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1. Introduction 

There is a common agreement that the classes P and NP of all decision problems which 
can be solved in polynomial time by deterministic (nondeterministic, respectively) 
Turing machines are basic classes for the complexity classification of natural problems. 
Recently, much attention has been attracted by the question of whether P = NP? and 
by the class of polynomial complete problems in NP; see Cook [1], Karp [5], and Levin 
[7]. 

Here we introduce two similar classes of problems. Instead of polynomial time 
bounds we consider time bounds for multitape Turing machine computations of the type 
O(n(log n) k) with k fixed These time bounds are called quasilinear in n.  Let QL 
(quasdinear) and NQL (nondet.quasilinear) be the classes of all decision problems 
which can be solved by deterministic (nondeterministtc, respectwely) multitape Turing 
machines within quasdinear time bounds. These classes are machine independent to a 
certain extent. Within the framework of multitape Turing machines they do not depend 
on the number of tapes, the number of heads per tape, and the size of the alphabet 
provided that there are at least two tapes and two alphabet symbols. 

From the recursion-theoretic point of view, these classes are reasonable, too. Dmgo- 
nalization can be applied jn a standard manner wRhm these classes. So it follows from 
Hennie and Stearns [4] that the classes QLk of all those problems which are solvable 
within time bound O(n(log n) k) by some multltape Turing machine ywld an infinite 
hierarchy within QL, i.e. QL = I.Jk QLe but QL :~ LJk~k0 QLk for any k0. It is also clear 
how to construct for given k a set A E QL such that every deterministic Turing 
machine which decides A takes more than Ix I (loglx[ k) steps on all but finitely many 
input strings x. Here Ix[ is the length of x. 

Quasilinear time bounds are an important landmark in the field of concrete complex- 
ity They express the fact that a program works effioently whereas polynomial time 
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bounds merely say that a program is feasible. Many fundamental problems, such as 
integer multiplication, sorting, and searching, can be done in quasilinear time. We 
prove that many of the "exhaustive search" type problems, such as satisfiability, 3- 
colorability, and graph isomorphism, can be solved in nondeterministic quasilinear 
time, i.e. they are in the class NQL.  

Using an efficient simulation of Turing machines by logical networks which is based on 
the Fischer-Pippenger technique, we can prove that satisfiability is quasilinear complete 
in NQL,  i.e. every problem in NQL  can be reduced to satisfiability by a deterministic 
Turing machine with a quasilinear time bound. This result gives more information on the 
relation between satisfiabihty and nondeterminism than Cook's  theorem that satisfiabil- 
ity is polynomial complete in NP. It reveals that satisfiability lies on the bottom within 
the "exhaustive search" type problems. Note that each quasilinear complete problem in 
NQL is polynomial complete in NP; however, the converse is not true. The hierarchy 
results on nondeterministic classes [2] imply that there are polynomial-complete prob- 
lems in NP which are not in NQL.  We conclude that satisfiability expresses the feature of 
nondeterminism as purely as possible and that, to understand the feature of nondeter- 
mimsm, we should study quasilinear complete problems in N Q L  rather than arbitrary 
polynomial complete problems in NP. 

The quasilinear completeness of satisflability implies that QL = NQL if and only if 
satisflability is in QL. This QL = NQL? problem seems to be as fundamental as Cook's 
P = NP? problem. Obviously P 4; NP implies QL ~ NQL but the converse is not clear. 
Since we expect P ~ NP and QL ~ NQL it might well be that " Q L  -'~ N Q L "  will be 
proved first. It would be sufficient to prove lower time bounds for satisfiability which 
are shghtly higher than quasilinear. 

2. The Class NQL of  Problems Solvable m Nondeterministic Quasilinear Time 

We consider Turing machines with a finite number of tapes over a finite alphabet Z. Let 
Z* be the set of all finite sequences over ~.  Ix I is the length ofx ~ Z*. Let K = {0, 1} C Z 
be the binary input-output alphabet of the Turing machines under consideration. 

With any Turing program (i.e. Turing table) we associate a partial function resp : K* --> 
K* which is computed by p .  Let 

Tp(n) = max {running time of program p on input x} 
X E K  n 

be the time bound of program p.  Then we consider the class 

QL t = {resp 13k : V n : Tp(n) ~ n(log n) k + k} 

of all functions that are computable by a Turing program in quasilinear time. Let 

QL = {A C K*Ixa ~ QL j} 

be the corresponding class of decision problems that are solvable in quasilinear time on 
Turing machines. Here Xa is the characteristic function of set A .  

