Big picture

*All languages
*Decidable
Turing machines
NP
P
*Context-free
Context-free grammars, push-down automata
*Regular
Automata, non-deterministic automata,
regular expressions

DFA (Deterministic Finite Automata)

(G
G

@
0
1

DFA (Deterministic Finite Automata)

C
0 0
1

(G
G

e States O , this DFA has 4 states

* TransitionS ————————
labelled with elements of the alphabet 2 = {0,1}

DFA (Deterministic Finite Automata)

O
NO==0 ¢

Computation on input w:

* Begin in start state

* Read input string in a one-way fashion

* When input ends: ACCEPT if in accept state
REJECT if not

* Follow the arrows matching input symbols @

DFA (Deterministic Finite Automata)

C\t.?

Example: Input string
w = 0011

DFA (Deterministic Finite Automata)

always start in start state

C\t?

Example: Input string
w = 0011

DFA (Deterministic Finite Automata)

C\t?

Example: Input string
w = 0011

DFA (Deterministic Finite Automata)

C\t?

Example: Input string
w = 0011

DFA (Deterministic Finite Automata)

C\t?

Example: Input string
w = 0011

DFA (Deterministic Finite Automata)

C\t?

Example: Input string
w = 0011

DFA (Deterministic Finite Automata)

C\t?

Example: Input string
w =0011 ACCEPT
because end in
accept state

DFA (Deterministic Finite Automata)

C\t?

Example: Input string
w =010

DFA (Deterministic Finite Automata)

always start in start state

C\t?

Example: Input string
w =010

DFA (Deterministic Finite Automata)

C\t?

Example: Input string
w =010

DFA (Deterministic Finite Automata)

C\t?

Example: Input string
w =010

DFA (Deterministic Finite Automata)

C\t?

Example: Input string
w =010

DFA (Deterministic Finite Automata)

C\t?

Example: Input string
w =010 REJECT
because does not
end in accept state

DFA (Deterministic Finite Automata)

C\t?

Example: Input string w = 01 ACCEPT
w=010 REJECT
w =0011 ACCEPT
w =00110 REJECT

DFA (Deterministic Finite Automata)

C\t?

M recognizes language

L(M) = {w : w starts with 0 and ends with 1}
L(M) is the language of strings causing M to accept

Example: 0101 is an element of L(M), 0101

L(M)

Example

> ={0,1)

* 00 causes M to accept, so 00 is in L(M) 00 O L(M)
* 01 does not cause M to accept, so 01 not in L(M),
01 O L(M)

* 0101 L(M)
* 01101100 0O L(M)
011010 O L(M)

Example

> ={0,1)

L(M) = {w : w has an even number of 1 }

Note: If there is no 1, then there are zero 1,
zero Is an even number, so M should accept.

Indeed 0000000 [0 L(M)

Example

> ={0,1)

Example

> ={0,1)

* (M) = every possible string over {0,1}

=10,1¥"

Example

1
> ={0,1}
0 0
M :=
1

* L(M) = all strings over {0,1} except empty string €
={0,1}"-{¢}

0

* L(M) ={w: w starts and ends with same symbol }
* Memory is encoded in ... what ?

Remember 1

* L(M) ={w: w starts and ends with same symbol }
 Memory is encoded In states.
DFA have finite states, so finite memory

Convention:

(==

0
We already saw that 1
L(M) = {w : w starts with 0 and ends with 1 }

The arrow leads to a “sink” state.
1

If followed, M can never accept

Convention:

Don't need to write such arrows:

If, from some state, read symbol with no
corresponding arrow, imagine M goes into “sink state”
that is not shown, and REJECT.

This makes pictures more compact.

Another convention:

List multiple transition on same arrow:

C 0,1,2 C

This makes pictures more compact.

Example > ={0,1}

Example > ={0,1}

00,1 O 0,1 @

L(M) = ¥2 = {00,01,10,11}

Example from programming languages:

Recognize strings representing numbers:
Z - {051 72537455!657!859! +! Ty o= }

Note: 0,...,9 means 0,1,2,3,4,5,6,7,8,9: 10 transitions

Example from programming languages:

Recognize strings representing numbers:
Z - {051 72537455!657!859! +! Ty o= }

Possibly put sign (+, -) 0,---,9L)

Follow with arbitrarily many digits, but at least one
Possibly put decimal point

Follow with arbitrarily many digits, possibly none

Example from programming languages:

Recognize strings representing numbers:
Z - {051 72537455!657!859! +! Ty o= }

Inputw =17 ACCEPT 0,---,9L)
Input w = + REJECT
Input w = -3.25 ACCEPT
Input w = +2.35-. REJECT

Example
> ={0,1}

* What about { w : w has same number of 0 and 1 }

» Can you design a DFA that recognizes that?

* |t seems you need infinite memory

* We will prove later that
there is no DFA that recognizes that language !

Next: formal definition of DFA

» Useful to prove various properties of DFA

» Especially important to prove that things CANNOT be
recognized by DFA.

» Useful to practice mathematical notation

State diagram of a DFA:

*One or more states O

Exactly one start state —PO
Some number of accept states @

[_abelled transitions exiting each state, _1>
for every symbol in 2

Definition: A finite automaton (DFA)
is a 5-tuple (Q, Z, 9, qq, F) where

*Q is a finite set of states

*> Is the input alphabet

*0:Q X Z — Qs the transition function
(o in Q is the start state

*F 00 Q is the set of accept states

Q X Z is the set of ordered pairs (a,b):a€ Q,be)
Example {q,r,s}X{0,1}={(9,0).(q,1),(r,0),(r,1),(s,0),(s,1)}

«Example: above DFA is 5-tuple (Q, 2, 9, qy, F) where

*Q =1{qp, q4}
.3 = {01}
*0(qp ,0) =7

«Example: above DFA is 5-tuple (Q, 2, 9, qy, F) where

*Q =1{qp, q4}
s = {0.1)
*0(dp ,0)=qg 0o(qp,1)="7

«Example: above DFA is 5-tuple (Q, 2, 9, qy, F) where

*Q =1{0qp, q1}

> ={0,1}

*0(dp ,0) =qg 0(qp ,1) = a4
o(d1,0)=q¢ o(qs,1) =0y
(o in Q is the start state

oF =7

«Example: above DFA is 5-tuple (Q, 2, 9, qy, F) where

*Q = {qp, q4}

> ={0,1}

*8(q0 :0)=qo (g 1) = q;

06(q4,0)=q; 0(q1,1) =qg

(o In Q is the start state

F ={qp} U Q is the set of accept states

Definition: ADFA (Q, 2, 9, qq, F) accepts a string w if

W =W; Wy ... W, where, J1<i<k, w;isinXx

(the k symbols of w)

[1sequence of k+1 states ry, ryq, .., . In Q such that:
*fTo=Co
o 6(ri Wit 1) [10<i<Kk

er . isinF

(r; = state DFAis in after reading i-th symbol in w)

Example

«Above DFA (Q, 2, 9, qg, F) accepts w = 011

Example

«Above DFA (Q, 2, 9, qg, F) accepts w = 011

e W =011 =w; Wy, Ws w;=0 wr=1 wy=1

Example

«Above DFA (Q, 2, 9, qg, F) accepts w = 011
e W =011 =w; Wy, Ws w;=0 wr=1 wy=1

WE MUST SHOW THAT

«[]1sequence of 3+1=4 states ry, rq, rp, r3 iN Q that:
* o= Yo

o 6(ri Wit 1) [10<1<3

erz isinF

Example

«Above DFA (Q, Z, 3, qq, F) accepts w = 011
- W =011 =wy wy wy wy=0 wo=1 wy=1
-consider 4 states ry:= 7

