Approximation algorithms



An algorithm has approximation ratio r if it outputs solutions
with cost such that

c/c*<randc*/c<r
where c* is the optimal cost.

We focus on ratio (as opposed to difference) because that
appears to be more natural for problems of interest



e Problem: Cover edges by vertexes

Input: Graph
Output: A minimal set of nodes that touches every edge

Algorithm:
While there is an edge (u, v)
Add both u and v to your cover.
Erase all edges adjacent to either u or v.

e Claim: This is a 2 approximation

e Proof:
Consider the set A of edges picked by the algorithm.
Note any cover must have at least one node for each edge,

and so size at least |A|. H



e Problem: Cover edges by weighted vertexes

Input: Graph, weights for vertexes
Output: A minimal-cost set of nodes that touches every edge

Formulate problem as integer program:
min > x(v) w(v) :

x(u) + x(v) 21 V (u,v) €E,

X(u) €{0,1} VueV

Integer programs should not be solvable efficiently



e Problem: Cover edges by weighted vertexes

Input: Graph, weights for vertexes
Output: A minimal-cost set of nodes that touches every edge

Relax to linear programming
min > x(v) w(v) :

x(u) + x(v) 21 V (u,v) €E,
X(u)y €[0,1] VueV

e Algorithm:

Solve relaxation

Round: Take nodes with x(u) = 1/2.



Claim: This is a cover.
Proof: Because x(u) + x(v) = 1/2 for every edge (u,v) i

Claim: This is a 2 approximation
Proof: Let C* be an optimal solution.
z be cost of relaxed linear program
C be cost of output of algorithm
Obviously, z < C* since solution space is bigger

Now note z = ) x(v) w(v) =) . X(v) = 1/2 w(v) /2= C/2.

SoC/2<z=<C*
N



Paradigm:

Believed infeasible

Relaxation
Integer program —
Quadratic program —

Rounding

Integral solution —

Feasible

linear program

vector program



Max Cut: given a graph want cut that separates as many
edges as possible.

2-approximation:

How?



Max Cut: given a graph want cut that separates as many
edges as possible.

2-approximation:
Pick the cut at random. You expect to cut 1/2 of the edges
Possible to do deterministically

We now improve 2to 1/0.87... <2



Max Cut: given a graph want cut that separates as many
edges as possible.

Relax to vector program:

Y, — vector v, € R4 (where d = polynomial in |V|)
Vi Yi — inner product < v;, Vi >

Algorithm:
Solve vector program

Round: Take random vector r of length 1.
One side of the cutis {i:<v,,r> 2 0}



Max Cut: given a graph want cut that separates as many
edges as possible.

Analysis:

Expected size of cutis ) (i) Pr[v; and v, are separated]
=> ei,j [ 1T (lemma)
=2a ) (1-cos ei,j) /2 (da=0.87...:thisis true V 9)
ZGZ(1-<Vi,Vj>)/2 (<vi,vj>=cosei,j)

= a cost of vector program

= o optimal cost



Problem: Cover points by sets

Input: A family of sets over n points.
Output: A minimal number of sets that covers every point.

Algorithm:
Greedily pick a set that covers as much as possible
of what's left.

Claim: This is a log(n) approximation
Proof:
Fix an execution of the algorithm: (S, , S, , ...,)

S is the i-th set picked by algorithm.

Given this, for each element x, define cost
c, := 1/ # of new elements covered by set that covers x first

= (if Si covers X first) 1/ Si - Uj <i Sj |



Note cost of algorithm [C| =) ¢,

Also, let C* be optimal.

Have |C| =) 5 -+ 2 4 e 5 Cy » SINCE every point is covered
We wil show V S, > . - s¢, = O(log n),

yielding |C| < O(|C*| log n).



Clam: V S, ) < O(log n),

xeSCx

Proof: Fix S. u, := # elements in S uncovered after i-th
iteration of algorithm = |S - UJ- < Sj |

Ug = IS]

Let k be the first such that u, = 0.

Note u is decreasing, u._; - u; is # elements in S covered first
time by S, .

2xcsCx =2 1<isk Ui - ) IS -Uj<i S
SD i<cickUiqg-UW)[S - Uj<iSj| (greedy choice)
=2 1<i<k (Uiq - U ) Uy

=2 1<isk 1+uisj<ugi-1) VY
=Y 12ruk <i<uo M= O(H(up)) = O(H(|S])) = O(log [S]) N



Problem: Given n numbers X, , X, , ..., X_

integer t, compute maximum size of subset of numbers not
exceeding t

This problem has fully polynomial-time approximation
algorithm: in time poly(n,1/ €) finds a sum that does not
exceed t and is within 1+ € of largest not exceeding t.

Naive approach:

L, =0

Foreveryi: L, =L +x ; Remove elements bigger than t
Return Max in L

Problem ?



Problem: Given n numbers X, , X, , ..., X_

integer t, compute maximum size of subset of numbers not
exceeding t

This problem has fully polynomial-time approximation
algorithm: in time poly(n,1/ €) finds a sum that does not
exceed t and is within 1+ € of largest not exceeding t.

Naive approach:

L, =0

Foreveryi: L, =L +x ; Remove elements bigger than t
Return Max in L

Problem, list gets too big.
For approximation, don't keep elements close to each other.



Trim(L, 0 ) : Go through elements in L in sorted order.
Add element y in L €=» bigger than 1 + & of what you have
already

Approximation algorithm( x, , ..., X
Ly = %)

Foreveryi: L,
Trim(L;, 4, € /2n)

Remove elements bigger than t
Return Max in L

t, €)

n J

=L +X



e Correctness:

Claim:
Let P, be set of possible sums of first | elements

VyeP Jzel :y/l(1+e2n) sz<y

l.e., V y da close lower bound z
Proof by induction. Won't see
Given claim, easy to see algorithm gives an € approximation.

e Running time:
We bound length of lists. Let d =€/ 2n
By construction | L, | <log 4 , 5t

=0O(logt/d)
= O(n/ €) log t B