We shall compare the time class QL with the corresponding nondeterministic time 
class. In a nondeterministic Turing program each instruction may have one or two 
successor instructions. If all successor instrucuons are carried out in parallel then the 
computational process of a nondeterministic program p on input x can be figured as the 
binary tree shown m Figure 1. With a nondeterministic programp we associate the set 

Ac% = {x E K*[ there exists a stop-path in the computation of programp on inputx} 

of all words x such that some path m the nondeterministic computation on input x 
reaches a final configuration. Such a path is called a stop-path. 

For x E ACCp we define the running tJme RTp(x) as 

RTp(x) : = minimal length of a stop-path of program p on input x.  
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Fm 1 

Then we are ready to introduce the class 

N Q L  = {Ac% C K * 1 3 k  : V x  ~ Acq, :RT~o(x) -< [xl( loglxl)  k + k} 

of  all decision problems that are solvable in nondeterminist ic,  quasil inear time on Turing 
machines. 

With a sequence x = x~x2 "" x ,  ~ K"  we associate the double-sequence .f = 
xlxlx2x2 "'" x ~ , 0 1 .  We use the following characterization of NQL:  

PROPOSITION 2.1. The  f o l l o w i n g  assert tons  are equiva len t :  

(1) A fi NQL,  
(2) ::IB E QL:::Ik ~ N:  

a = { x  6 K * 1 3 u : t ~ x ~ B A l u l = ] x [ [ l o g l x ] ] k + k } .  

PROOF. Consider the binary sequence u as a sequence of branching parameters .  
(2) ~ (1): A representat ion of A C K* as in (2) yields a nondeterminist ic decision 

procedure for A as follows: 

l Compute o~(x) = txl[toglxl] ~ + k 

2 Make a nondetermmlstlc choice of oct(x) branching parameters u = uluz " " u~k~=) 

3. Apply the decision procedure for B to the sequence tix. 

It is a straightforward matter  to see that this procedure can be implemented as a 
nondetermimstic Turing program with a quasilinear t ime bound.  

(1) ~ (2): Let p be a nondeterminist lc program for A with time bound Ix ][log] x ]]k 
+ k.  With p we associate the deterministic program/5 which on input tix simulates p on 
input x for lu] steps and which uses the sequence u as branching parameters ,  i .e. u~ 
describes the binary choice within the ith nondeterminist ic step of program p .  For  each 
u there is a corresponding path in the computat ion of p on input x.  Program/5 can be 
executed in quasilinear t ime and/5 is a decision program for some set B which yields a 
representat ion for A as in assertion (2). [] 

Next we show that various famous problems are in NQL.  We need some preliminaries 
on binary encodings. Indeed we have to be careful in choosing reasonable encodmgs. 
One can associate small t ime bounds to any problem A by encoding the inputs into 
extremely long binary strings. However ,  this makes it more difficult to reduce other  
problems efficiently to A .  Therefore we cannot force any problem A to be quasilinear 
complete in NQL by choosing some pathological encoding for A .  To obtain strong 
completeness results we must choose the binary encoding as short as possible without 
making the encoding inefficient. 

In the following let In] = {1 . . . . .  n}. 
Let  L = (l~ E N I i E [ m ] )  be a list (i.e. sequence of natural  numbers  ll ,  ... , lm).Then 

the binary encoding C ( L )  ~ K *  is defined as 

C ( L )  = c( l , )  c(lz) "'" C(lm), 

where c(v)  is the binary representat ion of v ~ N and. f  is the "doubled"  sequence which 
is associated with x.  Let  A(L) C N be the set of elements of L and let ILl = m be the 
number  of elements in the list L.  

Let .~ = (L ,  lt E [m]) be a list of lists L~ . . . . .  Lm, i.e. £f is a two-dimensional list. 
Then the encoding C(~)  E K* of ~ is defined as 
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C(. f )  = C(L,)O1C(L2)O1 ... 01C(Lm). 

A d i r ec t ed  g raph  G wi th  the  set  [n] of  n o d e s  and  the  set  E C [n]  × In]  of  edges  i s  
c o n s i d e r e d  to be  given as a t w o - d i m e n s i o n a l  list 9o = (L,i i ~ [n]) such  t ha t  A(L,) = 
{ j l ( i , j )  E E} f o r t  = 1 . . . . .  n .  T h e n  C ( ~ )  E K* is a b ina ry  e n c o d i n g  of  the  g r a p h  G.  

