input w = (G,t). y is a set of t nodes
● |y| ≤ t ≤ | w |
● M checks if ?



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: CLIQUE  NP∈
● Proof: Input w = (G,t). y is a set of t nodes
● |y| ≤ t ≤ | w |
● M checks if every pair of nodes in y is connected
● M examines ≤ ?     pairs  polynomial time⇨



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: CLIQUE  NP∈
● Proof: Input w = (G,t). y is a set of t nodes
● |y| ≤ t ≤ | w |
● M checks if every pair of nodes in y is connected
● M examines ≤ t

2
 pairs polynomial time            Done⇨



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: SUBSET-SUM  NP∈
● Proof: w = (a1, a2, ..., an, t);  y is ?



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: SUBSET-SUM  NP∈
● Proof: w = (a1, a2, ..., an, t);  y is a subset of the a

i

● |y| ≤ ?



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: SUBSET-SUM  NP∈
● Proof: w = (a1, a2, ..., an, t);  y is a subset of the a

i

● |y| ≤ n ≤ | w |
● M checks if ?



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: SUBSET-SUM  NP∈
● Proof: w = (a1, a2, ..., an, t);  y is a subset of the a

i

● |y| ≤ n ≤ | w |
● M checks if y sums to t
● M sums y ≤ ? numbers  polynomial time⇨



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: SUBSET-SUM  NP∈
● Proof: w = (a1, a2, ..., an, t);  y is a subset of the a

i

● |y| ≤ n ≤ | w |
● M checks if y sums to t
● M sums y ≤ |w| numbers  polynomial time      Done⇨



  

● Definition: NP =

{ L :  integer c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: 3COLOR  NP∈
● Proof: Input w = G. y is a coloring
● |y| ≤ |G| ≤ | w |
● M checks if adjacent nodes in G have different color
● M examines ≤ |G|

2
 pairs  polynomial time      Done⇨



  

● Cook-Levin Theorem: 3SAT  P  P = NP∈ ⇨

● Meaning, if 3SAT  P, then arbitrary NP computation ∈
can be done efficiently

● Surprising: from one problem to arbitrary computation

● Unsurprising?: Computers made of V, Λ, ¬ gates

                       That's what 3SAT is



  

● Definition: L is NP-complete if

(1) L  NP, and∈
(2) L  P P = NP∈ ⇨

● Claim: 3SAT is NP-complete
● Proof: 

(1) We saw earlier 3SAT  NP∈
(2) is Cook-Levin Theorem                                Done



  

● Definition: L is NP-complete if

(1) L  NP, and∈
(2) L  P P = NP∈ ⇨

● Fact: Suppose L is such that:

     (1)  L  NP∈
     (2') 3SAT is polynomial-time reducible to L

then L is NP-complete
● Proof of (2):

L  P  ∈ ⇨?



  

● Definition: L is NP-complete if

(1) L  NP, and∈
(2) L  P P = NP∈ ⇨

● Fact: Suppose L is such that:

     (1)  L  NP∈
     (2') 3SAT is polynomial-time reducible to L

then L is NP-complete
● Proof of (2):

L  P  3SAT  P  ∈ ⇨ ∈ ⇨?

(2')



  

● Definition: L is NP-complete if

(1) L  NP, and∈
(2) L  P P = NP∈ ⇨

● Fact: Suppose L is such that:

     (1)  L  NP∈
     (2') 3SAT is polynomial-time reducible to L

then L is NP-complete
● Proof of (2):

L  P  3SAT  P  P = NP                             Done∈ ⇨ ∈ ⇨

(2') (Cook-Levin Theorem)



  

● Fact: Suppose L is such that:

     (1)  L  NP∈
     (2') 3SAT is polynomial-time reducible to L

then L is NP-complete

● Claim:

CLIQUE, SUBSET-SUM, 3COLOR are NP-complete

● Proof of claim:

We showed (1) and (2') for each of these           Done



  

● Recap:
● If L is NP-complete then L  P  P = NP,∈ ⇨
equivalently, P ≠ NP  L  P⇨ ∉

● 3SAT, CLIQUE, SUBSET-SUM, 3COLOR

are NP-complete

● They are the “hardest problems” in NP:

If there is anything in NP that is not in P,

then 3SAT, CLIQUE, SUBSET-SUM, 3COLOR  P∉



  

● What else is NP-complete?

● Many other problems people care about

● This includes many puzzles/games

● We now list a few

● Technical remark: need to generalize puzzles/games 

to boards/levels of arbitrary size. Not a problem.



  

● NP-complete

● SUDOKU

● PEG SOLITAIRE

● MASTERMIND



  

● NP-complete

● TETRIS

● LEMMINGS

● SUPER MARIO



  

NP

NP-complete

P

Our world, assuming P ≠ NP

● 3SAT ● CLIQUE



  

P = NP = NP-complete

Our world, assuming P = NP

● 3SAT ● CLIQUE



  

● Definition: Exponential Time: EXP := Uc TIME(2nc
)

● Claim: ?  EXP⊆



  

● Definition: Exponential Time: EXP := Uc TIME(2nc
)

● Recall NP = { L :  c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: NP  EXP⊆
● Proof: ?



  

● Definition: Exponential Time: EXP := Uc TIME(2nc
)

● Recall NP = { L :  c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: NP  EXP⊆
● Proof: Suppose L  NP. Let c, M be as in defin. of NP∈
Let TM M' := “On input w,

                    for every y : |y| ≤ |w|c , run M(w,y)

                    if any accept, ACCEPT; if not, REJECT”
● M' accepts w   ?

                 



  

● Definition: Exponential Time: EXP := Uc TIME(2nc
)

● Recall NP = { L :  c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: NP  EXP⊆
● Proof: Suppose L  NP. Let c, M be as in defin. of NP.∈
Let TM M' := “On input w,

                    for every y : |y| ≤ |w|c , run M(w,y)

                    if any accept, ACCEPT; if not, REJECT”
● M' accepts w   y , |y| ≤ |w| ∃ c , M accepts (w,y)
● M' runs in time ?

                 



  

● Definition: Exponential Time: EXP := Uc TIME(2nc
)

● Recall NP = { L :  c,  TM M that runs in time n∃ ∃ c 
:

                 w  L ∈    y , |y| ≤ |w|∃ c , M accepts (w,y) }

● Claim: NP  EXP⊆
● Proof: Suppose L  NP. Let c, M be as in defin. of NP.∈
Let TM M' := “On input w,

                    for every y : |y| ≤ |w|c , run M(w,y)

                    if any accept, ACCEPT; if not, REJECT”
● M' accepts w   y , |y| ≤ |w| ∃ c , M accepts (w,y)
● M' runs in time 2|w|c |(w,y)|c ≤ 2|w|c+1                  

Done



  

All languages

U|                 Different?