Example

«Above DFA (Q, 2, 9, qg, F) accepts w = 011

e W =011 =w; Wy, Ws w;=0 wr=1 wy=1
econsider 4 statesry:=qg rqy:=7

* o= Yo OK

Example

«Above DFA (Q, 2, 9, qg, F) accepts w = 011

e W =011 =w; Wy, Ws w;=0 wr=1 wy=1
econsider 4 statesrg:=qg rq:=qg =7

* o= Yo OK

e Iy = 0(rp ,Wq)=0(qp ,0) = qg OK

Example

«Above DFA (Q, 2, 9, qg, F) accepts w = 011

e W =011 =w; Wy, Ws w;=0 wr=1 wy=1
econsider 4 statesry:=qg rqy:=qg ryx=qq rz:=7
* o= Yo OK

e Iy = 0(rp ,Wq)=0(qp ,0) = qg OK

* Iy =0(rq ,W2)=0(qp,1) = q; OK

Example

«Above DFA (Q, 2, 9, qg, F) accepts w = 011
e W =011 =w; Wy, Ws w;=0 wr=1 wy=1
econsider 4 statesrg:=qg r{:=qp rn=qq rz=qp:

* o= Yo OK
e Iy = 0(rp ,Wq)=0(qp ,0) = qg OK
* Iy =0(rq ,W2)=0(qp,1) = q; OK
e r3 = 0(rp ,W3)=0(q4,1) = qg OK

er3=(ginF OK DONE!

» Definition: For a DFA M, we denote by L(M) the set
of strings accepted by M:

L(M) .= {w : M accepts w}

We say M accepts or recognizes the language L(M)

» Definition: A language L is regular
if UDFA M :L(M)=L

In the next lectures we want to:

» Understand power of regular languages

* Develop alternate, compact notation to specify
regular languages

Example: Unix command grep ‘\<c.*h\>"file
selects all words starting with ¢ and ending with h
in file

» Understand power of regular languages:

» Suppose A, B are regular languages, what about
*notA ={w:wisnotinA}
cAUB={w:winAorwinB}

«AoB ={wyw,: wy;inA and w,in B}

cA* ={wiwy...w, :k=20,w;inA foreveryi}

» Are these languages regular?

» Understand power of regular languages:

» Suppose A, B are regular languages, what about
*notA ={w:wisnotinA}
cAUB={w:winAorwinB}

«AoB ={wyw,: wy;inA and w,in B}

cA* ={wiwy...w, :k=20,w;inA foreveryi}

* Terminology: Are regular languages closed
under not, U, o, * ?

*Theorem:
If Ais a regular language, then so is (not A)

*Theorem:
If Ais a regular language, then so is (not A)

*Proof idea: ?777?7?7?77?7?°? the set of accept states

*Theorem:
If Ais a regular language, then so is (not A)

*Proof idea: Complement the set of accept states

*Theorem:
If Ais a regular language, then so is (not A)

*Proof idea: Complement the set of accept states
*Example:

L(M) =

{w:w has even number of 1}

*Theorem:
If Ais a regular language, then so is (not A)

*Proof idea: Complement the set of accept states
*Example:

L(M) = L(M') = not L(M) =

{w:whas even numberof 1} {w:w has odd number of 1}

*Theorem:
If Ais a regular language, then so is (not A)

Formal construction:
Given DFAM = (Q, Z, 9, qg, F) such that L(M) = A

Construct DFAM' = (Q, %, 8, qq, F')
F':=not F

L (M) = not A because
M' accepts w < M does not accept w

*Theorem:
If Ais a regular language, then so is (not A)

*Formal constrl yse formal definition
Given DFAM

Construct DFAT®
F':=notF

of accept to see this!

L (M) = not A becalde
M' accepts w < M does not accept w

Example > ={0,1}

00,1 O 0,1 @

L(M) = ¥2 = {00,01,10,11}

What is a DFAM':
L(M') = not 22 = all strings except those of length 2 ?

Example > ={0,1}

M' =

. 0,1 . 0,1 . 0,1 @mOﬂ

L(M") = not ¥4 = {0,1}* - {00,01,10,11}

Do not forget the convention about the sink state!

» Suppose A, B are regular languages, what about
*notA ={w:wisnotinA} REGULAR
cAUB={w:winAorwinB}

«AoB ={wyw,: wy;inA and w,in B}

cA* ={wiwy...w, :k=20,w;inA foreveryi}

» Other three are more complicated!
*Plan: we introduce NFA

prove that NFA are equivalent to DFA
prove AU B, Ao B, A* regular, using NFA

Non deterministic finite automata (NFA)
* DFA: given state and input symbol, 1

unique choice for next state,

deterministic:

*Next we allow multiple choices,
non-deterministic 1

*We also allow e-transitions: €
can follow without reading anything

Example of NFA

Intuition of how it computes:
*Accept string w if there is a way to follow transitions
that ends in accept state

*Transitions labelled with symbol in > = {a,b}

must be matched with input
*¢ transitions can be followed without matching

Example of NFA

Example:
* Accept a (first follow e-transition)
* Accept baaa

ANOTHER Example of NFA

Example:
* Accept bab (two accepting paths, one
uses the e-transition)

* Reject ba (two possible paths, but neither
has final state = q.)

*Definition: A non-deterministic finite automaton (NFA)
is a 5-tuple (Q, Z, 9, qq, F) where

*Q is a finite set of states

*> Is the input alphabet

*d: QX (ZU{e}) — Powerset(Q)
(g in Q is the start state

*F [0 Q is the set of accept states

*Recall: Powerset(Q) = set of all subsets of Q
Example: Powerset({1,2}) = 7

*Definition: A non-deterministic finite automaton (NFA)
is a 5-tuple (Q, Z, 9, qq, F) where

*Q is a finite set of states

*> Is the input alphabet

*d: QX (ZU{e}) — Powerset(Q)
(g in Q is the start state

*F [0 Q is the set of accept states

*Recall: Powerset(Q) = set of all subsets of Q
Example: Powerset({1,2}) = {UJ, {1}, {2}, {1,2} }

«Example: above NFA is 5-tuple (Q, 2, 9, qg, F) where

*Q ={qp, 94}
s = {0.1)
*0(qp ,0) = 7

«Example: above NFA is 5-tuple (Q, 2, 9, qg, F) where

*Q =1{qp, 94}
> ={0,1}
*0(qp ,0) ={qp} 0(dg.1)="7

«Example: above NFA is 5-tuple (Q, 2, 9, qg, F) where

*Q =1{qp, 94}
> ={0,1}
*0(qp ,0) ={dp} 0(dp.1)={dp,q1} 0O(qp.€) =7

«Example: above NFA is 5-tuple (Q, 2, 9, qg, F) where

*Q ={qp, 94}

> ={0,1}

*0(dp ,0) ={ao} o(qp,1)={do, a1} 0(qp,€) =01
o(q,,0)="7

«Example: above NFA is 5-tuple (Q, 2, 9, qg, F) where

*Q ={qp, q¢}

> ={0,1}

*0(dp ,0) ={qp} 0(dp.1)={dp, a1} 0(qp,€) =01
o(q,0)=0 o(qq,1)="7

«Example: above NFA is 5-tuple (Q, 2, 9, qg, F) where

*Q ={qp, q¢}

> ={0,1}

*0(dp ,0) ={qp} 0(dp.1)={dp, a1} 0(qp,€) =01
o(qq,0)=0 0o(qq,1)=0 o(qq ,€) =7

«Example: above NFA is 5-tuple (Q, 2, 9, qg, F) where
*Q={qp, 9}

> ={0,1}
*0(qp ,0) ={dp} 0(dg.1)={dp,q1} 0O(dp,€) =L
o(q4,0)=0 9(qq,1)=101 o(q4 ,€) = {q4}

g In Q is the start state
oF =7

«Example: above NFA is 5-tuple (Q, 2, 9, qg, F) where
*Q={qp, 9}

> ={0,1}
*0(qp ,0) ={dp} 0(dg.1)={dp,q1} 0O(dp,€) =L
o(q4,0)=0 9(qq,1)=101 o(q4 ,€) = {qp}

