
Misc

What's a reduction?
Tapes,
NTIME, NEXP,
Padding,
PH

● What is a reduction from A to B? It's the concept that if you
can do B, then you can also do A.

For example, buying a house reduces to becoming
millionaire;

seeing the Colosseum reduces to flying to Rome.

● Def1: (What we gave) A reduces to B as B P A P  

● In the proofs we have seen the key of this was exhibiting a
polynomial-time map: R : x, x A ↔ R(x) B∀ ∈ ∈

● Def2: A reduction from A to B is R as above.

● Claim: Def2 Def1.

● Problem with Def2: only captures very specific way to show
that B P A P.  

For example,
(computing satisfying assignments) reduces to 3SAT?
Holds for Def1 but not known for Def 2.

Tapes

● So far, 1-tape TM

● Def.: A k-tape TM is a TM with k tapes.
 We are only concerned with k = O(1).
 Each tape has its own head moving independently

 δ : Q x Γk → Q x Γk x {L,R}k

● L := {x : x {0,1}* : x = x R } Palindromes

● Fact: L not in 1-tape TIME(o(n2))

● Fact: L TIME(O(n)) on 2-tape.

● Proof:

?

● L := {x : x {0,1}* : x = x R } Palindromes

● Fact: L not in 1-tape TIME(o(n2))

● Fact: L TIME(O(n)) on 2-tape.

● Proof:

Copy input on second tape.
Bring head on 1st tape at the beginning.
Bring head on 2nd tape at the end.

Compare symbol-by-symbol moving 1st head forward
and 2nd backward. 

● Although P on your laptop and P on TM is the same,
 for running time n, n2 , etc. not even k-tape is an adequate
 model of your laptop

What's missing?

● Although P on your laptop and P on TM is the same,
 for running time n, n2 , etc. not even k-tape is an adequate
 model of your laptop

What's missing?

The ability to jump quickly to a memory location

● Def.: A random-access TM (RATM) is a k-tape machine
where each tape has an associated indexing tape.
In one time step TM may move i-th head
to the cell indexed by the indexing tape, in binary.

● This models well your laptop up to polylog factors.

● L := { (i,x) : the i-th bit of x is 1 }

● L requires 1-tape time ?

(Think of an expression in terms of |i|)

● L := { (i,x) : the i-th bit of x is 1 }

● L requires 1-tape time Ω(2|i|)

● L can be decided on a RATM in time ?

● L := { (i,x) : the i-th bit of x is 1 }

● L requires 1-tape time Ω(2|i|)

● L can be decided on a RATM in time O(|i|)

● Exercise:

Argue in no more than 10 lines that

 polynomial-time on TM
= polynomial-time on k-tape TM
= polynomial-time on RATM

Next: non-determinism

Non-deterministic TM: δ maps to subset of Q x Γ x {L,R}

Accept if there is a computation path that leads to accept.

Def1: NTIME(t(n)) = { L : L is decided by a non-deterministic
 TM that runs in time ≤ t(n) }

Def2: NTIME(t(n)) = { L : M : x of length n ∃ ∀
 x L y, |y| ≤ t(n),  ∃
 M(x,y) accepts in ≤ t(n) }

● Exercise: Prove the two definitions are equivalent
(feel free to use multiple tapes, if that helps)

● Def: NEXP := NTIME(2poly(n))

● Theorem: P=NP EXP = NEXP

● Proof: Example of padding technique

Let L NTIME(T(n)) where m = 2^(n c).

Let L' := { (x,0T(n)) : x L, |x| = n }

Note L' NTIME(?

● Def: NEXP := NTIME(2poly(n))

● Theorem: P=NP EXP = NEXP

● Proof: Example of padding technique

Let L NTIME(T(n)) where m = 2^(n c).

Let L' := { (x,0T(n)) : x L, |x| = n }

Note L' NTIME(O(n)) P. So let M solve L' in poly time. ⊆

EXP algorithm for L:
M' := “On input x; ?

● Def: NEXP := NTIME(2poly(n))

● Theorem: P=NP EXP = NEXP

● Proof: Example of padding technique

Let L NTIME(T(n)) where m = 2^(n c).