Decidable

U|

EXP

U|

NP

U|

P

U|

context-free

U|

regular



  

All languages

U|                 ATM  Decidable∉
Decidable

U|

EXP

U|

NP

U|

P

U|                Different? 

context-free

U|

regular



  

All languages

U|                 ATM  Decidable∉
Decidable

U|

EXP

U|

NP

U|

P

U|                {ambmcm : m ≥ 0}  P,   context-free∈ ∉
context-free

U|                Different? 

regular



  

All languages

U|                 ATM  Decidable∉
Decidable

U|                 Also different (will not see)

EXP

U|                Different?

NP

U|                Different?

P

U|                {ambmcm : m ≥ 0}  P,   context-free∈ ∉
context-free

U|                {ambm : m ≥ 0}  context-free,  regular∈ ∉
regular



  

● Recall: P  NP  EXP⊆ ⊆

● Next Claim: P ≠ EXP

● So either P ≠ NP, or NP ≠ EXP

● We expect both to be true

● We can't prove any



  

● Claim: P ≠ EXP
● Proof: Consider D := “On input TM M

                                   run M on input M for 2
|M|

 steps

                                   if it accepts, REJECT

                                   otherwise,    ACCEPT”

● L(D)  TIME(∈ ??)



  

● Claim: P ≠ EXP
● Proof: Consider D := “On input TM M

                                   run M on input M for 2
|M|

 steps

                                   if it accepts, REJECT

                                   otherwise,    ACCEPT”

● L(D)  TIME(∈ n 2
n
), so L(D)  ∈?

● To run M for 1 step, D takes at most n = |M| steps

● This is a loose bound, sufficient for our purposes



  

● Claim: P ≠ EXP
● Proof: Consider D := “On input TM M

                                   run M on input M for 2
|M|

 steps

                                   if it accepts, REJECT

                                   otherwise,    ACCEPT”

● L(D)  TIME(n 2∈ n
), so L(D)  EXP∈

>



  

● Claim: P ≠ EXP
● Proof: Consider D := “On input TM M

                                   run M on input M for 2
|M|

 steps

                                   if it accepts, REJECT

                                   otherwise,    ACCEPT”

● L(D)  TIME(n 2∈ n
), so L(D)  EXP∈

● We show L(D)  P by contradiction:∉



  

● Claim: P ≠ EXP
● Proof: Consider D := “On input TM M

                                   run M on input M for 2
|M|

 steps

                                   if it accepts, REJECT

                                   otherwise,    ACCEPT”

● L(D)  TIME(n 2∈ n
), so L(D)  EXP∈

● We show L(D)  P by contradiction: Assume L(D)  P∉ ∈
Then  TM N, integer c : L(N)=L(D), N runs in time n∃ c

So N(N) = D(N) = ?



  

● Claim: P ≠ EXP
● Proof: Consider D := “On input TM M

                                   run M on input M for 2
|M|

 steps

                                   if it accepts, REJECT

                                   otherwise,    ACCEPT”

● L(D)  TIME(n 2∈ n
), so L(D)  EXP∈

● We show L(D)  P by contradiction: Assume L(D)  P∉ ∈
Then  TM N, integer c : L(N)=L(D), N runs in time n∃ c

So N(N) = D(N) = not N(N), contradiction, so L(D)  P∉
                      (n

c
 ≤ 2

n
)                                         Done 



  

● Technical detail: Need n
c
 ≤ 2

n      
where n = |N|

● Since c is fixed, above true for sufficiently large n

● Need representation of programs where each 

program appears infinitely often

● This is true for every reasonable representation

● For example, add white spaces to your JAVA code



  

● Claim: P ≠ EXP

● We have concluded the proof of this claim

● But the decidable language shown  P is “∉ unnatural”

● Next we use above claim to give a more natural one

● This will be similar to the proof that

{G : G is CFG and L(G) = ∑* } is undecidable



  

● Recall regular expressions

Definition Regular expressions RE over S are:

  

 e

 a              if a in S

 R R'         if R, R' are RE

 R U R'     if R, R' are RE

 R*            if R is RE

Example:  S*aabS* , (a*ba*ba*)* 



  

● All-RE = {R : R is RE and L(R) = ∑* }

● It is not known if All-RE  P∈

● We consider a more powerful type of RE,

RE with exponentiation, abbreviated REE,

then we prove All-REE  P∉



  

● Definition:

Regular expressions with exponentiation (REE)

  

 e

 a              if a in S

 R R'         if R, R' are RE

 R U R'     if R, R' are RE

 R*            if R is RE

 R
k
           if R is RE

● L(R
k
) = L(R) o L(R) o … o L(R)        (k times)



  

● Note: In  R
k   

, k  is written in binary

●

So L(a
1000000

) = { ? }



  

● Note: In  R
k   

, k  is written in binary

●

So L(a
1000000

) =   

{ aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaa }

● This allows to write down compactly very long RE

● It is what makes the next problem hard



  

● Definition: All-REE = {R : R is REE and L(R) = ∑* }

● Fact: All-REE is decidable
● Proof sketch:

We already noted All-RE is decidable

An REE can be converted to an RE.                   Done

● Theorem: All-REE  P∉



  

● Theorem: All-REE ={R: R is REE and L(R)=∑*}  P ∉

● Proof: Suppose D decides All-REE in polynomial time

We show EXP = P, violating previous theorem

>



  

● Theorem: All-REE ={R: R is REE and L(R)=∑*}  P ∉

● Proof: Suppose D decides All-REE in polynomial time

We show EXP = P, violating previous theorem
●

Let L  EXP. So  c, TM M that decides L in time ∈ ∃ 2nc

● We construct D' that decides L in polynomial time:
● D' := “On input w:

         construct REE R : L(R) = ∑*  M accepts w

         then?



  

● Theorem: All-REE ={R: R is REE and L(R)=∑*}  P ∉

● Proof: Suppose D decides All-REE in polynomial time

We show EXP = P, violating previous theorem
●

Let L  EXP. So  c, TM M that decides L in time ∈ ∃ 2nc

● We construct D' that decides L in polynomial time:
● D' := “On input w:

         construct REE R : L(R) = ∑*  M accepts w

         run D on R

         if it accepts, ACCEPT

         if it rejects, REJECT.”