(o in Q is the start state
F ={q4} OQ is the set of accept states

Definition: ANFA (Q, 2, 9, qq, F) accepts a string w if
[linteger k, 3 k strings w;, w,, ..., w, such that

‘W=W;W,...W, Whered1l<i<k, w;0ZZU {g}

(the symbols of w, or €)

[1sequence of k+1 states ry, ryq, .., r, In Q such that:
*fTo=Co

*roq L 3(r wiq) D0<i<k
er . isinF

Differences with DFA are in green

Back to first example NFA:

Accepts w = baaa
w1=b, w,=a, w,=a, W=¢g W, =2

Accepting sequence of 5+1 = 6 states:
r ="
0

Back to first example NFA:

Accepts w = baaa
w1=b, w,=a, w,=a, W=¢g W, =2

Accepting sequence of 5+1 = 6 states:
r.=4a,, ro="7

Back to first example NFA:

Accepts w = baaa
w1=b, w,=a, w,=a, W=¢g W, =2
Accepting sequence of 5+1 = 6 states:
=4 =9 r2=?

Transitions:
rydo(r,,b) ={q.}

Back to first example NFA:

Accepts w = baaa
w1=b, w,=a, w,=a, W=¢g W, =2
Accepting sequence of 5+1 = 6 states:
r0=q0’ r1=q1’ I’2=qZ’ r.3=?

Transitions:
ryo(r,b)={q.} rpy0o(r,a)={q,.q}

Back to first example NFA:

Accepts w = baaa
w1=b, w,=a, w,=a, W=¢g W, =2
Accepting sequence of 5+1 = 6 states:
r0=q0’ r1=q1’ I’2=qZ’ r.3=qO’ r =?
Transitions:
rdo(r,b)={q,} r.00o(r,a)=1{q,,q,
r;0o(r,a) =1{q,}

Back to first example NFA:

Accepts w = baaa
w1=b, w,=a, w,=a, W=¢g W, =2
Accepting sequence of 5+1 = 6 states:
r0=q0’ r1=q1’ I’2=qZ’ r'3=qO’ r4=q2’ r=?
Transitions:
rdo(r,b)={q,} r.00o(r,a)=1{q,,q,
rsbo(r,a)=1{q, rs00(r,€)=1q,}

Back to first example NFA:

Accepts w = baaa
w1=b, w,=a, w,=a, W=¢g W, =2
Accepting sequence of 5+1 = 6 states:
r0 = qO’ r1 = q1’ I’2 = q2’ r'3 = qO’ r4 = q2’ r5 = qO
Transitions:

¥ 6(roab) = {q1} L, 5(r1=a) = {q1’q2}
rs0o(r,a)=1{q,} rs00o(r,e)={q,} rs0o(r,,a)=1{q;}

*NFA are at least as powerful as DFA,
because DFA are a special case of NFA

*Are NFA more powerful than DFA?

*Surprisingly, they are not:

*Theorem:
For every NFA N there is DFAM : L(M) = L(N)

*Theorem:
For every NFA N there is DFAM : L(M) = L(N)

*Construction without € transitions

*Given NFAN (Q, 2, 9, q, F)

*Construct DFAM (Q', 2, 9, q', F') where:

Q' := Powerset(Q)

g ={q}

F'={S:S 0Q"and S contains an element of F}

« 0 (S, a):=Ug g 0(s,a)
={t:td(s,a)forsomes]S}

[t remains to deal with € transitions

*Definition: Let S be a set of states.
E(S) :={q: g can be reached from some state
s in S traveling along O or more ¢ transitions }

*\We think of following € transitions at beginning, or
right after reading an input symbol in 2

*Theorem:
For every NFA N there is DFAM : L(M) = L(N)

*Construction including € transitions
*Given NFAN (Q, 2, 9, q, F)

*Construct DFAM (Q, 2, 0, ', F') where:
Q' := Powerset(Q)

°q' = E({a})
F'={S:S Q"'and S contains an element of F}
» 0(S, a) :=E(Uggsd(s,a))

={t:tUE(d(s,a))forsomes]S}

Example: NFA — DFA conversion

© O

NFA E DFA

@

Q.. = Powerset(Q

DFA

= Powerset({1,2,3}) @

= {0,{11,{2}.{3},{1,2}..}

FA)

Example: NFA — DFA conversion

b a
a £

e @ ® @

Yora T ({qNFA})

- E(1) - ®

= 11,3}

NFA E DFA

Example: NFA — DFA conversion

NFA E DFA

= © ® O
.9 s @

F_={S:S contains

DFA E
an element of FNFA}E

Example: NFA — DFA conversion

NFA E DFA

® ©
"9 2 @

e

Opralil)s)
= E(o (1, a))
= E(0) = O

Example: NFA — DFA conversion

NFA E DFA

® ® @

.@ a,b &

0,.,({1}, b)
= E(5_,(1, b))

= E({2}) = {2

Example: NFA — DFA conversion

NFA E DFA

% a,b O

Opral12):)
= E(o (2, a))

= E({2,3}) = 12,3}

Example: NFA — DFA conversion

NFA E DFA

% a,b O

0., ({2}, b)
= E(5_,(2, b))

= E({3}) = {3}

Example: NFA — DFA conversion

NFA

.@ a,b O

0., (13}, a)
= E(_(3, a))

= E({(1}) = 1.3}

Example: NFA — DFA conversion

NFA

.9 a,b O

0., ({3}, b)
= E(3_,(3, b))

= E(0) = [

Example: NFA — DFA conversion

NFA E DFA

(2,3}, a) .
E(,,(2:2) UG, (3,2)):

E({2,3} U {1}) ={1,2,3}:

0

Example: NFA — DFA conversion

NFA E DFA

(2,3}, b) .
E(3,,(2b) U3, (3,0)):

EQ3yU L) =13}

0

Example: NFA — DFA conversion

NFA E DFA

5 _({1,3}, a) i]

E(3.(1,2) U3 (3,a)) A

E(U U{1}) ={1,3}

Example: NFA — DFA conversion
NFA E DFA

a

A

Opall1,3}, D) i b

= E(3 1,b)U5NFA(3’b))E a

= E(2tU) =12}

NFA(

Example: NFA — DFA conversion

NFA E DFA

5 _({1,2}, a) i]

E(3.,(1,2) U3 (2,a)) A

E(0 U {2,3}) ={2,3)

Example: NFA — DFA conversion

NFA E DFA

Opalll,2}, D) i b

a
. a,b
E(o..(1,b)U o _ (2,b)) @ 3

E(12} U {3}) =12,3;

NFA(

Example: NFA — DFA conversion

NFA E DFA

: a
EDFA({1 2,3}, a) : b ab

=E(s5_(1,2)Us_,(2,a)U BNFA(B,a))E @ a

=E(0 U {23}U{1}) = {1,2,3}"

Example: NFA — DFA conversion

NFA E DFA

: a
ESDFA({1 2,3}, b) : b ab

=E(s5_(1,b)Us_,(2,b)U 6NFA(3,b))E @ a

=E({2} U {3} U 0) = {2,3} !

Example: NFA — DFA conversion

Example: NFA — DFA conversion

NFA

We can delete the

unreachable states.