T h e  i s o m o r p h i s m  p r o b l e m  for  g raphs  is the  dec is ion  p r o b l e m  for  the  se t  

g raph- i so  = { C ( G ) 1 0 C ( G ) I t h e  g r a p h s  G a n d  G are  i somorphic .}  

H e r e  C(G) and  C(G) are  the  encod ings  of  i s o m o r p h i c  g raphs  iff G a n d  G h a v e  the  s ame  
n u m b e r  m of  n o d e s  (i .e.  C(G) and  C(G) b o t h  cons is t  o f m  lists for  s o m e  m )  a n d  if t h e r e  
exists  a p e r m u t a t i o n  or : [m] ~ [m] such tha t  AL, = or(ALo~,~) for  i = 1, ... , m ,  wi th  L, 
and  L, be ing  the  lists of  G and  G.  

THEOREM 2 1. graph-tso ts m N Q L .  
T h e  n o n d e t e r m i n i s t i c  p r o c e d u r e  for  g raph- i so  will use some  s u b p r o g r a m s  which  will 

also be  useful  la te r  on.  W e  descr ibe  var ious  s u b p r o g r a m s .  

Program pl 
Input' C(L) (encoding of a hst L of natural numbers) 
Output. C(L °) (encoding of the ordered list L °) 
Properties. (1)ILl = ]L °] and L ° is a permutation of L, (2) ly ~. 1~÷1, ! = 1 . . . . .  ILl - 1 
Time bound quaslhnear in the length of the input 

PROOF. In s tage t we sor t  the  s e g m e n t s  

L ( k , i )  ={l~]k2 ' -<j  < k 2 '  + 2'} for  k - < ] L I / 2 '  

by merg ing  the  o r d e r e d  s e g m e n t s  L(2k,  i - 1), L(2k + 1, i - 1) which  h a v e  b e e n  
g e n e r a t e d  at  s tage t - 1. This  r equ i res  O ( l o g l L I )  s tages b e g i n n i n g  wi th  s tage 1. Since 
merg ing  of  two lists can  b e  d o n e  wi th in  l inea r  t ime  wi th  t h r e e  t apes ,  e a c h  s tage can  be  
d o n e  wi th in  O(IC(L)l  ) s teps .  []  

Le t  L = (/,I t ~ [n]) be  a list and  let  cr:[n] ~ [n] be  a p e r m u t a t i o n ;  t h e n  we def ine  L ~ 
as L ~ = (/o~,~l l E [n]) .  T h e  e n c o d i n g  C(or) of  a func t ion  or:[n] ~ N is the  e n c o d i n g  of  the  
list (or(t)[/ E [n]).  

Program p2. 
Input. C(L)IOC(Gr), where L = (l,lt E [n]) is a list and o- In] ----> In] is a permutation. 
Output C(L ~) 
Time bound: quasdmear m the length of the input 

Description o f  p2. Sort  or a n d  apply  the  s ame  t r a n s f o r m a t i o n  s imu l t aneous ly  to the  
list (i It E [n]).  This  yields or-l.  Sor t  or-i and  apply  the  s ame  t r a n s f o r m a t i o n  s imul ta-  
neous ly  to the  hs t  L .  This  yields L ~. [] 

Le t  A.~ be  the  set of  e l e m e n t s  of  a t w o - d i m e n s i o n a l  list £g, i . e . A . ~  consis ts  of  the  
e l e m e n t s  of  the  lists in ~ .  Le t  y : A ~  ~ N be  a func t ion .  T h e n  T(..~) is the  two- 
d i m e n s i o n a l  list which  is o b t a i n e d  f rom .f# by rep lac ing  each  e l e m e n t  ~, of  .~  by  y(v) .  

Program p3' 
Input" c(.~)10c(y) where ~(..~) = In] and y In] ~ N is some function 
Output: C(y(.~)) 
Time bound quasflmear in the length of the input 
Sketch Ofpz 

1. Transform ~ Into a one-dlmensmnal list L by "forgetting" the two-dlmensmnal structure of ~ Let m be 
the length of L 

2 Sort L into an ordered list L ~ preserving the multiplicity of elements Apply the same permutation 
simultaneously to the umt hst (tit E [m]). This yields the permutation o --~ 

3 Compute T(L ~) within one pass over the hsts L ~ and Y 

4 Compute L = (y(L~)) ~-~ by inverting the permutatmn o- This can be done by sorting the hst o" and a 
simultaneous apphcatlon of the same transformation to y(L ~) 

5 Construct y(.~) by implementing the two-dlmensmnal structure of .~ to L This can be done within one 
pass over ~ and L 
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W e  are  n o w  ready  to p r o v e  T h e o r e m  2.1 .  