  

● Given M,c, and w, want  R : L(R) = ∑*  M accepts w

We construct R : L(R) = all strings that are NOT  

                               rejecting computations of M on w

● Represent computation by sequence of 

configurations 
separated by #: C1#C2#C3 ...

● Example: q
0
000101#1q

3
00101#10q

2
0101

● How many symbols in each configuration?



  

●

Note: Because M runs in time 2nc

●

On input w, |w| = n, M can only use ?
 
tape

 
cells 



  

●

Note: Because M runs in time 2nc

●

On input w, |w| = n, M can only use 2nc 
tape

 
cells 

●

Each of our configurations will have ≤  2nc 
cells 

● Different from proof that All-CF is undecidable?



  

●

Note: Because M runs in time 2nc

●

On input w, |w| = n, M can only use 2nc 
tape

 
cells 

●

Each of our configurations will have exactly 2nc 
cells 

● Different from proof that All-CF is undecidable:

there we had no bound on the length of 

configurations



  

● Construct R: L(R) = all strings over Δ = {#} U Γ U Q

that are NOT rejecting computations of M on w

● A string C1#C2#C3#...#Ck is in L(R) 

(a) C1 is not the start configuration, or

(b) Ck is not a reject configuration, or

(c)  i : C∃ i does not yield Ci+1

● We construct REE for (a), (b), and (c) separately 

then use closure under U



  

● (a) REE Ra : L(Ra) = strings C1#C2#C3#...#Ck

such that C1 is not the start configuration q
0
w

● Ra = S0 U S1 U … Sn U Sb U S#

● S0 = do not start with q
0  

?

● Si = not wi at position i, 1 ≤ i ≤ n

● Sb = no _ in some position t, n+2 ≤ t ≤ 2nc

● S# = no # in position 2nc 
+ 1



  

● (a) REE Ra : L(Ra) = strings C1#C2#C3#...#Ck

such that C1 is not the start configuration q
0
w

● Ra = S0 U S1 U … Sn U Sb U S#

● S0 = do not start with q
0  

(Δ-q
0
) Δ*

● Si = not wi at position i, 1 ≤ i ≤ n   ?

● Sb = no _ in some position t, n+2 ≤ t ≤ 2nc

● S# = no # in position 2nc 
+ 1



  

● (a) REE Ra : L(Ra) = strings C1#C2#C3#...#Ck

such that C1 is not the start configuration q
0
w

● Ra = S0 U S1 U … Sn U Sb U S#

● S0 = do not start with q
0  

(Δ-q
0
) Δ*

● Si = not wi at position i, 1 ≤ i ≤ n   Δ
i
 (Δ-w

i
) Δ*

● Sb = no _ in some position t, n+2 ≤ t ≤ 2nc

?
● S# = no # in position 2nc 

+ 1



  

● (a) REE Ra : L(Ra) = strings C1#C2#C3#...#Ck

such that C1 is not the start configuration q
0
w

● Ra = S0 U S1 U … Sn U Sb U S#

● S0 = do not start with q
0  

(Δ-q
0
) Δ*

● Si = not wi at position i, 1 ≤ i ≤ n   Δ
i
 (Δ-w

i 
) Δ*

● Sb = no _ in some position t, n+2 ≤ t ≤ 2nc

            Δ
n+1

 (Δ U ε )2
nc

-n-2   (Δ - _ )  Δ*
● S# = no # in position 2nc 

+ 1 ?



  

● (a) REE Ra : L(Ra) = strings C1#C2#C3#...#Ck

such that C1 is not the start configuration q
0
w

● Ra = S0 U S1 U … Sn U Sb U S#

● S0 = do not start with q
0  

(Δ-q
0
) Δ*

● Si = not wi at position i, 1 ≤ i ≤ n   Δ
i
 (Δ-w

i 
) Δ*

● Sb = no _ in some position t, n+2 ≤ t ≤ 2nc

            Δ
n+1

 (Δ U ε )2
nc

-n-2   (Δ - _ )  Δ*

● S# = no # in position 2nc 
+ 1 Δ2nc

 (Δ - # )  Δ*



  

● (b) REE Rb : L(Rb) = strings C1#C2#C3#...#Ck

such that Rk is not a reject configuration

● Rb =  (Δ - qreject )*



  

● (c) REE Rc : L(Rc) = strings C1#C2#C3#...#Ck

such that  i : C∃ i does not yield Ci+1

● Here we exploit ? of TM computation



  

● (c) REE Rc : L(Rc) = strings C1#C2#C3#...#Ck

such that  i : C∃ i does not yield Ci+1

● Here we exploit locality of TM computation

● Fact: [Locality of TM computation]
TM configuration Ci yields Ci+1 

   ∀ j , the 6 symbols  (Ci )j    , (Ci )j+1    , (Ci )j+2 , 

                                     (Ci+1 )j , (Ci+1 )j+1 , (Ci+1 )j+2

are consistent with TM transition function δ
● So what does it mean if Ci does   not   yield Ci+1 ?



  

● (c) REE Rc : L(Rc) = strings C1#C2#C3#...#Ck

such that  i : C∃ i does not yield Ci+1

● Here we exploit locality of TM computation

● Fact: [Locality of TM computation]
TM configuration Ci does not yield Ci+1 

  ∃  j , the 6 symbols  (Ci )j    , (Ci )j+1    , (Ci )j+2 , 

                                     (Ci+1 )j , (Ci+1 )j+1 , (Ci+1 )j+2

are not consistent with TM transition function δ



  

● (c) REE Rc : L(Rc) = strings C1#C2#C3#...#Ck

such that   i : C∃ i does not yield Ci+1

● Rc = U Δ* abc Δ(2nc
- 2) def Δ*

Union U is over any            inconsistent with TM 

a b c ... d e f#... #......#

a b c

d e f
Ci Ci+1

2nc 
- 2

 



  

● We also need that constructing R takes time 

polynomial in |w|

● Easily verified by looking at each piece

● For example:

Sb =        Δ  
n+1

             (Δ U ε )  2
nc

-n-2 (Δ - _ )  Δ*

length ≤   1 + log(n+1) +   5   +      nc        +      7    

                                                                          ≤ nc+1



  

● Recap:

● Theorem: All-REE:={R: R is REE and L(G)=∑*}  P∉

● But All-REE is decidable

● Key of proof is, given M, c, and w, construct REE R : 

L(R) = all strings that are NOT rejecting computations 

 of M on w

● Use locality of TM computation (easier than JAVA)



  

● Theorem [Cook, Levin]: 3SAT  P  P = NP∈ ⇨
● Proof:



  

● Theorem [Cook, Levin]: 3SAT  P  P = NP∈ ⇨
● Proof:

Given M, w, and c, want to compute φ :

φ  3SAT ∈  y, |y|≤ |w|∃ c, M(w,y) accepts in time≤|w|c

● Computation of φ will run in polynomial time

● This proves the theorem because if 3SAT  P∈
we can solve φ in polynomial-time

Definition of NP



  

● Theorem [Cook, Levin]: 3SAT  P  P = NP∈ ⇨
● Proof:

Given M, w, and c, want to compute φ :

φ  3SAT ∈  y, |y|≤ ∃ |w|c, M(w,y) accepts in time≤|w|c

● It is convenient to let k := |w|c



  

● Theorem [Cook, Levin]: 3SAT  P  P = NP∈ ⇨
● Proof:

Given M, w, and c, want to compute φ :

φ  3SAT ∈  y, |y|≤ ∃ k, M(w,y) accepts in time ≤ k

● Now use definition of accept



  

● Theorem [Cook, Levin]: 3SAT  P  P = NP∈ ⇨
● Proof:

Given M, w, and c, want to compute φ :
● φ  3SAT ∈  y, |y|≤ k   C∃ ∃ 1, C 2, …, Ck  :

                      C1 is start configuration q0(w,y), AND

                      Ck is accept configuration, AND 

                       ∀i < k,  Ci yields Ci+1

● Variables of φ are the symbols in y, C1, C 2, …, Ck  

encoded in binary (true/false)
● Example: q0 →  001,  ( →  010



  

● Theorem [Cook, Levin]: 3SAT  P  P = NP∈ ⇨
● Proof:

Given M, w, and c, want to compute φ :
● φ  3SAT ∈  y, |y|≤ k   C∃ ∃ 1, C 2, …, Ck  :

                      C1 is start configuration q0(w,y), AND

                      Ck is accept configuration, AND 

                       ∀i < k,  Ci yields Ci+1

● Variables of φ are the symbols in y, C1, C 2, …, Ck  

Claim: For every i,  |Ci| ≤ k

Why?



  

● Theorem [Cook, Levin]: 3SAT  P  P = NP∈ ⇨
● Proof:

Given M, w, and c, want to compute φ :
● φ  3SAT ∈  y, |y|≤ k ∃  C∃ 1, |C1| ≤ k, …, Ck, |Ck| ≤ k :

                      C1 is start configuration q0(w,y), AND

                      Ck is accept configuration, AND 

                       ∀i < k,  Ci yields Ci+1

● Variables of φ are the symbols in y, C1, C 2, …, Ck  

Claim: For every i,  |Ci| ≤ k

● Because TM runs in time k, so uses ≤ k tape cells



  

● Theorem [Cook, Levin]: 3SAT  P  P = NP∈ ⇨
● Proof:

Given M, w, and c, want to compute φ :
● φ  3SAT ∈  y, |y|≤ k  C∃ ∃ 1, |C1| ≤ k, …, Ck, |Ck| ≤ k :

                      C1 is start configuration q0(w,y), AND

                      Ck is accept configuration, AND 

                      ∀ i < k,  Ci yields Ci+1

● Recall AND, , are all the same as Λ used in SAT∀



  

● Theorem [Cook, Levin]: 3SAT  P  P = NP∈ ⇨
● Proof:

Given M, w, and c, want to compute φ :
● φ  3SAT ∈  y, |y|≤ k  C∃ ∃ 1, |C1| ≤ k, …, Ck, |Ck| ≤ k :

                      C1 is start configuration q0(w,y) Λ

                      Ck is accept configuration Λ  

                      Λ i < k  Ci yields Ci+1

● Note Λ i < k  Ci yields Ci+1 means

      C1 yields C2 Λ  C2 yields C3 Λ … Λ  Ck-1 yields Ck  

● Use ????? of TM computation to rewrite yield



  

● Theorem [Cook, Levin]: 3SAT  P  P = NP∈ ⇨
● Proof:

Given M, w, and c, want to compute φ :
● φ  3SAT ∈  y, |y|≤ k  C∃ ∃ 1, |C1| ≤ k, …, Ck, |Ck| ≤ k :

                      C1 is start configuration q0(w,y) Λ

                      Ck is accept configuration Λ  

                      Λ i < k  Ci yields Ci+1

● Note Λ i < k  Ci yields Ci+1 means

      C1 yields C2 Λ  C2 yields C3 Λ … Λ  Ck-1 yields Ck  

● Use locality of TM computation to rewrite yield



  

● Theorem [Cook, Levin]: 3SAT  P  P = NP∈ ⇨
● Proof:

Given M, w, and c, want to compute φ :
● φ  3SAT ∈  y, |y|≤ k  C∃ ∃ 1, |C1| ≤ k, …, Ck, |Ck| ≤ k :

                      C1 is start configuration q0(w,y) Λ

                      Ck is accept configuration Λ  

                      Λ i < k  Λ j < k  (Ci )j ,   (Ci )j+1 ,   (Ci )j+2 , 

                                           (Ci+1)j , (Ci+1)j+1 , (Ci+1)j+2

                                           are consistent with TM       

                                             transition function

● Variables of φ = symbols in y, C1, ..., Ck. What is φ ?



  

● Theorem [Cook, Levin]: 3SAT  P  P = NP∈ ⇨
● Proof:

Given M, w, and c, want to compute φ :
● φ  3SAT ∈  y, |y|≤ k  C∃ ∃ 1, |C1| ≤ k, …, Ck, |Ck| ≤ k :

                      C1 is start configuration q0(w,y) Λ

                      Ck is accept configuration Λ  

                      Λ i < k  Λ j < k  (Ci )j ,   (Ci )j+1 ,   (Ci )j+2 , 

                                           (Ci+1)j , (Ci+1)j+1 , (Ci+1)j+2

                                           are consistent with TM       

                                             transition function

φ =

With patience, easy to put this into 3SAT format   Done



  

● Why do people believe that P ≠ NP?

● We have seen:

Because otherwise problems in NP such as 3SAT,  

CLIQUE, etc. would be in P

● We will see:

Because even many other tasks not known to be in 

NP would be in P!



  

● Theorem If P = NP there is a poly-time algorithm that 

given φ  SAT outputs a satisfying assignment∈
● Proof: ?



  

● Theorem If P = NP there is a poly-time algorithm that 

given φ  SAT outputs a satisfying assignment∈
● Proof: Let M be a poly-time machine deciding SAT.

Define N := “On input φ:

                    While there is a variable x in φ
                    - Let φF be φ with x replaced with False.

                    - If M(φF ) = 1 then set x False,

                    - otherwise set x True.

