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Philip II of Macedon



  

Divide and conquer

1) Divide your problem into subproblems

2) Solve the subproblems recursively, that is,
run the same algorithm on the subproblems
(when the subproblems are very small, solve them from 
scratch)

3) Combine the solutions to the subproblems into a solution 
of the original problem



  

Divide and conquer

Recursion is “top-down” start from big problem, and make it 
smaller

Every divide and conquer algorithm can be written without 
recursion, in an iterative “bottom-up” fashion:
solve smallest subproblems, combine them, and continue

Sometimes recursion is a bit more elegant



  

Mergesort (low, high) {

   if (high-low <= 1) return;  //Smallest subproblems

   //Divide into subproblems low..split and split..high

   split = (low+high) / 2;

   

   MergeSort(low, split);        //Solve subproblem recursively

   MergeSort(split+1, high);  //Solve subproblem recursively

   //Combine solutions

   merge sorted sequences a[low..split] and a[split+1 ..high] 

   into the single sorted sequence a[low..high] 

}



  

Mergesort (low, high) {

   if (high-low <= 1) return;

   split = (low+high) / 2;

   MergeSort(low, split);

   MergeSort(split+1, high);

   Merge

}

Merge A1[1..a1], A2[1..a2]

into B[1..(a1+a2)]

i1=i2=j=1;

while i1 < a1 and i2 < a2

  if (A1[i1] < A2[i2])

    B[j++] = A1[i1++])

  else

    B[j++] = A2[i2++])

end while;

Put what left in A1 or A2 in B



  

Analysis of running time

Merging A1[1..a1], A2[1..a2]

into B[1..(a1+a2)] takes time ?

MergeSort(low, high) { 

 if (high-low <= 1) return;

 split = (low+high) / 2;

 MergeSort(low, split);

 MergeSort(split+1, high);

 Merge low..split and 

            split+1 ..high

}



  

Analysis of running time

Merging A1[1..a1], A2[1..a2]

into B[1..(a1+a2)] takes time

c•(a1+a2) for some constant c

Let T(n) be time for merge sort on A[1..n]

Recurrence relation T(n) = ?

MergeSort(low, high) { 

 if (high-low <= 1) return;

 split = (low+high) / 2;

 MergeSort(low, split);

 MergeSort(split+1, high);

 Merge low..split and 

            split+1 ..high

}



  

MergeSort(low, high) { 

 if (high-low <= 1) return;

 split = (low+high) / 2;

 MergeSort(low, split);

 MergeSort(split+1, high);

 Merge low..split and 

            split+1 ..high

}

Analysis of running time

Merging A1[1..a1], A2[1..a2]

into B[1..(a1+a2)] takes time

c•(a1+a2) for some constant c

Let T(n) be time for merge sort on A[1..n]

Recurrence relation T(n) = 2 T(n/2) + c•n



  

Solving recurrence T(n) = 2 T(n/2) + c n            

At level i we have 2i cn/2i  = cn

Numbers of levels is log(n)  T(n) = cn log n⇨

...



  

Analysis of space

How many extra array elements we need?

At least n to merge

It can be implemented to use O(n) space.



  

Quick sort



  

QuickSort(low, high) {

  if (high-low ≤  1) return;

  partition(low, high) and return split;

  QuickSort(low, split-1);

  QuickSort(split+1, high); 

}

Partition permutes a[low..high] so that

each element in a[low.. split] is ≤ a[split],
each element in a[split+1.. high] is > a[split]. 



  

Partition(A[lo.. hi])  For simplicity, assume distinct elements 

  Pick pivot index p.  // We will explain later how

  Swap A[p] and A[hi]; i = lo-1; j = hi;

  Repeat {  //Invariant: A[lo.. i] < A[hi], A[j.. hi-1] > A[hi]

    Do i++ while A[i] < A[hi];

    Do j-- while A[j]  > A[hi];

    If i < j then swap A[i] and A[j]

    Else {

      swap A[i] and A[hi]; return i

     }  

  }

  Running time: linear.

   



  

Analysis of running time

T(n) = number of comparisons on an array of length n.

T(n) depends on the choice of the pivot index p
● Choosing pivot deterministically

● Choosing pivot randomly 
 QuickSort(low, high)
  {
  if (high-low <= 1) return;
  partition(low, high) and  
return split,
  QuickSort(low, split-1);
  QuickSort(split+1, high); 
  }



  

Analysis of running time

T(n) = number of comparisons on an array of length n.

● Choosing pivot deterministically:

the worst case happens when one sub-array is empty 
and the other is of size n-1, in this case :

T(n)= T(n-1) + T(0) + c n

       = ?



  

Analysis of running time

T(n) = number of comparisons on an array of length n.