Sketch of a nondetermlnistic program for graph-lso 

1. Decide whether the input x is of the type C(G)O1C(G) where C(G), C(G) are binary encodings of directed 
graphs. In this case goto 2 

2 Count the number of nodes n and d of G and G This can be done by counting the number of lists of G 
andG Ifn = f i t h e n g o t o 3  

3 Make a nondetermmlstlc choice of a hst o- = (o-(:) E In]It ~ In]). This can be done by a nondetermimstlc 
choice of O(n log n) bits goto 4. 

4 Check whether the function o- In] ~ In] is a permutation This can be done by first sorting the list ~r If o- 
is a permutation then goto 5 

5 Compute o ' (~  = (o'(L31t E In]) by applying program P3 Here ~ is the hst that describes G Compute 
~r(~ ~ = (~r(L~,))]: ~ [n]) by applying program p2 to the list o-(.~ with elements ~r(L.) goto 6 

6 Sort all lists m .L' (which describes G) and in cr(~ *. If the two-dimensional hsts that result from ~ and 
o-(.~ * coincide then stop 
U s m g  the  fact  tha t  p r o g r a m s  Pi ,  P2, P3 h a v e  quas l l i nea r  t ime  b o u n d s ,  tt can  easi ly be  
seen  t ha t  a su i t ab le  i m p l e m e n t a t i o n  of  the  a b o v e  p r o c e d u r e  r equ i r e s  a quas i l i nea r  
n u m b e r  of  n o n d e t e r m i n i s t i c  s teps  o n  a T u r i n g  m a c h i n e .  This  p r o v e s  T h e o r e m  2.1 .  []  

Nex t  we cons ide r  the  sat isf iabt l i ty  p r o b l e m .  L e t  V = {x,li ~ N} b e  a se t  of  B o o l e a n  
va r i ab les  t ha t  t ake  the  logical  va lues  "1  ~ t r u e "  a n d  " 0  - f a l se" .  Le t  A ,  V : K  2 ~ K 
and  ~ : K  ~ K be  the  logical  func t ions  c o n j u c t i o n ,  d i s junc t ion ,  and  n e g a t i o n .  W e  
a b b r e v i a t e  x, = x~ a n d  ~x~ = x~ °. A B o o l e a n  clause ts a d i s junc t ton  of  va r i ab le s  and  

o'(z) cr(2) n e g a t e d  va r i ab le s  ( x ~ .  k/x~2) k / " ' "  k / x ~ ) ) ,  w i th  z(i) @ N ,  or(i) E K. A C o n j u n c t i v e  
F o r m  (CF)  T ts a c o n j u n c t i o n  of  B o o l e a n  c lauses  

k l(z) 

3' = A \ /~ , ro , j )  
V "¢ r(z,j) 

t = l  .1=1 

with  ~-(i, j )  E N ,  ~r(t, ]) ~ K. 
A C F  T is cal led satisfiable if t h e r e  is a m a p  g : V  ~ K which  assoc ia tes  B o o l e a n  

va lues  wt th  all B o o l e a n  va r i ab l e s  such  t ha t  T~x,=u~x,)l~n o = 1 , 1 . e .  3' is sa t isf ied u n d e r  g .  A 
C F  3" is desc r ibed  as a t w o - d i m e n s i o n a l  list ~ o f  pa i rs  (o-(i, j ) ,  r( t ,  j )) .  T h e  t th  list L~ of  .~  
e n c o d e s  the  i th  c lause of  T- E a c h  pa i r  (or(t, j ) ,  70 ,1))  is e n c o d e d  as c(o-(i, j)) c(z(i, j)) a n d  
3" is e n c o d e d  as a t w o - d i m e n s i o n a l  list of  these  e n c o d e d  pai rs .  

The  sat isf iabi l i ty  p r o b l e m  is the  dec is ion  p r o b l e m  for  the  set:  

sa t t s f iab ih ty  = {C(3")13' ~s a sa t is f iable  CF}. 