                    Output the assignment.”
● N( φ ) runs in poly-time because it loops at most | φ | 

times, and each time calls M which is poly-time



  

● Recall SAT = { φ :  y φ(y) = true }   NP∃ ∈

● not SAT = { φ :  y φ (y) = false }.  Not known in NP∀

● Theorem If P = NP then not SAT  P∈
● Proof: ?



  

● Recall SAT = { φ :  y φ(y) = true }   NP∃ ∈

● not SAT = { φ :  y φ (y) = false }.  Not known in NP∀

● Theorem If P = NP then not SAT  P∈
● Proof: Let M be a poly-time machine deciding SAT.

Define N := “On input φ:

                    Run M( φ )

                    Return the opposite answer.”             

● P is closed under complement, NP is not known to be



Definition NTIME(t(n)) = { L :  M :  x of length n ∃ ∀
           x  L   y, |y| ≤ t(n), M(x,y) accepts in ≤ t(n) steps}  ∃

Note NP = Uc NTIME(nc )



● Definition: NEXP = Uc NTIME(2nc
 )

● Theorem: P=NP  EXP = NEXP

● Proof:  Example of padding technique

Let L  NTIME(T(n)) where T(n) = 2 nc

Let L' := { (x,0T(n)) : x  L, |x| = n }

Note L'  NTIME(?



● Definition: NEXP = Uc NTIME(2nc
 )

● Theorem: P=NP  EXP = NEXP

● Proof:  Example of padding technique

Let L  NTIME(T(n)) where T(n) = 2 nc

Let L' := { (x,0T(n)) : x  L, |x| = n }

Note L'  NTIME(n)  NP = P.  So let M solve L' in poly time. ⊆

EXP algorithm for L:

M' := “On input x;    ?



● Definition: NEXP = Uc NTIME(2nc
 )

● Theorem: P=NP  EXP = NEXP

● Proof:  Example of padding technique

Let L  NTIME(T(n)) where T(n) = 2 nc

Let L' := { (x,0T(n)) : x  L, |x| = n }

Note L'  NTIME(n)  NP = P.  So let M solve L' in poly time. ⊆

EXP algorithm for L:

M' := “On input x;    Replace x with (x,0T(n));    Run M.”

M'(x) = M(x,0T(n)) = accept  x  L 

M' runs in time 100 T(n).                            



● Padding: 

Equivalences propagate “upward”

Intuition: if you have an equivalence between resources, then 

when you have even more of those resources the 

equivalence will continue to hold

Contrapositive of padding

Differences propagate “downward”

EXP ≠ NEXP  P ≠ NP



NP       = ∑1 P =  y : M(x,y) = 1               ∃
co-NP  = ∏1 P =  y : M(x,y) = 1              ∀
               ∑2 P =  y  z : M(x,y,z) = 1      ∃ ∀
               ∏2 P =  y  z : M(x,y,z) = 1∀ ∃
               ∑3 P =  y  z  w : M(x,y,z,w) = 1∃ ∀ ∃

               etc.



● Definition: 

∑i P = { L :  poly-time M, polynomial q(n) :∃
x  L    y  ∃ 1  {0,1} q(n) y∀ 2  {0,1} q(n) ... Q yi+1  {0,1} q(n)

                            M(x,y1 ,y2 , …, yi+1) = 1}

∏i P = {L : not L  ∑∈ i P }

           same as swapping quantifiers above 

Example MIN-F = { φ : ψ : |ψ|<|φ|, x: φ(x) ≠ ψ(x) }∀ ∃
MIN-F not known to be in NP

In which of the above classes is MIN-F?



● Definition: 

∑i P = { L :  poly-time M, polynomial q(n) :∃
x  L    y  ∃ 1  {0,1} q(n) y∀ 2  {0,1} q(n) ... Q yi+1  {0,1} q(n)

                            M(x,y1 ,y2 , …, yi+1) = 1}

∏i P = {L : not L  ∑∈ i P }

           same as swapping quantifiers above 

Example MIN-F = { φ : ψ : |ψ|<|φ|, x: φ(x) ≠ ψ(x) }∀ ∃
MIN-F not known to be in NP

In which of the above classes is MIN-F? ∏2 P



Theorem: P = NP  ∑ i P U ∏i P  P⊆

So if P = NP then even MIN-F would be in P

Next we see the proof of the theorem 



Theorem: P = NP  ∑ i P U ∏i P  P⊆

Proof: By induction on i

Base case i = 1.

  By assumption P = NP, recall ∑1 = NP.  So P = ∑1 P.

  Since P is closed under complement, it follows ∏1 = P.

Next we do the induction step.

  We assume true for i and prove for i+1.

  We will show ∑i+1 = P.

  Result about ∏i+1 follows again by complementing.



Theorem: P = NP  ∑ i P U ∏i P  P⊆

Proof:

Let L  ∑ i+1 P, so  poly-time M, polynomial q(n) : ∃
x  L     ∃ y1  {0,1} q(n)  y∀ 2  {0,1} q(n) ... Q yi+1  {0,1} q(n)  

                  M(x, y1 ,y2 , …, yi+1)=1

Consider L' := { (x,y1 ) :   y∀ 2  {0,1} q(n) ... Q yi+1  {0,1} q(n)  

                  M(x, y1 ,y2 , …, yi+1)=1 }

L'  ?
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Proof:

Let L  ∑ i+1 P, so  poly-time M, polynomial q(n) : ∃
x  L   y  ∃ 1  {0,1} q(n)  y∀ 2  {0,1} q(n) ... Q yi+1  {0,1} q(n)  
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Consider L' := { (x,y1 ) :   y∀ 2  {0,1} q(n) ... Q yi+1  {0,1} q(n)  

                  M(x, y1 ,y2 , …, yi+1)=1 }

L'  ∏ i P.  By induction hypothesis L'  P.∈

So let poly-time machine M' solve L'.

So x  L   y  ∃ 1  {0,1} q(n) : M'(x,y1 ) = 1

And so L  ?



Theorem: P = NP  ∑ i P U ∏i P  P⊆

Proof:

Let L  ∑ i+1 P, so  poly-time M, polynomial q(n) : ∃
x  L   y  ∃ 1  {0,1} q(n)  y∀ 2  {0,1} q(n) ... Q yi+1  {0,1} q(n)  

                  M(x, y1 ,y2 , …, yi+1)=1

Consider L' := { (x,y1 ) :   y∀ 2  {0,1} q(n) ... Q yi+1  {0,1} q(n)  

                  M(x, y1 ,y2 , …, yi+1)=1 }

L'  ∏ i P.  By induction hypothesis L'  P.∈

So let poly-time machine M' solve L'.