ANOTHER Example: NFA — DFA conversion
NFA ' DFA

@ @
@

Q,., = Powerset(Q__,) ‘ ‘
= Powerset({1,2,3}) ‘

= 1UA13125{3511,2}- }

ANOTHER Example: NFA — DFA conversion
NFA DFEA

e @ O

q.., = E(q..})
= E({1}) ‘ @, ©

=1}

ANOTHER Example: NFA — DFA conversion
NFA 5 DFA

Fors = {S : S contains
an element of FNFA}E

ANOTHER Example: NFA — DFA conversion

NFA

ANOTHER Example: NFA — DFA conversion

NFA

o,.,({1}, b)
= E3_(1,b))

= E({2,3}) = {1,2,3}

ANOTHER Example: NFA — DFA conversion

NFA

o,.,({2}, a)
= E(_,(2, a))

= E(3}) = 11,3}

ANOTHER Example: NFA — DFA conversion

NFA

OpeallZh: D)

DFA

= E(5 (2, b))
= E(0) = C

ANOTHER Example: NFA — DFA conversion

NFA

ANOTHER Example: NFA — DFA conversion

NFA

Opeal13): D)
= E(0,(3, b))

NFA

= E(0) = [

ANOTHER Example: NFA — DFA conversion

NFA

DFA({12} a)
= E(5_(1,3) UBFAZa

= E(D U {3}) ={1,3}

ANOTHER Example: NFA — DFA conversion
NFA 5 DFA

Sor({1/21 B 5 . ‘
= E(3,,,(1.6) U3,,(2.b))}

= E({2,3} U O) -{123}

ANOTHER Example: NFA — DFA conversion
NFA 5 DFA

o__ ({1,3}, a)

DFA

= E(0_,(1,a)Ud _(3,a))

= E[OUD) =0

ANOTHER Example: NFA — DFA conversion
NFA 5 DFA

o __ ({1,3}, b)

DFA

= E(3_,(1,0) U3, (3,b)) ‘
= E({2,3}U 0) ={1,2,3)

ANOTHER Example: NFA — DFA conversion

NFA

5 .,({2,3}, a) .
= E(3,,(2a) U3 ,(3.a)):

= E({3} U 1) ={1,3}

ANOTHER Example: NFA — DFA conversion

NFA

Opeal12:3}, D)
= E(5_,(2b)U3

= E[OUD) =0

(3.0));

NFA

ANOTHER Example: NFA — DFA conversion

NFA

o _({1,2,3}, a)

DFA(

ANOTHER Example: NFA — DFA conversion
NFA

b
B,r,({1:2.3, D) i @\ }‘

=E(5_(1.b) U5 _(2b) U3, 3b): =

=E({2,3yunuD)={1,23}.

ANOTHER Example: NFA — DFA conversion

NFA

DFA(

o4O

DFA(’

ANOTHER Example: NFA — DFA conversion

NFA

We can delete the

unreachable states.

Summary: NFA and DFA recognize the same
languages

We now return to the question:

» Suppose A, B are regular languages, what about
*notA ={w:wisnotinA} REGULAR
cAUB={w:winAorwinB}

«AoB ={wyw,: wy;inA and w,in B}

cA* ={wiwy...w, :k=20,w;inA foreveryi}

Theorem: If A, B are regular languages, then so is
AUB ={w:winAorwinB}

A,
B,

«Proof idea: Given DFA M, : L(My)
DFA Mg : L(Mpg)
*Construct NFAN : L(N)=AUB

M Mg
—) © U—»Q@]
°(c>> © 000 @@

Construction:

*Construct NFAN = (Q, 2, 9, g, F) where:
Q:=7

Construction:

*Construct NFAN = (Q, 2, 9, g, F) where:
Q:={qtUQUQg , F:=7

*Construct NFAN = (Q, 2, 9, g, F) where:
Q:={qtUQaUQg , Fi=F,UFg
d(r,x) :={0a(r,x) }ifrinQaand x £ ¢
d(r,X) := 7 if rin Qgand x #¢

*Construct NFAN = (Q, 2, 9, g, F) where:
Q:={qtUQaUQg , Fi=F,UFg
d(r,x) :={0a(r,x) }ifrinQaand x £ ¢
d(r,x) :={0g(rx) }ifrin Qgand x #¢
*d(q,e) ;=7

*Construct NFAN = (Q, 2, 9, g, F) where:
Q:={qtUQaUQg , Fi=F,UFg
d(r,x) :={0a(r,x) }ifrinQaand x £ ¢
d(r,x) :={0g(rx) }ifrin Qgand x #¢
+5(0,€) := {p, 95}

\We have L(N) =AUB

Example
s L={win{0,1}* : |w| is divisible by 3 OR
w starts with a 1} regular?

Example
s L={win{0,1}* : |w| is divisible by 3 OR
w starts with a 1} regular?

ORis like U,sotrytowrite L=L UL,
where L1, L2 are reqgular

Example
s L={win{0,1}* : |w| is divisible by 3 OR
w starts with a 1} regular?

ORis like U, so try to write L = L1 U L2
where L , L are regular
L. ={w: |w]|is div. by 3} L, ={w:w starts with a 1}

Example
s L={win{0,1}* : |w| is divisible by 3 OR
w starts with a 1} regular?

ORis like U, so try to write L = L1 U L2
where L , L are regular
L. ={w: |w]|is div. by 3} L, ={w:w starts with a 1}

M, = .0,1
C 0,1 @ 0,1 @

L(M,) =L

1

Example
s L={win{0,1}* : |w| is divisible by 3 OR
w starts with a 1} regular?

ORis like U, so try to write L = L1 U L2
where L , L are regular
L. ={w: |w]|is div. by 3} L, ={w:w starts with a 1}

0,1 0,1 o

L(M,) =L L(M,) =L,

1

Example
s L={win{0,1}* : |w| is divisible by 3 OR
w starts with a 1} regular?

ORis like U, so try to write L = L1 U L2
where L , L are regular
L. ={w: |w]|is div. by 3} L, ={w:w starts with a 1}
L(M)=L(M,) ULM)
=L UL,

L is reqgular.

We now return to the question:

» Suppose A, B are regular languages, then
*notA ={w:wisnotinA} REGULAR
cAUB:={w:winAorwinB} REGULAR
«AoB ={wyw,: wy;inA and w,in B}

e A* ={wiwy...w, :k=20,w;inA foreveryi}

Theorem: If A, B are regular languages, then so is
AoB :={w:w=xyforsome
xinA and yinB}.
Proof idea: Given DFAs M,, Mg for A, B

construct NFAN : L(N) =A o B.

Ma o © Mg ° ©

Ma
-0O°©|c¢
°c©
Construction:
«Given DFA M, = (Qp, 2, Oa, 9a,
DFAMg = (Qg, Z, 05, dg, Fg) : L(Mg) =
Construct NFAN = (Q, Z, d, q, F) where:
Q=7

1]

~

=

>

1

o >

Ma
-0O°©|c¢
c©
Construction:
«Given DFA M, = (Qp, 2, Oa, 9a,
DFAMg = (Qg, Z, 05, dg, Fg) : L(Mg) =

*Construct NFAN = (Q, 2, 9, q, F) where:
'Q:=QAUQB : q:=?

11

~

=

.