● Choosing pivot deterministically:

the worst case happens when one sub-array is empty 
and the other is of size n-1, in this case :

T(n)= T(n-1) + T(0) + c n

      = O(n2).

● Choosing pivot randomly we can guarantee

T(n) = O(n log n) with high probability



  

Randomized-Quick sort:

R-QuickSort(low, high) {

  if (high-low ≤ 1) return;

  R-partition(low, high) and return split,

  R-QuickSort(low, split-1);

  R-QuickSort(split+1, high); 

}

R-partition(low, high) 

   Pick pivot index p uniformly in {low, low+1, … high}

   Then partition as before
We bound the total time spent by 
Partition



  

● Definition: X is the number of comparisons

● Next we bound the expectation of X, E[X]

 



  

 
● Rename array A as z1, z2, …, zn, with zi being the i-th smallest 

● Note: each pair of elements zi, zj is compared at most once. 

Why?



  

 
● Rename array A as z1, z2, …, zn, with zi being the i-th smallest 

● Note: each pair of elements zi, zj is compared at most once. 

Elements are compared with the pivot.
An element is a pivot at most once.

● Define indicator random variables

Xij:= 1 if { zi is compared to zj }

Xij:= 0 otherwise

  
● Note: X = ?

 



  

 
● Rename array A as z1, z2, …, zn, with zi being the i-th smallest 

● Note: each pair of elements zi, zj is compared at most once. 

Elements are compared with the pivot.
An element is a pivot at most once.

● Define indicator random variables

Xij:= 1 if { zi is compared to zj }

Xij:= 0 otherwise

  

● Note: X = ∑  ∑  Xij
  .

 i=1 j=i+1

n-1 n



  

  

X = ∑  ∑  Xij
  .

Taking expectation, and using linearity:

E[X]= E  ∑  ∑  Xij
  

      =  ∑  ∑  E [Xij
 ]

      =  ∑  ∑  Pr {zi
 is compared to zj}

 

i=1 j=i+1

n-1 n

i=1 j=i+1

n-1 n

i=1 j=i+1

n-1 n

i=1 j=i+1

n-1 n



  

 ● Pr {zi
 is compared to zj}=?

● If some element y, zi
 < y < zj chosen as pivot,

   zi
 and zj  can not be compared. 

   Why? 



  

 ● Pr {zi
 is compared to zj}=?

● If some element y, zi
 < y < zj chosen as pivot,

   zi
 and zj  can not be compared. 

   Because after partition zi
 and zj will be in two different parts.

● Definition: Zij is = { zi , zi+1 , …, zj }

● zi
 and zj are compared if

   first element chosen as pivot from Zij is either zi
 or zj.

 



  

 Pr {zi
 is compared to zj} = Pr [zi

 or zj is first pivot chosen from Zij]

  



  

 Pr {zi
 is compared to zj} = Pr [zi

 or zj is first pivot chosen from Zij]

   = Pr [zj is first pivot chosen from Zij]

+  Pr [zi is first pivot chosen from Zij]

   



  

 Pr {zi
 is compared to zj} = Pr [zi

 or zj is first pivot chosen from Zij]

   = Pr [zi is first pivot chosen from Zij]

+  Pr [zj is first pivot chosen from Zij]

   =1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1) .



  

 Pr {zi
 is compared to zj} = Pr [zi

 or zj is first pivot chosen from Zij]

   = Pr [zi is first pivot chosen from Zij]

+  Pr [zj is first pivot chosen from Zij]

   =1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1) .

E[X]= ∑  ∑  Pr {zi
 is compared to zj}

      

     =  ∑  ∑ 2/(j-i+1)  . 

i=1 j=i+1

n-1 n

i=1 j=i+1

n-1 n



  

 Pr {zi
 is compared to zj} = Pr [zi

 or zj is first pivot chosen from Zij]

   = Pr [zi is first pivot chosen from Zij]

+  Pr [zj is first pivot chosen from Zij]

   =1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1) .

E[X]= ∑  ∑  Pr {zi
 is compared to zj}

      

     =  ∑  ∑ 2/(j-i+1)   = ∑  ∑ 2/(k+1)

     < ∑  ∑ 2/k   

i=1 j=i+1

n-1 n

i=1 j=i+1

n-1 n

i=1 k=1

n-1 n-i

k=1

nn-1

i=1



  

 Pr {zi
 is compared to zj} = Pr [zi

 or zj is first pivot chosen from Zij]

   = Pr [zi is first pivot chosen from Zij]

+  Pr [zj is first pivot chosen from Zij]

   =1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1) .