So x  L   y  ∃ 1  {0,1} q(n) : M'(x,y1 ) = 1

And so L  NP  L  P              



Randomized
Complexity
Classes



So far, we thought of “easy” as P

In fact, people think of “easy” as P + randomness

A model without randomness is out-of-date

An extra benefit is practicing probability theory which 

is fundamental to almost everything nowadays.



● We allow TM to toss coins/throw dice etc.

  We write M(x,R) for output of M on input x, coin tosses R

● Definition: L  RP <=>  Turing machine M :∈ ∃
x  L => Pr∈ R [M(x,R)=1] ≥ 1/2

x  L => Pr∉ R [M(x,R)=1] = 0

                    M(x,R) runs in time polynomial in |x|

● NP is same as RP with “≥ 1/2” replaced by ?

● Claim: RP  NP⊆



● We allow TM to toss coins/throw dice etc.

  We write M(x,R) for output of M on input x, coin tosses R

● Definition: L  RP <=>  Turing machine M :∈ ∃
x  L => Pr∈ R [M(x,R)=1] ≥ 1/2

x  L => Pr∉ R [M(x,R)=1] = 0

                    M(x,R) runs in time polynomial in |x|

● NP is same as RP with “≥ 1/2” replaced by “>0”

● Claim: RP  NP⊆



● Definition: L  RP <=>  Turing machine M :∈ ∃
   x  L => Pr∈ R [M(x,R)=1] ≥ 1/2;  x  L => Pr∉ R [M(x,R)=1] = 0

   M(x,R) runs in time polynomial in |x|

● Claim: Definition is the same if we replace 1/2 with

              1/nc , or 1 - 1/2m  for m = nc , for any c

● Proof: 
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   x  L => Pr∈ R [M(x,R)=1] ≥ 1/2;  x  L => Pr∉ R [M(x,R)=1] = 0

   M(x,R) runs in time polynomial in |x|
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              1/nc , or 1 - 1/2m  for m = nc , for any c

● Proof: Suppose  x  L => Pr∈ R [M(x,R)=1] ≥ 1/nc

Consider M' which …?



● Definition: L  RP <=>  Turing machine M :∈ ∃
   x  L => Pr∈ R [M(x,R)=1] ≥ 1/2;  x  L => Pr∉ R [M(x,R)=1] = 0

   M(x,R) runs in time polynomial in |x|

● Claim: Definition is the same if we replace 1/2 with

              1/nc , or 1 - 1/2m  for m = nc , for any c

● Proof: Suppose  x  L => Pr∈ R [M(x,R)=1] ≥ 1/nc

Consider M' which runs M t times independently, outputs OR.

x L => Pr∉ R [M' (x,R)=1] = ?



● Definition: L  RP <=>  Turing machine M :∈ ∃
   x  L => Pr∈ R [M(x,R)=1] ≥ 1/2;  x  L => Pr∉ R [M(x,R)=1] = 0

   M(x,R) runs in time polynomial in |x|

● Claim: Definition is the same if we replace 1/2 with

              1/nc , or 1 - 1/2m  for m = nc , for any c

● Proof: Suppose  x  L => Pr∈ R [M(x,R)=1] ≥ 1/nc

Consider M' which runs M t times independently, outputs OR.

x L => Pr∉ R [M' (x,R)=1] = 0

x L => Pr∈ R [M' (x,R)=0] =?



● Definition: L  RP <=>  Turing machine M :∈ ∃
   x  L => Pr∈ R [M(x,R)=1] ≥ 1/2;  x  L => Pr∉ R [M(x,R)=1] = 0

   M(x,R) runs in time polynomial in |x|

● Claim: Definition is the same if we replace 1/2 with

              1/nc , or 1 - 1/2m  for m = nc , for any c

● Proof: Suppose  x  L => Pr∈ R [M(x,R)=1] ≥ 1/nc

Consider M' which runs M t times independently, outputs OR.

x L => Pr∉ R [M' (x,R)=1] = 0

x L => Pr∈ R [M' (x,R)=0] =(PrR [M (x,R)=0])t ≤ ?



● Definition: L  RP <=>  Turing machine M :∈ ∃
   x  L => Pr∈ R [M(x,R)=1] ≥ 1/2;  x  L => Pr∉ R [M(x,R)=1] = 0

   M(x,R) runs in time polynomial in |x|

● Claim: Definition is the same if we replace 1/2 with

              1/nc , or 1 - 1/2m  for m = nc , for any c

● Proof: Suppose  x  L => Pr∈ R [M(x,R)=1] ≥ 1/nc

Consider M' which runs M t times independently, outputs OR.

x L => Pr∉ R [M' (x,R)=1] = 0

x L => Pr∈ R [M' (x,R)=0] =(PrR [M (x,R)=0])t ≤ (1- 1/nc)t ≤ ?



● Definition: L  RP <=>  Turing machine M :∈ ∃
   x  L => Pr∈ R [M(x,R)=1] ≥ 1/2;  x  L => Pr∉ R [M(x,R)=1] = 0

   M(x,R) runs in time polynomial in |x|

● Claim: Definition is the same if we replace 1/2 with

              1/nc , or 1 - 1/2m  for m = nc , for any c

● Proof: Suppose  x  L => Pr∈ R [M(x,R)=1] ≥ 1/nc

Consider M' which runs M t times independently, outputs OR.

x L => Pr∉ R [M' (x,R)=1] = 0

x L => Pr∈ R [M' (x,R)=0] =(PrR [M (x,R)=0])t ≤ (1- 1/nc)t ≤ 1/2m

for t = nd for d a constant dependent on c.

Running time of M' = ?



● Definition: L  RP <=>  Turing machine M :∈ ∃
   x  L => Pr∈ R [M(x,R)=1] ≥ 1/2;  x  L => Pr∉ R [M(x,R)=1] = 0

   M(x,R) runs in time polynomial in |x|

● Claim: Definition is the same if we replace 1/2 with

              1/nc , or 1 - 1/2m  for m = nc , for any c

● Proof: Suppose  x  L => Pr∈ R [M(x,R)=1] ≥ 1/nc

Consider M' which runs M t times independently, outputs OR.

x L => Pr∉ R [M' (x,R)=1] = 0

x L => Pr∈ R [M' (x,R)=0] =(PrR [M (x,R)=0])t ≤ (1- 1/nc)t ≤ 1/2m

for t = nd for d a constant dependent on c.