1

w >

Ma
-0 @©|C
©c©
Construction:
«Given DFA MA — (QA, Z, 6A, da» :A) : L(MA) — A,
DFA Mg = (Qg, 2, 05, Og, Fg) : L(Mg) =B

*Construct NFAN = (Q, 2, 9, q, F) where:
Q:=QaUQg, q:=q, , F:=7

Ma
-0 @©|C
©c©
Construction:
«Given DFA MA — (QA, Z, 6A, da» :A) : L(MA) — A,
DFA Mg = (Qg, 2, 05, Og, Fg) : L(Mg) =B

*Construct NFAN = (Q, 2, 9, q, F) where:
.Q:=QAUQB : q:qu : F:=FB

d(r,X) ;=7 ifrin Qaand x # ¢

Ma
-0 @©|C
°c©

Construction:

«Given DFA My = (Qpa, 2, Op, Qa, Fa) : L(Ma) = A,
DFA Mg = (Qg, 2, 0g, Qg, Fg) : L(Mg) = B

*Construct NFAN = (Q, 2, 9, q, F) where:

‘Q:=QpUQg, q:=q, , F:=Fp

d(r,X) :={0a(r,X) }ifrin Qauand x £ ¢

(1) ;=7 ifrinF,

Ma
-0 @©|C
°c©

Construction:

«Given DFA My = (Qpa, 2, Op, Qa, Fa) : L(Ma) = A,
DFA Mg = (Qp, 2, 0g, gg, Fp) : L(Mg) =B

*Construct NFAN = (Q, 2, 9, q, F) where:

‘Q:=QpUQg, q:=q, , F:=Fp

d(r,X) :={0a(r,X) }ifrin Qauand x £ ¢

o(re) :={qgtifrinF,

d(r,X) ;=7 ifrin Qgand x # ¢

Ma
-0 @©|C
©c©
Construction:
«Given DFA MA — (QA, Z, 6A, da» :A) : L(MA) — A,
DFA Mg = (Qg, 2, 05, Og, Fg) : L(Mg) =B

*Construct NFAN = (Q, 2, 9, q, F) where:
.Q:=QAUQB : q:qu : F:=FB

d(r,X) :={0a(r,X) }ifrin Qauand x £ ¢
o(re) :={qgtifrinF,

d(r,x) :={0g(r,x) }ifrin Qgand x #¢
*\We have L(N) =Ao0oB

Example

s L={win{0,1}* : w contains a 1 after a 0}
regular?

Note: L = {01, 0001001, 111001, ... }

Example

s L={win{0,1}* : w contains a 1 after a 0}
regular?

Let L ={w :w contains a O}
L ={w:wcontainsa1}. Then L=L olL.

Example
s L={win{0,1}* : w contains a 1 after a 0}

regular?

Let L ={w :w contains a O}
L ={w:wcontainsa1}. Then L=L olL.

M =

0

.8

L(M) =L,

Example
s L={win{0,1}* : w contains a 1 after a 0}

regular?

Let L ={w :w contains a O}
L ={w:wcontainsa1}. Then L=L olL.

M =

0

28 ad

L(M) =L, L(M) =L,

Example

s L={win{0,1}* : w contains a 1 after a 0}
regular?

Let L ={w :w contains a O}
L ={w:wcontainsa1}. Then L=L olL..

L is reqgular.

We now return to the question:

» Suppose A, B are regular languages, then

*notA ={w:wisnotinA} REGULAR
cAUB:={w:winAorwinB} REGULAR
«sAoB ={w,;w,: wye Aand w, € B} REGULAR
e A* ={wiwy...w, :k=20,w;inA foreveryi}

Theorem: If Ais a regular language, then so is
A" ={w: w= W..W, W in Afori=1,...k}

Proof idea: Given DFA M, : L(M,) = A,
Construct NFAN : L(N) = A*

Construction:
«Given DFA M, = (Qa, 2, Op, Qa, Fa) : L(My) = A,

Construct NFAN = (Q, 2, 9, q, F) where:
Q:=7

Construction:
«Given DFA M, = (Qa, 2, Op, Qa, Fa) : L(My) = A,

Construct NFAN = (Q, 2, 9, q, F) where:
Q:={q} UQ,,F:=7

Construction:
«Given DFA M, = (Qa, 2, Op, Qa, Fa) : L(My) = A,

Construct NFAN = (Q, 2, 9, q, F) where:
*Q:={q} U Qp, F:={q} UF,
d(r,X) ;=7 ifrin Qaand x # ¢

Construction:

*Given DFAM, = (Qp, Z, Op, o, Fa) : L(My) = A,
Construct NFAN = (Q, 2, 9, q, F) where:
‘Q:={q} U Qa, F:={q} UF,

d(r,X) :={0a(r,X) }ifrin Qauand x £ ¢

o(re):=7? ifrin{q}UF,

Construction:
«Given DFA M, = (Qa, 2, Op, Qa, Fa) : L(My) = A,

Construct NFAN = (Q, 2, 9, q, F) where:
Q:={qtUQp, F:={q} UFu

d(r,X) :={0a(r,X) }ifrin Qauand x £ ¢
O(r,e) :={qatifrin{q} UF,

\We have L(N) = A

Example
s L={win{0,1}* : w has even length}
regular?

Example
s L={win{0,1}* : w has even length}
regular?

LetL ={w:whaslength=2}. ThenlL=L "

Example
s L={win{0,1}* : w has even length}
regular?

LetL ={w:whaslength=2}. ThenlL=L "

M

Example
s L={win{0,1}* : w has even length}
regular?

LetL ={w:whaslength=2}. ThenlL=L "
£

oo

L(M) = L(M)* = L* =L

L is regular.

We now return to the question:

» Suppose A, B are regular languages, then
*notA ={w:wisnotinA}
rAUB={w:winAorwinB}

«AoB ={w;w,: wyinA and w,inB}

e A* ={wiwy...w, :k=20,w;inA foreveryi}

are all regular!

We now return to the question:

» Suppose A, B are regular languages, then
*notA ={w:wisnotinA}
rAUB={w:winAorwinB}

«AoB ={w;w,: wyinA and w,inB}

e A* ={wiwy...w, :k=20,w;inA foreveryi}

What aboutANB:={w:winAandwinB}?

We now return to the question:

» Suppose A, B are regular languages, then
*notA ={w:wisnotinA}
rAUB={w:winAorwinB}

«AoB ={w;w,: wyinA and w,inB}

e A* ={wiwy...w, :k=20,w;inA foreveryi}

De Morgan's laws: A B = not ((notA) U (not B))
By above, (not A) is regular, (not B) is regular,

(not A) U (not B) is regular,

not ((not A) U (not B)) = AN B regular

We now return to the question:

» Suppose A, B are regular languages, then
*notA ={w:wisnotinA}
rAUB={w:winAorwinB}

«AoB ={w;w,: wyinA and w,inB}

e A* ={wiwy...w, :k=20,w;inA foreveryi}
rANB:={w:winAandwinB}

are all regular

How to specify a regular language?

Write a picture — complicated

gt

Write down formal definition — complicated
0(dp ,0) =qp, ..

Use symbols from 2 and operations *, o, U — good

(10} U 11}) 01001}

Regular expressions: anything you can write with
[1, €, symbols from 2, and operations *, o, U

Conventions:

*\Write a instead of {a}

*\Write AB forAo B

Write) for Uaez a Soif) ={a,b}then) =alUb
*Operation * has precedence over o, and o over U
so 1 U 01* means 1U(0(1)*)

Example: 110, 0*, =*, 3*0012*, (=3)*, 01 U 10

Definition Regular expressions RE over 2 are:

€
a fain
R R If R, R'are RE

RUR' IifR,R"are RE
R* If Ris RE

Definition The language described by RE:
L(T) =[O

L(e) = {¢€}

L(a) = {a} ifain 2

L(R R") = L(R) o L(R")

L(RUR'") =L(R) U L(R")

L(R*) = L(R)*

Example >~ ={ a, b}
RE Language

* ab U ba ?