Let L' := { (x,0T(n)) : x L, |x| = n }

Note L' NTIME(O(n)) P. So let M solve L' in poly time. ⊆

EXP algorithm for L:
M' := “On input x; Replace x with (x,0T(n)); Run M.”

M'(x) = M(x,0T(n)) = accept x L 
M' runs in time O(T(n)) + poly(T(n)). 

● Padding:

Equivalences propagate “upward”

Intuition: if you have an equivalence between resources, then
when you have even more of those resources the
equivalence will continue to hold

Contrapositive of padding

Differences propagate “downward”
EXP ≠ NEXP P ≠ NP

 Complete problem
 Given formula φ:

NP = ∑1 P = y : M(x,y) = 1 y : φ(y) = 1 ?∃ ∃
co-NP = ∏1 P = y : M(x,y) = 1 y : φ(y) = 1 ?∀ ∀
 ∑2 P = y z : M(x,y,z) = 1 y z : φ(y,z) = 1 ?∃ ∀ ∃ ∀
 ∏2 P = y z : M(x,y,z) = 1∀ ∃
 ∑3 P = y z w : M(x,y,z,w) = 1∃ ∀ ∃
 etc.

● Def:
∑i P = { L : poly-time M, polynomial q(n) :∃
x L y  ∃ 1 {0,1} q(n) y∀ 2 {0,1} q(n) ... Q yi+1 {0,1} q(n)

 M(x,y1 ,y2 , …, yi+1) = 1}

Polynomial-time hierarchy PH := Uc ∑c P = Uc ∏c P

Theorem: P = NP P = PH

Proof:

Theorem: P = NP P = PH

Proof: We prove by induction on i that ∑i P U ∏i P P⊆

W.l.o.g. let L ∑ i+1 P, so poly-time M, polynomial q(n) : ∃
x L   ∃ y1 {0,1} q(n) y∀ 2 {0,1} q(n) ... Q yi+1 {0,1} q(n)

 M(x, y1 ,y2 , …, yi+1)=1

Consider L' := { (x,y1) : y∀ 2 {0,1} q(n) ... Q yi+1 {0,1} q(n)

 M(x, y1 ,y2 , …, yi+1)=1 }

L' ?

Theorem: P = NP P = PH

Proof: We prove by induction on i that ∑i P U ∏i P P⊆

W.l.o.g. let L ∑ i+1 P, so poly-time M, polynomial q(n) : ∃
x L y  ∃ 1 {0,1} q(n) y∀ 2 {0,1} q(n) ... Q yi+1 {0,1} q(n)

 M(x, y1 ,y2 , …, yi+1)=1

Consider L' := { (x,y1) : y∀ 2 {0,1} q(n) ... Q yi+1 {0,1} q(n)

 M(x, y1 ,y2 , …, yi+1)=1 }

L' ∏ i P P. Let poly-time machine M' solve L'.⊆

So x L y  ∃ 1 {0,1} q(n) : M'(x,y1) = 1

And so L ?

Theorem: P = NP P = PH

Proof: We prove by induction on i that ∑i P U ∏i P P⊆

W.l.o.g. let L ∑ i+1 P, so poly-time M, polynomial q(n) : ∃
x L y  ∃ 1 {0,1} q(n) y∀ 2 {0,1} q(n) ... Q yi+1 {0,1} q(n)

 M(x, y1 ,y2 , …, yi+1)=1

Consider L' := { (x,y1) : y∀ 2 {0,1} q(n) ... Q yi+1 {0,1} q(n)

 M(x, y1 ,y2 , …, yi+1)=1 }

L' ∏ i P P. Let poly-time machine M' solve L'.⊆

So x L y  ∃ 1 {0,1} q(n) : M'(x,y1) = 1

And so L NP L P    

Exercise:

∏ 2 P ∑ ⊆ 2 P → PH = ∑ 2 P

Terminlogy: “The polynomial-time hierarchy collapses”
means c : PH = ∑∃ c P.