E[X]= ∑  ∑  Pr {zi
 is compared to zj}

      

     =  ∑  ∑ 2/(j-i+1)   = ∑  ∑ 2/(k+1)

     < ∑  ∑ 2/k   =∑ O(log n) = O(n log n).

Expected running time of Randomized-QuickSort is O(n log n).

i=1 j=i+1

n-1 n

i=1 j=i+1

n-1 n

i=1 k=1

n-1 n-i

k=1

n

i=1

n-1n-1

i=1



  

 An application of Markov's inequality

Let T be the running time of Randomized Quick sort.

We just proved E[T] ≤ c n log n,  for some constant c.

Hence, Pr[ T > 100 c n log n] < ?



  

 An application of Markov's inequality

Let T be the running time of Randomized Quick sort.

We just proved E[T] ≤ c n log n,  for some constant c.

Hence, Pr[ T > 100 c n log n] < 1/100

Markov's inequality useful to translate bounds on the expectation in 

bounds of the form: “It is unlikely the algorithm will take too long.”



  

Oblivious Sorting 

Want an algorithm that only accesses the input via

     Compare-exchange(x,y)

     Compares a[x] and a[y] and swaps them if necessary

We call such algorithms oblivious.  Useful if you want to 
sort with a (non-programmable) piece of hardware

Did we see any oblivious algorithms?



  

Oblivious Mergesort 

This is just like Merge sort except that the merge 
subroutine is replaced with a subroutine whose 
comparisons do not depend on the input.

Assumption: 

Size of the input sequence, n, is a power of 2.



  

Oblivious-Mergesort (a[0..n-1]) {

if n > 1 then

  Oblivious-Mergesort(a[0.. n/2-1]);

  Oblivious-Mergesort(a [n/2 .. n-1]);

  odd-even-Merge(a[0..n-1]);

}

Same structure as Mergesort

But Odd-even-merge is more complicated, recursive



  

odd-even-merge(a[0..n-1]); {
  if n = 2 then compare-exchange(0,1);
  else {
    odd-even-merge(a[0,2 .. n-2]); //even subsequence

odd-even-merge(a[1,3,5 .. n-1]); //odd subsequence

for i  {1,3,5, … n-1}∈  do
compare-exchange(i, i +1);

}

Compare-exchange(x,y) compares a[x] and a[y] and 
swaps them if necessary

Merges correctly if a[0.. n/2-1] and a[n/2 .. n-1] are sorted



  

odd-even-merge(a[0..n-1]);
  if n = 2 then compare-exchange(0,1);
  else

odd-even-merge(a[0,2 .. n-2]);
odd-even-merge(a[1,3,5 .. n-1]); 
for i  {1,3,5, … n-1}∈  do
compare-exchange(i, i +1);

0-1 principle: If algoriothm works correctly on sequences
of 0 and 1, then it works correctly on all sequences

True when input only accessed through compare-exchange



  

odd-even-merge(a[0..n-1]);
  if n = 2 then compare-exchange(0,1);
  else

odd-even-merge(a[0,2 .. n-2]);
odd-even-merge(a[1,3,5 .. n-1]); 
for i  {1,3,5, … n-1}∈  do
compare-exchange(i, i +1);



  

Analysis of running time

T(n) = number of comparisons. 

        = 2T(n/2)+ T'(n) .

      

T'(n) = number of operations in   
            odd-even-merge

         = 2T'(n/2)+c n = ?

   
odd-even-merge(a[0..n-1]);
  if n = 2 then
    compare-exchange(0,1);
  else
    odd-even-merge(a[0,2 .. n-2]);
    odd-even-merge(a[1,3,5 .. n-1]); 
    for i  {1,3,5, … n-1}∈  do
    compare-exchange(i, i +1);

Oblivious-Mergesort (a[0..n-1]) 
if n > 1 then
  Oblivious-Mergesort(a[0.. n/2-1]);
  Oblivious-Mergesort(a [n/2 .. n-1]); 
  Odd-even-merge(a[0..n-1]);



  

Analysis of running time

T(n) = number of comparisons. 

    = 2T(n/2)+ T'(n)

    = 2T(n/2)+ O(n log n).

        = ?

 

      

T'(n) = number of operations in   
            odd-even-merge

         = 2T'(n/2)+c n = O(n logn).

odd-even-merge(a[0..n-1]);
  if n = 2 then
    compare-exchange(0,1);
  else
    odd-even-merge(a[0,2 .. n-2]);
    odd-even-merge(a[1,3,5 .. n-1]); 
    for i  {1,3,5, … n-1}∈  do
    compare-exchange(i, i +1);

Oblivious-Mergesort (a[0..n-1]) 
if n > 1 then
  Oblivious-Mergesort(a[0.. n/2-1]);
  Oblivious-Mergesort(a [n/2 .. n-1]); 
  Odd-even-merge(a[0..n-1]);



  

Analysis of running time

T(n) = number of comparisons. 