° a*

* (a U Db)”

* a*ba”

*>*b2*

*>*aab2*

° (22)"

* (@a*ba*ba*)”

* a*baba*all

Example >~ ={ a, b}

RE Language
 ab U ba {ab, ba}
° a*

* (a U Db)”

* a*ba”
*>*b2*
*>*aabX”

° (22)°

* (@a*ba*ba*)”
* a*baba*all

Example 2 ={ a, b}

RE Language
 ab U ba {ab, ba}
°a* {€,a,aa, ...} ={w:whasonly a}
* (aUDb)”

* a*ba”
*>*b2*
*>*aab2*

° (22)°

* (@a*ba*ba*)*
* a*baba*all

Example 2 ={ a, b}

RE Language
 ab U ba {ab, ba}
°a* {€,a,aa, ...} ={w:whasonly a}
* (a U Db)” all strings
* a*ba”
*>*b2*
*>*aabX”
° (22)°

* (@a*ba*ba*)*
* a*baba™all

Example 2 ={ a, b}

RE Language
 ab U ba {ab, ba}
°a* {€,a,aa, ...} ={w:whasonly a}
* (a U Db)” all strings
* a*ba” {w : w has exactly one b}
*>*b2*
*>*aabX”
° (22)°

* (@a*ba*ba*)*
* a*baba™all

Example 2 ={ a, b}

RE Language
 ab U ba {ab, ba}
°a* {€,a,aa, ...} ={w:whasonly a}
* (a U Db)” all strings
* a*ba” {w : w has exactly one b}
*>*pb2* {w : w has at least one b}
*>*aabX”
° (22)°

* (@a*ba*ba*)*
* a*baba™all

Example 2 ={ a, b}

RE Language
 ab U ba {ab, ba}
°a* {€,a,aa, ...} ={w:whasonly a}
* (a U Db)” all strings
* a*ba” {w : w has exactly one b}
*>*pb2* {w : w has at least one b}
*>*aab2* {w : w contains the string aab}
° (22)°

* (@a*ba*ba*)*
* a*baba™all

Example 2 ={ a, b}

RE Language
 ab U ba {ab, ba}
°a* {€,a,aa, ...} ={w:whasonly a}
* (a U Db)” all strings
* a*ba” {w : w has exactly one b}
*>*pb2* {w : w has at least one b}
*>*aab2* {w : w contains the string aab}
* (22)* {w : w has even length}

* (@a*ba*ba*)*
* a*baba™all

Example 2 ={ a, b}

RE Language
 ab U ba {ab, ba}
°a* {€,a,aa, ...} ={w:whasonly a}
* (a U Db)” all strings
* a*ba” {w : w has exactly one b}
*>*pb2* {w : w has at least one b}
*>*aab2* {w : w contains the string aab}
* (22)* {w : w has even length}
* (@a*ba*ba*)* {w : w contains even number of b}

* a*baba*all

Example 2 ={ a, b}

RE Language
 ab U ba {ab, ba}
°a* {€,a,aa, ...} ={w:whasonly a}
* (a U Db)” all strings
* a*ba” {w : w has exactly one b}
*>*pb2* {w : w has at least one b}
*>*aab2* {w : w contains the string aab}
* (22)* {w : w has even length}
* (@a*ba*ba*)* {w : w contains even number of b}

* a*baba*all [] (anything o J = [1)

Theorem: For every RE R there is NFA M: L(M) = L(R)

Theorem: For every RE R there is NFA M: L(M) = L(R)
Construction:
*R=1[] M:="7

Theorem: For every RE R there is NFA M: L(M) = L(R)
Construction:

‘R =[] |\/|:=—>O

*R=¢ M:="7

Theorem: For every RE R there is NFA M: L(M) = L(R)
Construction:
R =[] M =

—)
Rz M= @)

eR=2a M:="

Theorem: For every RE R there is NFA M: L(M) = L(R)
Construction:

R =[] M =

*R=¢ M =

—)
—0)
‘R=a M=—(=0

*R=RUR" ?

Theorem: For every RE R there is NFA M: L(M) = L(R)
Construction:
R =[] M =

*R=¢ M :=

—)
—0)
‘R=a M=—(=0

e R=R UR"' use construction for A U B seen earlier
*R=RoR" ?

Theorem: For every RE R there is NFA M: L(M) = L(R)
Construction:
R =[] M =

*R=¢ M :=

—)
—0)
‘R=a M:=—()0

e R=R UR'" use construction for A U B seen earlier

e R=R0R'" use construction for A o B seen earlier
e R=R* ?

Theorem: For every RE R there is NFA M: L(M) = L(R)
Construction:
R =[] M =

eR=c¢ M = _>©
a
e R=R UR"' use construction for A U B seen earlier

e R=RoR' use construction for A o B seen earlier
e R=R* use construction for A* seen earlier

Example: RE — NFA

RE = (ab U a)*

Example: RE — NFA

RE = (ab U a)*

L(M)=L(a)

Example: RE — NFA

RE = (ab U a)”
M = +02-0 M = 020
L(M)=L(a) L(M,)=L(b)

Example: RE — NFA

RE = (ab U a)*

M =
ab

Oa OE Ob ©
L(M_)=L(ab)

Example: RE — NFA

RE =(ab U a)*

M = M = +02-0

:a :z Ob ®
L(M_)=L(ab) L(M,)=L(a)

Example: RE — NFA

=(ab U a)*

M =

ab U a

¢
. O%-0+02~0
—+C
“O%>0

)=L(ab U a)

(ab U a

Example: RE — NFA

RE = (ab U a)*

(M, ,.)=L((@b U a)")=L(RE)

(ab U a

ANOTHER Example: RE — NFA

RE =(¢ U a)ba”

ANOTHER Example: RE — NFA

RE =(¢ U a)ba”

M = -0

€

L(M)=L(¢)

ANOTHER Example: RE — NFA

RE =(¢ U a)ba”

M= -0 M, = -0>0

e d

L(M)=L(g) L(M)=L(a)

ANOTHER Example: RE — NFA

RE =(¢ U a)ba”

L(M_, .)=L(e U a)

ANOTHER Example: RE — NFA

RE =(¢ U a)ba”

L(M_, .)=L(e U a)

ANOTHER Example: RE — NFA

RE =(¢ U a)ba”

L(M (SUa)b)=L((e U a)b)

ANOTHER Example: RE — NFA

RE =(¢ U a)ba”

L(M (wa)b):L((e U a)b)

ANOTHER Example: RE — NFA
RE =(¢ U a)ba”
= = — ¢
M |\/|a* g a:

L(M_)=L(a*)

L(M (wa)b):L((e U a)b)

ANOTHER Example: RE — NFA

RE =(¢ U a)ba”

WL

(_.)=L((¢ U a)ba™)=L(RE)

Recap:

Here “00 ” means “can be converted to”

We have seen: RE

Next we see: DFA

In two steps: DFA

NFA « DFA

RE

Generalized NFA

RE

Generalized NFA (GNFA)
aUDb*

Omun =
Nondeterministic
Transitions labelled by RE

Read blocks of input symbols at a time

Generalized NFA (GNFA)
aUDb*

@ a*b* ab

Convention:

Unique final state

Exactly one transition between each pair of states
except nothing going into start state

nothing going out of final state
If arrow not shown in picture, label =

*Definition: A generalized finite automaton (GNFA)
- is a 5-tuple (Q, Z, 9, qp, q,) where
*Q is a finite set of states

*> is the input alphabet
d:(Q-{q,}) X(Q-{qy}) — Regular Expressions

(o in Q is the start state
g, in Q is the accept state

«Definition: GNFA (Q, Z, 9, qp, q,) accepts a string w if

« Jinteger k, 3 k strings w, ,w,, ..., w, 0¥

such that w =w, w, ... w;

(divide w in k strings)

[1sequence of k+1 states ry, ry, .., , In Q such that:

* o= o

L(5(ri))) 00<i<k

Differences with NFA are in green

Example Ob*
@ a* @ ab

Accepts w = aaabbab
w, ="

b*

@ a* @ ab

Accepts w = aaabbab
w,=aaa Ww,=7?