Running time of M' = t x running time of M = polynomial   



ZPP can be equivalently defined as the set of L such that:

1) L  RP, not L  RP∈ ∈

2) There is a machine M for L :

 ∀ x,  R, M(x,R)  {L(x), ?},∀ ∈
 ∀ x, PrR [M(x,R) = ? ] ≤ 1/2

M(x,R) runs in time polynomial in |x|

3) There is a machine M for L :  x,  R, M(x,R) = L(x)∀ ∀
the expected running time of M on x is poly(n)



● Definition: L  BPP <=>  Turing machine M :∈ ∃
x  L => Pr∈ R [M(x,R)=1] ≥ 2/3

x  L => Pr∉ R [M(x,R)=1] ≤ 1/3

                    M(x,R) runs in time polynomial in |x|

● Not known if BPP  NP⊆

● Claim: Definition is the same if we replace (2/3,1/3) with

              (1/2+1/nc , 1/2-1/nc), or (1 - 1/2m  , 1/2m )

● Proof sketch: Consider M' which runs M t times 

independently, outputs ???????



● Definition: L  BPP <=>  Turing machine M :∈ ∃
x  L => Pr∈ R [M(x,R)=1] ≥ 2/3

x  L => Pr∉ R [M(x,R)=1] ≤ 1/3

                    M(x,R) runs in time polynomial in |x|

● Not known if BPP  NP⊆

● Claim: Definition is the same if we replace (2/3,1/3) with

              (1/2+1/nc , 1/2-1/nc), or (1 - 1/2m  , 1/2m )

● Proof sketch: Consider M' which runs M t times 

independently, outputs MAJORITY                  



● Claim: P  ZPP  RP  BPP⊆ ⊆ ⊆
● Proof: By definition.  

● Big open question, is P = ZPP = RP = BPP?

Surprisingly, this is believed to be the case

● Recall: RP  NP, but BPP not known to be in NP.⊆



● Claim: BPP  ∑ ⊆ 2 P 



● Claim: BPP  ∑ ⊆ 2 P 

● Proof: Let M(x,R) toss |R| = r coins, and have error < 1/r2 

Fix x and ask: Can we cover {0,1}r with r shifts of

                    A := { R  {0,1}∈ r  : M(x,R) = 1 } ?

For s  {0,1}∈ r , the s-shift is s+A := { s XOR a : a  A }  {0,1}∈ ⊆ r 

We'll show the answer to this question is equivalent to x  L∈

That concludes the proof because ?

        How do you conclude that L(M) is in ∑2 P ?



● Claim: BPP  ∑ ⊆ 2 P 

● Proof: Let M(x,R) toss |R| = r coins, and have error < 1/r2 

Fix x and ask: Can we cover {0,1}r with r shifts of

                    A := { R  {0,1}∈ r  : M(x,R) = 1 } ?

For s  {0,1}∈ r , the s-shift is s+A := { s XOR a : a  A }  {0,1}∈ ⊆ r 

We'll show the answer to this question is equivalent to x  L∈

That concludes the proof because we have

M(x,R) = 1 <=>  s∃ 1, …, sr :  y  {0,1}∀ ∈ r , y  U∈ r sr + A

     <=>  s∃ 1, …, sr :  y  {0,1}∀ ∈ r,  …..?????????????????



● Claim: BPP  ∑ ⊆ 2 P 

● Proof: Let M(x,R) toss |R| = r coins, and have error < 1/r2 

Fix x and ask: Can we cover {0,1}r with r shifts of

                    A := { R  {0,1}∈ r  : M(x,R) = 1 } ?

For s  {0,1}∈ r , the s-shift is s+A := { s XOR a : a  A }  {0,1}∈ ⊆ r 

We'll show the answer to this question is equivalent to x  L∈

That concludes the proof because we have

M(x,R) = 1 <=>  s∃ 1, …, sr :  y  {0,1}∀ ∈ r , y  U∈ r sr + A

     <=>  s∃ 1, …, sr :  y  {0,1}∀ ∈ r,  Vi=1
r  M(x, y + si )=1
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● Proof: Let M(x,R) toss |R| = r coins, and have error < 1/r2 

Fix x and ask: Can we cover {0,1}r with r shifts of

                    A := { R  {0,1}∈ r  : M(x,R) = 1 } ?
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● x  L, we show we cannot cover.  Note |A| <= ∉ ?
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● x  L, we show we can cover.∈
Idea pick the shifts at random and show Pr[do not cover] < ?



● Claim: BPP  ∑ ⊆ 2 P 

● Proof: Let M(x,R) toss |R| = r coins, and have error < 1/r2 

Fix x and ask: Can we cover {0,1}r with r shifts of
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● Claim: BPP  ∑ ⊆ 2 P 

● Proof: Let M(x,R) toss |R| = r coins, and have error < 1/r2 

Fix x and ask: Can we cover {0,1}r with r shifts of

                    A := { R  {0,1}∈ r  : M(x,R) = 1 } ?

For s  {0,1}∈ r , the s-shift is s+A := { s XOR a : a  A }  {0,1}∈ ⊆ r 
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● x  L, we show we can cover.∈
Idea pick the shifts at random and show Pr[do not cover] < 1:

Prs1, …, sr [  y  {0,1}∃ ∈ r : y  U∉ r sr + A] ≤ 

∑y Prs1,…,sr[y  U∉ r sr + A] = ?



● Claim: BPP  ∑ ⊆ 2 P 

● Proof: Let M(x,R) toss |R| = r coins, and have error < 1/r2 

Fix x and ask: Can we cover {0,1}r with r shifts of

                    A := { R  {0,1}∈ r  : M(x,R) = 1 } ?

For s  {0,1}∈ r , the s-shift is s+A := { s XOR a : a  A }  {0,1}∈ ⊆ r 

● x  L, we show we cannot cover.  Note |A| <= 2∉ r / r2 .

 ∀ s1, …, sr : |s1+A U s2+A U … U sr+A | ≤ r |A| ≤ r 2r / r2 < 2r

● x  L, we show we can cover.∈
Idea pick the shifts at random and show Pr[do not cover] < 1:

Prs1, …, sr [  y  {0,1}∃ ∈ r : y  U∉ r sr + A] ≤ 

∑y Prs1,…,sr[y  U∉ r sr + A] = ∑y (Prs[ y  s + A])∉ r ≤ ?



● Claim: BPP  ∑ ⊆ 2 P 

● Proof: Let M(x,R) toss |R| = r coins, and have error < 1/r2 

Fix x and ask: Can we cover {0,1}r with r shifts of

                    A := { R  {0,1}∈ r  : M(x,R) = 1 } ?