    = 2T(n/2)+ T'(n)

    = 2T(n/2)+ O(n log n)

        = O(n log2 n).

 

      

odd-even-merge(a[0..n-1]);
  if n = 2 then
    compare-exchange(0,1);
  else
    odd-even-merge(a[0,2 .. n-2]);
    odd-even-merge(a[1,3,5 .. n-1]); 
    for i  {1,3,5, … n-1}∈  do
    compare-exchange(i, i +1);

Oblivious-Mergesort (a[0..n-1]) 
if n > 1 then
  Oblivious-Mergesort(a[0.. n/2-1]);
  Oblivious-Mergesort(a [n/2 .. n-1]); 
  Odd-even-merge(a[0..n-1]);



  

Sorting 
algorithm

Time Space Assumption/
Advantage

Bubble sort Θ(n2) O(1) Easy to code

Counting sort Θ(n+k) O(n+k) Input range is [0..k]

Radix sort Θ(d(n+k)) O(n+k) Inputs are d-digit 
integers in base k

Quick sort 
(deterministic)

O(n2) O(1)

Quick sort 
(Randomized)

O(n log n) O(1)

Merge sort O (n log n) O(n)

Oblivious 
merge sort

O (n log2 n) O(1) Comparisons are 
independent of input



  

● Input: n integers in {0, 1, …, 2w - 1}

● Model: Usual operations (+, *, AND, … )
on w-bit integers in constant time

● Open question: Can you sort in time O(n)?

● Best known time: O(n log log n)

Sorting is still open!



  

● View other divide-and-conquer algorithms

● Some related to sorting

Next



  

● Definition: For array A[1..n] and index h,
S(A,h) := h-th smallest element in A,
            = B[h] for B = sorted version of A

● S(A,(n+1)/2) is the median of A, when n is odd

● We show how to compute S(A,h) with O(n) comparisons

Selecting h-th smallest element



  

● Divide array in consecutive blocks of 5:
A[1..5], A[6..10], A[11..15] , ...

● Find median of each
m1 = S(A[1..5],3), m2 = S(A[6..10],3), m3 = S(A[11..15],3)

● Find median of medians, x= S([m1, m2, ..., mn/5], (n/5+1)/2)

● Partition A according to x. Let x be in position k

● If h = k return x, if h < k return S(A[1..k-1],h),
                          if h > k return S(A[k+1..n],h-k-1)

Computing S(A,h)



  

● Divide array in consecutive blocks of 5
● Find median of each

m1 = S(A[1..5],3), m2 = S(A[6..10],3), m3 = S(A[11..15],3)

● Find median of medians, x= S([m1, m2, ..., mn/5], (n/5+1)/2)

● Partition A according to x. Let x be in position k
● If h = k return x, if h < k return S(A[1..k-1],h),

                          if h > k return S(A[k+1..n],h-k-1)

● Analysis: When partitioning according to x, half the 
medians will be ≥ x. Each contributes ≥ 3 elements 
from their 5. So we throw away ≥ ?



  

● Divide array in consecutive blocks of 5
● Find median of each

m1 = S(A[1..5],3), m2 = S(A[6..10],3), m3 = S(A[11..15],3)

● Find median of medians, x= S([m1, m2, ..., mn/5], (n/5+1)/2)

● Partition A according to x. Let x be in position k
● If h = k return x, if h < k return S(A[1..k-1],h),

                          if h > k return S(A[k+1..n],h-k-1)

● Analysis: When partitioning according to x, half the 
medians will be ≥ x. Each contributes ≥ 3 elements 
from their 5. So we throw away ≥ 3n/10 elements

● T(n) ≤ ?



  

● Divide array in consecutive blocks of 5
● Find median of each

m1 = S(A[1..5],3), m2 = S(A[6..10],3), m3 = S(A[11..15],3)

● Find median of medians, x= S([m1, m2, ..., mn/5], (n/5+1)/2)

● Partition A according to x. Let x be in position k
● If h = k return x, if h < k return S(A[1..k-1],h),

                          if h > k return S(A[k+1..n],h-k-1)

● Analysis: When partitioning according to x, half the 
medians will be ≥ x. Each contributes ≥ 3 elements 
from their 5. So we throw away ≥ 3n/10 elements

T(n) ≤ T(n/5) + T(7n/10) + O(n)
● T(n) =



  

● Divide array in consecutive blocks of 5
● Find median of each

m1 = S(A[1..5],3), m2 = S(A[6..10],3), m3 = S(A[11..15],3)

● Find median of medians, x= S([m1, m2, ..., mn/5], (n/5+1)/2)

● Partition A according to x. Let x be in position k
● If h = k return x, if h < k return S(A[1..k-1],h),

                          if h > k return S(A[k+1..n],h-k-1)

● Analysis: When partitioning according to x, half the 
medians will be ≥ x. Each contributes ≥ 3 elements 
from their 5. So we throw away ≥ 3n/10 elements

T(n) ≤ T(n/5) + T(7n/10) + O(n)
● T(n) = O(n) because 1/5 + 7/10 = 9/10 < 1



  

Closest pair of points

Input: 

  Set P of n points in the plane

Output: 

   Two points x
1 
and x

2
 with the shortest (Euclidean) 

distance from each other.