Example

b*

a* O ab
0 @
Accepts w = aaabbab

w,=aaa W,=bb wj;=ab

rp=dg r4=7

Example

b*

a* O ab
0 @
Accepts w = aaabbab

w,=aaa W,=bb wj;=ab

rp=dg r1=qq ry=7

Example

w, =aaa 0 L(o(ry,rq)) = L(0(q,,94)) = L(@%)

b*

a* O ab
0 @
Accepts w = aaabbab

w,=aaa W,=bb wj;=ab

0o =01 M=qq M3 =7

Example

w, = aaa U L(o(ry,r))
w, =bb O L((ry,r,))

L(6(qp.94)) = L(@")
L(6(q4.94)) = L(D7)

Example

)

Accepts w = aaabbab

w,=aaa W,=bb wj;=ab

'hv=do r1=4;4

w, = aaa
W, = bb
W, = ab

b*

=04 '3 =,

L(0(0g,q4)) =

(

O

| (0(94,94)) =

(q1 vqa)) =

Theorem: O DFAM OGNFA N : L(N) = L(M)
Construction:

To ensure unique transition between each pair:
O==0 B OO
0

To ensure unique final state, no transitions ingoing
start state, no transitions outgoing final state:

Theorem: 0 GNFAN ORE R : L(R) = L(N)
Construction:

If N has 2 states, then N = S
thus R:=S @

If N has > 2 states, eliminate some state q, # q,, q., :

for every ordered pair q;, q (possibly equal)
that are connected through q

@@

Repeat until 2 states remain

Example: DFA — GNFA — RE
DFA

a b
_
@ b,C

Example: DFA — GNFA — RE

GNFA a

g 5 bUc

Example: DFA — GNFA — RE

a b

(2 e
g Q bUc g

Eliminate q,: re-draw GNFA with all other states

Example: DFA — GNFA — RE

a b

(2 «
g bUC g

Eliminate q_: find a path through q.

Example: DFA — GNFA — RE

a b

(2 e
g Q bUc g

Eliminate g : add edge to new GNFA

. ca*(bUc)

Example: DFA — GNFA — RE

a b

(2 e
g Q bUc g

Eliminate g : simplify RE on new edge

a* (b U c)
(%)

Example: DFA — GNFA — RE

a b

(2 e
g Q bUc g

Eliminate q_: If no more paths through q,, start over

b
*)
@ a* (b U c) g

Example: DFA — GNFA — RE

b

* «
@ a* (b U c) g

Eliminate q,: re-draw GNFA with all other states

Example: DFA — GNFA — RE

b

* (
@ a* (b U c) g

Eliminate q,: find a path through q,

Example: DFA — GNFA — RE

b

* «
@ a* (b U c) g

Eliminate g,: add edge to new GNFA

. a*(bUc)b*¢ .

Example: DFA — GNFA — RE

b

* «
@ a* (b U c) g

Eliminate q,: simplify RE on new edge

. a* (b Uc)b* .

Example: DFA — GNFA — RE

b

* «
@ a* (b U c) g

Eliminate q. If no more paths through q,, start over

. a* (b Uc)b” .

Example: DFA — GNFA — RE

. a* (b Uc)b* .

Only two states remain:

RE = a* (b U ¢) b*

ANOTHER Example: DFA — GNFA — RE
DFA

ANOTHER Example: DFA — GNFA — RE

ANOTHER Example: DFA — GNFA — RE

Eliminate q_:

re-draw GNFA with
all other states

ANOTHER Example: DFA — GNFA — RE

Eliminate q_:

find a path
through q.

ANOTHER Example: DFA — GNFA — RE

Eliminate q_:

add edge to
new GNFA

ANOTHER Example: DFA — GNFA — RE

Eliminate q_:

find another
path through g

ANOTHER Example: DFA — GNFA — RE

Eliminate q_:

add edge to
new GNFA

ANOTHER Example: DFA — GNFA — RE

Eliminate q_:

find another
path through g

ANOTHER Example: DFA — GNFA — RE

don't forget current

Eliminate q_:] 0. edge
2 3 '

add edge to
new GNFA

ANOTHER Example: DFA — GNFA — RE

Eliminate q_:

find another
path through g

ANOTHER Example: DFA — GNFA — RE

don't forget current

Eliminate q_: ; 0. edge
2 2 '

add edge to
new GNFA

ANOTHER Example: DFA — GNFA — RE

Eliminate q_:

when no more paths
through q., start over

(and simplify
RES)

ANOTHER Example: DFA — GNFA — RE

Eliminate q.

re-draw GNFA with
all other states

O—= @+

ANOTHER Example: DFA — GNFA — RE

Eliminate q.
find a path through q,

©—=t op

ANOTHER Example: DFA — GNFA — RE

Eliminate q.

add edge to new GNFA

a*b U a*c(b U ca*c)*(a U ca*b)

O ()>@

ANOTHER Example: DFA — GNFA — RE

Eliminate q. ‘ b U catc

when no more paths
through d,, start over

a*b U a*c(b U ca*c)*(a U ca*b)

O ()>@

ANOTHER Example: DFA — GNFA — RE

a*b U a*c(b U ca*c)*(a U ca™b)
(%) O
Eliminate q.:

re-draw GNFA with
all other states

ANOTHER Example: DFA — GNFA — RE

a*b U a*c(b U ca*c)*(a U ca*b)
(%) O

Eliminate q.:

find a path through q, .

don't forget: no arrow means @

ANOTHER Example: DFA — GNFA — RE

a*b U a*c(b U ca*c)*(a U ca*b)
(%) O
Eliminate q.:

add edge to new GNFA

45

.a*b U a*c(b U ca*c)*(a U ca*b)0™*e @

ANOTHER Example: DFA — GNFA — RE

a*b U a*c(b U ca*c)*(a U ca™b)
(%) O
Eliminate q.:
when no more paths through d,, start over

(and simplify REs) don't forget: B*= ¢

. a*b U a*c(b U ca*c)*(a U ca™b) @

ANOTHER Example: DFA — GNFA — RE

. a*b U a*c(b U ca*c)*(a U ca™b) @

Only two states remain:

RE =a*b U a*c(b U ca*c)*(a U ca*b)

Recap:

Here “00 ” means “can be converted to”

RE

Any of the t
the regular

= DFA « NFA

nree recognize exactly

anguages (initially defined using DFA)

These conversions are used every time you enter
an RE, for example for pattern matching using grep

*The RE Is converted to an NFA
*Then the NFA Is converted to a DFA
*The DFA representation is used to pattern-match

Optimizations have been devised,
but this is still the general approach.

What language is NOT regular?

IS{0"1":n=0}={e 01,0011, 000111, ... } regular?

Pumping lemma:

L regular language p =0

wOL, [wfzp

X,Y,Z : W= Xyz, |y|> 0, |xy|<p

i>20:xy'zOL

RecallyO =g,y =y, y2 = yy, y3 = yyy, ...

Pumping lemma:

L regular language p =0

wOL, [wfzp

X,¥,Z : W= Xyz, |y[> 0, |[xy|< p
i>20:xy'zOL
We will not see the proof. But here's the idea:

p = |Q| for DFA recognizing L

Ifw L, |w|l=p, then during computation

2 states must be the same g € Q
y = portion of w that brings back to g
can repeat y and still accept string

Pumping lemma:

L regular language p =0 A

wOL, [wfzp

X,Y,Z : W= Xyz, |y|> 0, |xy|<p

i>20:xy'zOL

Useful to prove L NOT regular. Use contrapositive:

L reqular language [0 A

Same as

(not A) O L not regular

Pumping lemma (contrapositive

p =0 not A
wiOL, |wl2p L not regular

X,¥,Z:W=Xxyz, |y| >0, |xy|<p

i>20:xy'zOL

To prove L not regular it is enough to prove not A

Not A is the stuff in the box.

Proving something like
bla Obla O bla Obla bla
means winning a game

Theory is all about winning games!

Example NAME THE BIGGEST NUMBER GAME

* Two players.:
You, Adversary.
* Rules:
First Adversary says a number.
Then You say a number.
You win if your number is bigger.

Can you win this game?

Example NAME THE BIGGEST NUMBER GAME

* Two players.:
You, Adversary.
* Rules:
First Adversary says a number.
Then You say a number.
You win if your number is bigger.

You have winning strategy:
if adversary says X, you say x+1

Example NAME THE BIGGEST NUMBER GAME

* Two players.:

You, Adversary. [
* Rules:

First Adversary says a number. x Oy :y>X

Then You say a number.
You win if your number is bigger.