For s  {0,1}∈ r , the s-shift is s+A := { s XOR a : a  A }  {0,1}∈ ⊆ r 

● x  L, we show we cannot cover.  Note |A| <= 2∉ r / r2 .

 ∀ s1, …, sr : |s1+A U s2+A U … U sr+A | ≤ r |A| ≤ r 2r / r2 < 2r

● x  L, we show we can cover.∈
Idea pick the shifts at random and show Pr[do not cover] < 1:

Prs1, …, sr [  y  {0,1}∃ ∈ r : y  U∉ r sr + A] ≤ 

∑y Prs1,…,sr[y  U∉ r sr + A] = ∑y (Prs[ y  s + A])∉ r ≤ ∑y (1/r2)r <1





● Corollary:  P = NP => P = BPP.

● Proof:

?



● Corollary:  P = NP => P = BPP.

● Proof:

P = NP => P = PH, and so

P   BPP  PH = P⊆ ⊆ 



  

Interactive
Proof
Systems



  

● NP as a “proof system”

● If L  NP, we can think of∈

● a polynomial-time verifier V, and

● an all-powerful prover P.

● They are both given input w.

● P needs to convince V that w  L∈



  

● Example: Proof system for SAT

verifier V prover P

φ
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● Example: Proof system for SAT

verifier V prover P

φ

assignment y

V accepts

if y satisfies φ 



  

● Example: Proof system for SAT

verifier V prover P

φ

assignment y

V accepts

if y satisfies φ 

If φ  SAT, there exists P that makes V accept:∈
P simply sends a satisfying assignment y



  

● Example: Proof system for SAT

verifier V prover P

φ

assignment y

V accepts

if y satisfies φ 

If φ  SAT, then no P makes V accept:∉
whatever P sends, V will not accept



  

● Open question: Proof system for not SAT?

verifier V prover P

φ

 y

Can a prover send some y that convinces V that φ 

is not satisfiable?

Believed to be impossible.



  

● Fact:  Proof system for ∃ not SAT, with interaction

                                                      and randomization

verifier V prover P

φ

 y1

 m1

 y2

 m2

...

V accepts with high probability  φ  SAT ∉



  

● Fact:  Proof system for not SAT, with ∃ interaction

                                                      and randomization

verifier V prover P

φ

 y1

 m1

 y2

 m2

Interaction is powerful!

That is why you come to class



  

Previous result has two components:

● Interaction

● Randomization

Note every computation has some error probability:

There is always a chance an asteroid hits my pc

The error in previous result is just as small



  

1 2

3 4

5 A

B

D

E

C

Two graphs are label-equivalent if 

labels of one can be mapped to the other 

while preserving the structure.

Graph Labeling



  

Two graphs are label-equivalent if 

labels of one can be mapped to the other 

while preserving the structure.

1  →  A
2  →  E
3  →  C
4  →  D
5  →  B

1 2

3 4

5 A

B

D

E

C
edge 
present

no edge 
presentThis map 

does NOT 
preserve the 

structure

Graph Labeling



  

Graph Labeling

Two graphs are label-equivalent if 

labels of one can be mapped to the other 

while preserving the structure.

1  →  D
2  →  A
3  →  C
4  →  E
5  →  B

1 2

3 4

5
A

B

D

E

C

This map 
DOES

preserve the 
structure

So, these graphs are
label-equivalent



  

Graph Labeling

Two graphs are label-equivalent if 

labels of one can be mapped to the other 

while preserving the structure.

1 2

3 4

A

D

B

C

These graphs are ??? label-equivalent:



  

Graph Labeling

Two graphs are label-equivalent if 

labels of one can be mapped to the other 

while preserving the structure.

1 2

3 4

A

D

B

C

These graphs are NOT label-equivalent:

    - A,B,C,D each touch two or fewer edges

    - 2 touches three edges.



  

verifier V prover P

G,H

 y

Can a prover send some y that convinces V 

that G and H are not label-equivalent?

● LABEL-NEQ = {(G,H) | G and H are graphs that

                                       are not label-equivalent}

● Open question: 1-message proof system 
                          for LABEL-NEQ?



  

We will now see 

how this proof 

system works.

● LABEL-NEQ = {(G,H) | G and H are graphs that

                                       are not label-equivalent}

● Fact:  interactive proof system for LABEL-NEQ.

verifier V prover P

 

y2

 

m1 

y1

 m2

...

G,H

V accepts with high probability  (G,H)  ∈ LABEL-NEQ



  

● Fact:  interactive proof system for LABEL-NEQ.

verifier V prover P 

m1

y1

G,H● Proof system:
● V chooses either G or H,
relabels it,
sends it to P              (m1)

● P replies “G” or “H”    (y1)

● V accepts  reply is correct

● (G,H)∈LABEL-NEQ  relabeled graph only matches  
 one of G or H: P can answer

● (G,H)∉LABEL-NEQ  relabeled graph matches 
                      both: P is wrong ½ the time



  

EXAMPLE: (G,H)  ∈LABEL-NEQ

1 2

3 4

A

D

B

C

G = H =

1) V chooses G, relabels,
     sends to P:

w x

y z



  

EXAMPLE: (G,H)  ∈LABEL-NEQ

1 2

3 4

A

D

B

C

G = H =

1) V chooses G, relabels,
     sends to P:

2) P finds mapping (1→w, 2→x, 3→y, 4→z)
    and correctly replies:

w x

y z
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EXAMPLE: (G,H)  ∉LABEL-NEQ

G = H =

1) V chooses G, relabels,
     sends to P:

2) P finds two mappings (1→w, 2→x, 3→y, 4→z)
                                       (A→x, B→z, C→y, D→w)
    so it doesn't know if V chose G or H.

w x

y z
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3 4

?



  

● Fact:  interactive proof system for LABEL-NEQ.

● (G,H)∈LABEL-NEQ  relabeled graph only matches  
 one of G or H: P can answer

● (G,H)∉LABEL-NEQ  relabeled graph matches 
                      both: P is wrong ½ the time

Repeat the interaction 100 times:
● (G,H)∈LABEL-NEQ    P correct every time

● (G,H)∉LABEL-NEQ    P will be wrong  once 
               (except w/ probability 2-100)

 V accepts  P correct every time.



  

Zero-knowledge
proofs



  

Consider proof system for SAT

Prover's message y reveals more than just the fact 

that y  SAT∈

Is there a proof system which reveals nothing to V, 

except that the input is in the language?

Such systems are called zero-knowledge



  

Great achievement: anything in NP has a

zero-knowledge proof system

We next show it for 3coloring