 



  

Closest pair of points

Input: 

  Set P of n points in the plane

Output: 

   Two points x
1 
and x

2
 with the shortest (Euclidean) 

distance from each other.

● For the following algorithm we assume that we have 
two arrays X and Y, each containing all the points of P. 

● X is sorted so that the x-coordinates are increasing

● Y is sorted so that y-coordinates are increasing.



  

Closest pair of points

Divide: find a vertical line L that bisects P into two sets 

P
L
:= { points in P that are on L or to the left of L}.

P
R
:= { points in P that are to the right of L}.

Such that |P
L
|= n/2

 
and P

R
= n/2        (plus or minus 1)

Easy to do given that we have X that's sorted.

Next: Conquer

 



  

Closest pair of points

Divide: find a vertical line L that bisects P into two sets 

P
L
:= { points in P that are on L or to the left of L}.

P
R
:= { points in P that are to the right of L}.

Such that |P
L
|= n/2

 
and P

R
= n/2        (plus or minus 1)

Conquer: Make two recursive calls to find the closest pair 
of point in P

L
 and P

R
.

Let the closest distances in P
L
 and P

R 
be δ

L
 and δ

R 
,and 

let  δ = min(δ
L
 , δ

R
).

Note computing X and Y for P
L
 and P

R
 is easy

Next: Combine 



  

Closest pair of points

Divide: find a vertical line L that bisects P into two sets 

P
L
:= { points in P that are on L or to the left of L}.

P
R
:= { points in P that are to the right of L}.

Such that |P
L
|= n/2

 
and P

R
= n/2        (plus or minus 1)

Conquer: Make two recursive calls to find the closest pair 
of point in P

L
 and P

R
.

Let the closest distances in P
L
 and P

R 
be δ

L
 and δ

R 
,and    

let  δ = min(δ
L
 , δ

R
).

Combine: The closest pair is either the one with distance δ 
or it is a pair with one point in P

L
 and the other in P

R 
with 

distance less than δ.                                       (No saving?)



  

Closest pair of points

Combine: The closest pair is either the one with distance δ 
or it is a pair with one point in P

L
 and the other in P

R 
with 

distance less than δ.

How to find if the latter exists?

Observation:

If latter exists it must be in a δ x 2δ box straddling L. 

 



  

● Create Y' by removing from Y points that are not in 2δ-
wide vertical strip.

● For each consecutive block of 8 points in Y'

  p1 , p2 , … , p8 

  compute all their distances.

● If any of them are closer than δ,

update the closest pair

and the shortest distance δ.

● Return δ and the closest pair. 



  

 Why 8?

Recall we are looking for pairs in δ x 2δ box straddling L. 

Fact: If there are 9 points in a δ x 2δ box straddling L. 

Then there exist two points on the same side of L

with distance less than δ.

This violates the definition of δ.



  

Analysis of running time

Similar to Merge sort:

T(n) = number of operations

T(n) = 2 T(n/2) + c n

        = O(n log n).

 



  

Is multiplication harder than addition?

                                                Alan Cobham, < 1964



  

Is multiplication harder than addition?

                                                Alan Cobham, < 1964

We still do not know!



  

Addition 

Input: two n-digit integers a, b in base w

                                                        (think w = 2, 10)

Output: One integer c=a + b.

Operations allowed: only on digits

The simple way to add takes ?



  

Addition 

Input: two n-digit integers a, b in base w

                                                        (think w = 2, 10)

Output: One integer c=a + b.

Operations allowed: only on digits

The simple way to add takes O(n)

optimal?



  

Addition 

Input: two n-digit integers a, b in base w

                                                        (think w = 2, 10)

Output: One integer c=a + b.

Operations allowed: only on digits

The simple way to add takes O(n)

This is optimal, since we need at least to write c



  

Multiplication 

Input: two n-digit integers a, b in base w

                                                        (think w = 2, 10)

Output: One integer c=a∙b.

Operations allowed: only on digits

Simple way takes ?

