
Approximation algorithms



An algorithm has approximation ratio r if it outputs solutions 
with cost such that

c/c* ≤ r and c*/c ≤ r

where c* is the optimal cost.

We focus on ratio (as opposed to difference) because that 
appears to be more natural for problems of interest



● Problem: Cover edges by vertexes

Input: Graph
Output: A minimal set of nodes that touches every edge

Algorithm:
While there is an edge (u, v)

Add both u and v to your cover.
Erase all edges adjacent to either u or v.

● Claim: This is a 2 approximation

● Proof:
Consider the set A of edges picked by the algorithm.
Note any cover must have at least one node for each edge,
and so size at least |A|.                                                



● Problem: Cover edges by weighted vertexes

Input: Graph, weights for vertexes
Output: A minimal-cost set of nodes that touches every edge

Formulate problem as integer program:
min ∑ x(v) w(v) :
x(u) + x(v) ≥ 1  (u,v)  E,∀ ∈
x(u)  {0,1}  u  V∈ ∀ ∈

Integer programs should not be solvable efficiently



● Problem: Cover edges by weighted vertexes

Input: Graph, weights for vertexes
Output: A minimal-cost set of nodes that touches every edge

Relax to linear programming
min ∑ x(v) w(v) :
x(u) + x(v) ≥ 1  (u,v)  E,∀ ∈
x(u)  [0,1]  u  V∈ ∀ ∈

● Algorithm:

Solve relaxation

Round: Take nodes with x(u) ≥ 1/2.



Claim: This is a cover.
Proof: Because x(u) + x(v) ≥ 1/2 for every edge (u,v)  

Claim: This is a 2 approximation
Proof: Let C* be an optimal solution.
                 z be cost of relaxed linear program
                C be cost of output of algorithm

Obviously, z ≤ C* since solution space is bigger

Now note z = ∑ x(v) w(v) ≥ ∑v : x(v) ≥ 1/2 w(v) / 2 = C/2.

So C/2 ≤ z ≤ C*
                                                                             



Paradigm:

Believed infeasible                                    Feasible

                                 Relaxation
Integer program            →                     linear program

Quadratic program        →                    vector program

                                  Rounding
Integral solution             ← 



Max Cut: given a graph want cut that separates as many 
edges as possible.

2-approximation:

How?



Max Cut: given a graph want cut that separates as many 
edges as possible.

2-approximation:

Pick the cut at random.  You expect to cut 1/2 of the edges

Possible to do deterministically

We now improve 2 to  1 / 0.87... < 2 



Max Cut: given a graph want cut that separates as many 
edges as possible.

Maximize 1/2 ∑ (i,j)  E ∈  1 - yi yj  :  yi  {-1,1}∈

Relax to vector program:

yi → vector vi  R∈ d    (where d = polynomial in |V|)

yi yj → inner product < vi , vj >

yi  {-1,1} ∈ → |vi | = 1

Algorithm:
Solve vector program

Round: Take random vector r of length 1.
      One side of the cut is { i : < vi , r >  ≥  0}



Max Cut: given a graph want cut that separates as many 
edges as possible.

Analysis:

Expected size of cut is ∑ (i,j) Pr[vi  and vj are separated]

= ∑ θi,j / π                    (lemma)

≥ α ∑ (1 - cos θi,j) /2    (  α = 0.87... : this is true  θ)∃ ∀

≥ α ∑ (1 - < vi , vj >) /2    (< vi , vj >  = cos θi,j)

= α cost of vector program

≥ α optimal cost



Problem: Cover points by sets

Input: A family of sets over n points.
Output: A minimal number of sets that covers every point.

Algorithm:
Greedily pick a set that covers as much as possible
of what's left.

Claim: This is a log(n) approximation
Proof:
Fix an execution of the algorithm: (S1 , S2 , …, )

Si is the i-th set picked by algorithm.

Given this, for each element x, define cost
cx := 1/ # of new elements covered by set that covers x first

     = (if Si covers x first) 1/| Si  - Uj < i Sj |



Note cost of algorithm |C| = ∑x cx 

Also, let C* be optimal.

Have |C| ≤ ∑ S  C*∈  ∑ x  S ∈ cx , since every point is covered

We wil show  S, ∑ ∀ x  S ∈ cx  ≤ O(log n),

yielding |C| ≤ O(|C*| log n).



Claim:  S, ∑ ∀ x  S ∈ cx  ≤ O(log n),

Proof: Fix S. ui := # elements in S uncovered after i-th 

iteration of algorithm = |S - Uj ≤ i Sj |

u0 = |S|

Let k be the first such that uk = 0.

Note u is decreasing, ui-1 - ui is # elements in S covered first 

time by Si .

∑x  S∈  cx = ∑ 1 ≤ i ≤ k (ui-1 - ui )/ |Si  - Uj < i Sj |

         ≤ ∑ 1 ≤ i ≤ k (ui-1 - ui )/ |S  - Uj < i Sj |   (greedy choice)

         = ∑ 1 ≤ i ≤ k (ui-1 - ui )/ ui-1
         = ∑ 1 ≤ i ≤ k, 1+ui ≤ j ≤ u(i-1)  1/ uj   
         = ∑1+uk ≤ i ≤ u0 1/i = O(H(u0)) = O(H(|S|)) = O(log |S|)   



Problem: Given n numbers x1 , x2 , …, xn 

integer t, compute maximum size of subset of numbers not 
exceeding t

This problem has fully polynomial-time approximation 
algorithm: in time poly(n,1/ ε) finds a sum that does not 
exceed t and is within 1+ ε of largest not exceeding t.

Naive approach:
L0 = Ø 

For every i: Li+1 = Li + xi  ; Remove elements bigger than t

Return Max in Ln 

Problem ?



Problem: Given n numbers x1 , x2 , …, xn 

integer t, compute maximum size of subset of numbers not 
exceeding t

This problem has fully polynomial-time approximation 
algorithm: in time poly(n,1/ ε) finds a sum that does not 
exceed t and is within 1+ ε of largest not exceeding t.

Naive approach:
L0 = Ø 

For every i: Li+1 = Li + xi  ; Remove elements bigger than t

Return Max in Ln 

Problem, list gets too big.
For approximation, don't keep elements close to each other.



Trim(L, δ ) : Go through elements in L in sorted order.
Add element y in L  bigger than 1 + δ of what you have 
already

Approximation algorithm( x1 , …, xn , t, ε )

L0 = Ø 

For every i: Li+1 = Li + xi 

Trim(Li+1, ε /2n)

Remove elements bigger than t
Return Max in Ln 



● Correctness:

Claim:
Let Pi be set of possible sums of first i elements

 ∀ y  P∈ i   z  L∃ ∈ i : y/(1+ ε/2n)i  ≤ z ≤ y

i.e.,  y  a close lower bound z∀ ∃

Proof by induction.  Won't see

Given claim, easy to see algorithm gives an ε approximation.

● Running time:
We bound length of lists. Let δ = ε / 2n
By construction | Li | ≤ log 1 + δ t 

                                 = O(log t / δ )
                                 = O(n/ ε) log t                                  