You have winning strategy: Claim is true
If adversary says X, you say x+1

Another example:

heorem: 00 NFAN ODFAM : L(M) = L(N)

We already saw a winning strategy for this game
What is it?

Another example:

heorem: 00 NFAN ODFAM : L(M) = L(N)

We already saw a winning strategy for this game
The power set construction.

Games with more moves:
Chess, Checkers, Tic-Tac-Toe

You can win if

move of the Adversary

move You can make

move of the Adversary

move You can make

: YOou checkmate

Pumping lemma (contrapositive

p 20
wiOL, |wl2p L not regular

X,¥,Z:W=Xxyz, |y| >0, |xy|<p
i>20:xy'zOL
Rules of the game:

Adversary picks p,
You pick w € L of length = p,

Adversary decomposes w in xyz, where |y| >0, |xy|<p
You pick 120

Finally, you win if xy'z O L

Theorem: L :={0" 1" . n =0} is not regular

Proof: Op=0

Use pumping lemma wOL, |wl2p

Adversary moves p X,V,Z . W =Xxyz, [y| >0, [xy| <p
You move w := 0P 1P Jiz0:xyzOL

Adversary moves X,Y,z
You move | ;= 2

You must show xyyz [1 L.

Since |xy|€p and w = xyz = 0P 1P | y only has O
So XYYz = 018 ly| 1P
Since |y| > 0, this is not of the form 0" 1" DONE

Theorem: L :={w : w has as many 0 as 1} not regular

Same Proof: Op =0

Use pumping lemma Ow OL, |w|2p

Adversary moves p X,V,Z . W =Xxyz, [y| >0, [xy| <p
You move w = ? i20:xy'zOL

Theorem: L :={w : w has as many 0 as 1} not regular

Same Proof: Op =0

Use pumping lemma Ow OL, |w|2p

Adversary moves p X,V,Z . W =Xxyz, [y| >0, [xy| <p
You move w := 0P 1P i20:xy'zOL

Adversary moves X,Y,z
You move | ;=7

Theorem: L :={w : w has as many 0 as 1} not regular

Same Proof: Op =0

Use pumping lemma Ow OL, |w|2p

Adversary moves p X,V,Z . W =Xxyz, [y| >0, [xy| <p
You move w := 0P 1P i20:xy'zOL

Adversary moves X,Y,z
You move | ;=2

You must show xyyz [1 L.

Since |xy|€p and w = xyz = 0P 1P | y only has O
S0 xyyz = ?

Theorem: L :={w : w has as many 0 as 1} not regular

Same Proof: Op =0

Use pumping lemma Ow OL, |w|2p

Adversary moves p X,V,Z . W =Xxyz, [y| >0, [xy| <p
You move w := 0P 1P i20:xy'zOL

Adversary moves X,Y,z
You move | ;=2

You must show xyyz [1 L.

Since |xy|€p and w = xyz = 0P 1P | y only has O

So xyyz = 0P * vl 1P

Since |y| > 0, not as many O as 1 DONE

Theorem: L :={0! 1% : j > k} is not regular
Proof: 0 p =0
Use pumping lemma Ow OL, |w| 2 p

Adversary moves p X,V,Z W =xyz, |y| >0, [xy| <p
You move w ;= ? i>0:xylzOL

Theorem: L :={0! 1% : j > k} is not regular
Proof: 0 p =0
Use pumping lemma Ow OL, |w| 2 p

Adversary moves p X,V,Z W =xyz, |y| >0, [xy| <p
You move w := QP*1 1P i20:xyizOL

Adversary moves X,Y,z
You move | ;=7

Theorem: L :={0! 1% : j > k} is not regular

Proof: Op=0

Use pumping lemma wOL, |w|=p

Adversary moves p X,V,Z W =xyz, |y| >0, [xy| <p
You move w :=0P*1 1P [Hi50: xyizOL

Adversary moves X,Y,z
You movei:=0

You must show xz [L:

Since |xy|<p and w = xyz = 0P*1 1P y only has O
Soxz=0p*1-1yl1p

Since |y| > 0, this is not of the form 0! 1k with j > k

Theorem: L :={uu :u
Proof:

Use pumping lemma
Adversary moves p
You move w = 7?

{0,1}* } is not regular
O p =20
dw OL, |wl2p
X,y,z: W =xyz, |y| >0, |xy|<p

i20:xyzOL

Theorem: L :={uu:ul{0,1}* } is not regular

Proof: Op=0
Use pumping lemma Ow OL, lw|2p

Adversary moves p X,V,Z W =xyz, |y| >0, [xy| <p
You move w := 0P10P1 1Mi>0:xyizOL

Adversary moves X,Y,z
You move | :=?

Theorem: L :={uu:ul{0,1}* } is not regular

Proof: Op=0

Use pumping lemma wOL, |w|=p

Adversary moves p X,V,Z W =xyz, |y| >0, [xy| <p
You move w:=0P10P1 I0i>0:xyizOL

Adversary moves X,Y,z
You move | =2

You must show xyyz [L.:

Since |xy|€pandw =xyz=0°P10P1,yonly has 0
So xyyz = 0P * Iyl 1 QP 1
Since |y| > 0, first half of xyyz only 0, so xyyz 00 L

2
Theorem: L:={1" :n=0}is notregular

Proof: Op =0
Use pumping lemma IwOL, [wl2p

Adversary moves p X,V,Z W =xyz, |y| >0, [xy| <p
You move w = ? i=0:xyzOL

2
Theorem: L:={1" :n=0}is notregular

Proof: Op =0

Use pumping lemma IwOL, [wl2p

Adversary moves 2p X,V,Z W =xyz, |y| >0, [xy| <p
You move w = 1P i>0:xylzOL

Adversary moves X,V,z
You move | :="?

2
Theorem: L:={1" :n=0}is notregular

Proof: Op =0

Use pumping lemma IwOL, [wl2p

Adversary moves 2p X,V,Z W =xyz, |y| >0, [xy| <p
You move w = 1P i>0:xylzOL

Adversary moves X,V,z
You move | =2

You must show xyyz [L.:

Since |xy|<p, [xyyz| £ ?

2
Theorem: L:={1" :n=0}is notregular

Proof: Op =0

Use pumping lemma IwOL, [wl2p

Adversary moves 2p X,V,Z W =xyz, |y| >0, [xy| <p
You move w = 1P i>0:xylzOL

Adversary moves X,V,z
You move | =2

You must show xyyz [L.:

Since |xy|<p, [xyyz| < p% + p < (p+1)?

Since |y| > 0, [xyyz| > ?

2
Theorem: L:={1" :n=0}is notregular

Proof: Op =0

Use pumping lemma wlOL, |wlzp

Adversary moves 2p X,V,Z W =xyz, |y| >0, [xy| <p
You move w = 1P 1i=0:xylzOL

Adversary moves X,V,z
You move | =2

You must show xyyz [L.:

Since |xy|<p, [xyyz| < p% + p < (p+1)?

Since |y| > 0, |xyyz| > p?
So |xyyz| cannot be ... what ?

2
Theorem: L:={1" :n=0}is notregular

Proof: Op =0

Use pumping lemma wlOL, |wlzp

Adversary moves 2p X,V,Z W =xyz, |y| >0, [xy| <p
You move w = 1P 1i=0:xylzOL

Adversary moves X,V,z
You move | =2

You must show xyyz [L.:

Since |xy|<p, [xyyz| < p% + p < (p+1)?

Since |y| > 0, |xyyz| > p?

So [xyyz| cannot be a square. xyyz O L

Big picture

*All languages
*Decidable
Turing machines
NP
P
*Context-free
Context-free grammars, push-down automata
*Regular
Automata, non-deterministic automata,
regular expressions