        23958233
            5830 ×
    ------------
        00000000 ( =      23,958,233 ×     0)
       71874699  ( =      23,958,233 ×    30)
     191665864   ( =      23,958,233 ×   800)
    119791165    ( =      23,958,233 × 5,000)
    ------------
    139676498390 ( = 139,676,498,390        )



  

Multiplication 

Input: two n-digit integers a, b in base w

                                                        (think w = 2, 10)

Output: One integer c=a∙b.

Operations allowed: only on digits

The simple way to multiply takes Ω(n2) 

Can we do this any faster?



  

Multiplication 

 Example: 

 2-digit numbers N
1
 and N

2
 in base w.

 N
1 
= a

0
+a

1
w.    

 N
2 
= b

0
+b

1
w.  

 

For this example, think w very large, like w = 232 



  

Multiplication 

 Example: 

 2-digit numbers N
1
 and N

2
 in base w.

 N
1 
= a

0
+a

1
w.    

 N
2 
= b

0
+b

1
w.  

 P  = N
1
N

2   

         
= a

0
b

0
+(a

0
b

1
+a

1
b

0
)w+a

1
b

1
w2

      = p
0 
+ p

1
w + p

2
w2.

This can be done with ? multiplications



  

Multiplication 

 Example: 

 2-digit numbers N
1
 and N

2
 in base w.

 N
1 
= a

0
+a

1
w.    

 N
2 
= b

0
+b

1
w.  

 P  = N
1
N

2   

         
= a

0
b

0
+(a

0
b

1
+a

1
b

0
)w+a

1
b

1
w2

      = p
0 
+ p

1
w + p

2
w2.

This can be done with 4 multiplications

Can we save multiplications, possibly increasing additions?



  

 

Compute

q
0
=a

0
b

0.

q
1
=(a

0
+a

1
)(b

1
+b

0
).

q
2
=a

1
b

1
.

Note:

 ⇨
p

0
=q

0
. 

p
1
=q

1
-q

0
-q

2
. 

p
2
=q

2
.

So the three digits of P are evaluated using 3 
multiplications rather than 4.
What to do for larger numbers?

q
0
=p

0
. 

q
1
=p

1
+p

0
+p

2
. 

q
2
=p

2
.

P = a
0
b

0
+(a

0
b

1
+a

1
b

0
)w+a

1
b

1
w2

     = p
0 
+ p

1
w + p

2
w2.



  

The Karatsuba algorithm

Input: two n-digit integers a, b in base w.

Output: One integer c = a∙b.

Divide:

   How?



  

The Karatsuba algorithm

Input: two n-digit integers a, b in base w.

Output: One integer c = a∙b.

Divide:

 m = n/2. 

 a = a
0
+ a

1 
wm.

 b = b
0
+ b

1
wm.

a∙b = a
0
b

0
+(a

0
b

1
+a

1
b

0
)wm + a

1
b

1
w2m 

       = p
0    

+      p
1            

wm  +  p
2   

w2m 



  

The Karatsuba algorithm

Input: two n-digit integers a, b in base w.

Output: One integer c = a∙b.

Divide:

 m = n/2. 

 a = a
0
+ a

1 
wm.

 b = b
0
+ b

1
wm.

Conquer:

q
0
=a

0
Xb

0
.

q
1
=(a

0
+a

1
)X(b

1
+b

0
).

q
2
=a

1
Xb

1
.

Each X is a 
recursive call

a∙b = a
0
b

0
+(a

0
b

1
+a

1
b

0
)wm + a

1
b

1
w2m 

       = p
0    

+      p
1            

wm  +  p
2   

w2m 



  

The Karatsuba algorithm

Input: two n-digit integers a, b in base w.

Output: One integer c = a∙b.

Divide:

 m = n/2. 

 a = a
0
+ a

1 
wm.

 b = b
0
+ b

1
wm.

Conquer:                                              Combine:

q
0
=a

0
Xb

0
.

q
1
=(a

0
+a

1
)X(b

1
+b

0
).

q
2
=a

1
Xb

1
.

p
0
=q

0
. 

p
1
=q

1
-q

0
-q

2
. 

p
2
=q

2
.

a∙b = a
0
b

0
+(a

0
b

1
+a

1
b

0
)wm + a

1
b

1
w2m 

       = p
0    

+      p
1            

wm  +  p
2   

w2m 

Each X is a 
recursive call



  

Analysis of running time

T(n) = number of operations.  

T(n) = 3 T(n/2) + O(n) 

        = ?

 



  

Analysis of running time

T(n) = number of operations.  

T(n) = 3 T(n/2) + O(n) 

        = Θ(n log 3)                   (log in base 2)

        = O(n 1.59).

Karatsuba may be used in your computers to reduce, say, 
multiplication of 128-bit integers to 64-bit integers.

Are there faster algorithms for multiplication?



  

Algorithms taking essentially O(n log n) are known.

1971: Scho”nage-Strassen O(n log n log log n)

2007: Fu”rer                        O(n log n exp(log* n) )

log*n = times you need to apply log to n to make it 1

They are all based on Fast Fourier Transform, which we 
will see later



0 1 1 0

0 1 0 0

0 0 0 1

1 1 1 1

1 0 0 1

1 0 1 1

0 1 1 1

0 1 0 0

n=4

BA

1

Matrix Multiplication 

n x n matrixes. Note input length is n2 

Just to write down output need time Ω(n2)

The simple way to do matrix multiplication takes ?



0 1 1 0

0 1 0 0

0 0 0 1

1 1 1 1

1 0 0 1

1 0 1 1

0 1 1 1

0 1 0 0

n=4

BA

1

Matrix Multiplication 

n x n matrixes. Note input length is n2 

Just to write down output need time Ω(n2)

The simple way to do matrix multiplication takes O(n3).



  

Strassen's Matrix Multiplication 

Input: two nXn matrices A, B.

Output: One nXn matix C=A∙B.

 



  

Strassen's Matrix Multiplication

Divide:

Divide each of the input matrices A and B into 4 matrices 
of size n/2Xn/2, a follow:

 

        A
11    

A
12 

       
A= 

        A
21     

A
22

  

        B
11    

B
12 

       
B= 

        B
21     

B
22

  

            A
11    

A
12 

    
A.B=  

            A
21     

A
22

  

        B
11    

B
12 

        
  

        B
21     

B
22

  

        C
11    

C
12 

       
  =

        C
21     

C
22

  



  

Strassen's Matrix Multiplication

Conquer:

Compute the following 7 products:

M
1
=( A

11
+ A

22
)( B

11
+ B

22 
).

M
2
=( A

21
+ A

22
) B

11
.

M
3
= A

11
( B

12 
– B

22 
) .

M
4
= A

22
( B

21 
– B

11 
) .

M
5
=( A

11
+ A

12
) B

22
.

M
6
=( A

21 
– A

11
)( B

11
– B

12
) .

M
7
=( A

12 
– A

22
)( B

21
– B

22
) .

 

        A
11    

A
12 

       
A= 

        A
21     

A
22

  

        B
11    

B
12 

       
B= 

        B
21     

B
22

  



  

Strassen's Matrix Multiplication

Combine:

C
11

= M
1
+ M

4 
– M

5 
+ M

7
. 

C
12

= M
3
+ M

5 
. 

C
21

= M
2
+ M

4 
. 

C
22

= M
1
– M

2
+ M

3 
+ M

6 
. 

        C
11    

C
12 

       
 C=

        C
21     

C
22

  



  

Analysis of running time

T(n) = number of operations

T(n) = 7 T(n/2) + 18 {Time to do matrix addition}

        = 7 T(n/2) + Θ(n2)

        = ?

 



  

Analysis of running time

T(n) = number of operations

T(n) = 7 T(n/2) + 18 {Time to do matrix addition}

        = 7 T(n/2) + Θ(n2)

        = Θ(n log 7)

        = O(n 2.81).

 



  

Definition: ω is the smallest number such that 
multiplication of n x n matrices can be computed in 
time nω+ε  for every ε > 0

Meaning: time nω up to lower-order factors

ω ≥ 2 because you need to write the output

ω < 2.81 Strassen, just seen

ω < 2.38 state of the art

Determining ω is one of the most important problems



Fast Fourier Transform (FFT)

We start with the most basic case, then move to more complicated



Walsh-Hadamard transform

Hadamard 2i x 2i matrix Hi : 

                    H0 = [1]

 

Problem: Given vector x of length n = 2k , compute Hk x

Trivial: O(n2 )
Next: O(n log n)

               Hi      Hi     

   Hi+1 =   

               Hi    - Hi    



Walsh-Hadamard transform

Write x = [y z]T , and note that Hk+1 x = 

        Hk y + Hk z

  
        Hk y  - Hk z

This gives T(n) = ?



Walsh-Hadamard transform

Write x = [y z]T , and note that Hk+1 x = 

        Hk y + Hk z

  
        Hk y  - Hk z

This gives T(n) = 2 T(n/2) + O(n) = O(n log n)



Polynomials and Fast Fourier Transform (FFT)



Polynomials

A(x) = ∑ i=0
n-1 ai x

i         a polynomial of degree n-1

Evaluate at a point x = b with how many multiplications?

  2n trivial



Polynomials

A(x) = ∑ i=0
n-1 ai x

i         a polynomial of degree n-1

Evaluate at a point x = b with Horner's rule:
Compute an-1 ,

               an-2 + an-1x ,

               an-3 + an-2 x + an-1 x2 

               …

Each step: multiply by x, and add a coefficient

There are ≤ n steps  n multiplications



Summing Polynomials

∑ i=0
n-1 ai x

i         a polynomial of degree n-1

∑ i=0
n-1 bi x

i         a polynomial of degree n-1

∑ i=0
n-1 ci x

i         the sum polynomial of degree n-1

ci = ai + bi 

Time O(n)



How to multiply polynomials?

∑ i=0
n-1 ai x

i         a polynomial of degree n-1

∑ i=0
n-1 bi x

i         a polynomial of degree n-1

∑ i=0
2n-2 ci x

i         the product polynomial of degree n-1

ci = ∑ j ≤ i aj bi-j 

Trivial algorithm: time O(n2 )
FFT gives time O(n log n)



Polynomial representations

Coefficient: (a0 ,a1 , a2 ,... an-1)

Point-value: have points x0 , x1 , … xn-1 in mind

Represent polynomials A(X) by pairs

{ (x0 , y0 ), (x1 , y1 ), … }                       A(xi ) = yi 

To multiply in point-value, just need O(n) operations.



Approach to polynomial multiplication:

A, B given as coefficient representation

1) Convert A, B to point-value representation

2) Multiply C = AB in point-value representation

3) Convert C back to coefficient representation

2) done esily in time O(n)

FFT allows to do 1) and 3) in time O(n log n).
Note: For C we need 2n-1 points; we'll just think “n”



From coefficient to point-value:

From point-value representation, note above matrix is 
invertible (if points distinct)

Alternatively, Lagrange's formula

y0 

y1 

…
…
…
yn-1

a0 

a1 

…
…
…
an-1

=



We need to evaluate A at points x1 … xn  in time O(n log n)

Idea: divide and conquer:

A(x) = A0 (x2) + x A1 (x2)

where A0 has the even-degree terms, A1 the odd

Example: A = a0  + a1 x + a2 x2  + a3 x3 + a4 x4 + a5 x5 

A0 (x2) = a0  + a2 x2 + a4 x4

A1 (x2) = a1  + a3 x2 + a5 x4 

How is this useful?



We need to evaluate A at points x1 … xn  in time O(n log n)

Idea: divide and conquer:

A(x) = A0 (x2) + x A1 (x2)

where A0 has the even-degree terms, A1 the odd

If my points are x1 , x2 , xn/2 , -x1 , -x2 , -xn/2 

I just need the evaluations of A0 , A1  at x1
2

 , x2
2, ... xn/2

2
 

T(n) ≤ 2 T(n/2) + O(n), with solution O(n log n). Are we done?



We need to evaluate A at points x1 … xn  in time O(n log n)

Idea: divide and conquer:

A(x) = A0 (x2) + x A1 (x2)

where A0 has the even-degree terms, A1 the odd

If my points are x1 , x2 , xn/2 , -x1 , -x2 , -xn/2 

I just need the evaluations of A0 , A1  at x1
2

 , x2
2, ... xn/2

2
 

T(n) ≤ 2 T(n/2) + O(n), with solution O(n log n). Are we done?
Need points which can be iteratively decomposed in + and -



Complex numbers:
Real numbers “with a twist”



ωn = n-th primitive root of unity

ωn
0 , … ,ωn

n-1 

n-th roots of unity

We evaluate polynomial A
of degree n-1
at roots of unity

ωn
0 , … ,ωn

n-1 

Fact: The n squares of the n-th roots of unity are:
         first the n/2 n/2-th roots of unity,
         then again the n/2 n/2-th roots of unity.

  from coefficient to point-value in O(n log n) (complex) steps



Summary:  Evaluate A at n-th roots of unity ωn
0 , … ,ωn

n-1

Divide:  A(x) = A0 (x2 ) + x A1 (x2)

           where A0 has the even-degree terms, A1 the odd

Conquer: Evaluate A0 , A1 at n/2-th roots ωn/2
0 ,… ,ωn/2

n/2-1

                This yields evaluation vectors y0 , y1 

Combine: z := 1 = ωn
0 

for (k = 0, k < n, k++) {

  y[k] = y0[k modulo n/2] + z y1[k modulo n/2];  z = z • ωn   }

T(n) ≤ 2 T(n/2) + O(n), with solution O(n log n).



It only remains to go from point-value to coefficient represent.

We need to invert F

F



It only remains to go from point-value to coefficient represent.

Fact: (F-1)j,k = ωn
-jk  /  n        Note j,k  {0,1,..., n-1}∈

To compute inverse, use FFT with ω-1 instead of ω,
then divide by n.

F