THEOREM 2.2 .  Satisfiability is m N Q L  
PROOF. W e  ske tch  a n o n d e t e r m i n i s t i c  p r o g r a m  for  sat isf iabi l i ty .  

1 Decide whether the input x is of the type C(&) where .~' is a two-dlmensmnal hst of pairs (o-(1,1), ~'0,1)) 
K x N. (Then x is the encoding of a CF T ) In this case goto 2 

2 Sort the set z(~, 1) of mdmes of variables that occur m ~ according to their sine and without repetition of 
elements Let L be the resulting sorted hst with length m = ILl- goto 3 

3 Make a nondetermlniStlC choice of a binary bst ~5 = (~(:) ~ Kli ~ Ira]) Compute the list ~ which is 
obtained from ~ by replacing each element (o-(i, I), *(t, 1)) by (cr(t, I), 8(*(t, 1))). This can be done by applying 
program pz. goto 4 

4 Evaluate 3%~- ~ tan  ~ This can be done by one pass over the hst .~' If T takes the value 1 then stop 

Us ing  the  fact  tha t  p r o g r a m  p~ has  a q u a s i h n e a r  t ime  b o u n d  a n d  t h a t  s o r t m g  can  be  
d o n e  in quas i l i nea r  t ime ,  the  a b o v e  p r o c e d u r e  for  sa t i s f iabdi ty  can  easi ty b e  i m p l e m e n t e d  
as a T u r i n g  p r o g r a m  with  a q u a s i h n e a r  t ime  b o u n d .  []  

Le t  n o n p r i m e s  = {c(v) ~ K*lv ~ N is no t  a prime} b e  the  e n c o d i n g  of  the  set of  all 
n o n p r i m e s .  T h e n  it is a s t r a i gh t f o r w a r d  c o n s e q u e n c e  of  the  S c h 6 n h a g e - S t r a s s e n  fast  
mul t ip l i ca t ion  a lgo r i t hm tha t  n o n p r i m e s  is in N Q L .  

3. A Quasihnear Reduction o f  N Q L  to SaUsfiabihty 

W e  shal l  use  the  fo l lowing c o n c e p t  of  q u a s i h n e a r  r e d u c t i o n  m s t e a d  of  p o l y n o m i a l  t ime  
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bounded reduction which has been used m the work of Cook,  Karp,  and Levin. 
The quasdinear reducibility A -<q~ B for sets A ,  B C K* is defined as follows: 

A --<q~ B ~ 3 g /  ~ QU:Vx ~ K*:x C A  ¢:~(x)  ~ B .  

The relation _<q~ is reflexive and it can easily be seen that .~q~ is transitive, i .e. A --<q~ B 
and B -<ql C implies A -<ql C. 

Definition 3.1. A C K* is quasilinear complete (i.e. -<ql complete)  if (1) A ~ N Q L  
and (2) VB ~ N Q L : B  -<ql A .  

These definitions immediately imply Propositmn 3.1. 
PROPOSITION 1. The following assertions are equivalent for all --<ql-complete sets A: 

(1) N Q L  = QL, (2) A ~ QL. 
PROOF. (1) ~ (2): Trivial. (2) ~ (1): B -<ql A and A ~ QL implies B E QL.  
We are now ready to state the mare result of the paper.  
MAIN THEOREM 3.1. Sattsfiability is quasilinear complete. 
One part of Theorem 3.1 has already been proved m Theorem 2.2. So it remains to 

prove "VA ~ N Q L : A  _<q~ sat~sfiabihty " This part of the proof will be prefaced by 
Propositions 3 .2-3.4 ,  which describe a sequence of simulations. 

Let  A ~ NQL be given by a representat ion according to Propositmn 2.1: 

A = {x E K*[3u:dx E B / k  [u[ = [xl [log Ix[] k + k}, 

wl thk  E N a n d B  ~ QL.  
In a first step we remark that we may restrict our considerations to oblivious Turing 

pro.grams for B. A Turing program p is called oblivtous if the position of head i in the j th  
configuration of program p on input x is a function pos( i , / ,  I xl) that only depends on t, ] 
and the length I xl of x. 

PROPOSmON 3.2. For every B E QL there exists an obhvwus program p for B (i.e. p 
computes XB) which has a quasilinear bounded running time and which uses two tapes. 

This proposit ion follows immediately from a theorem of F~scher [3], who proved that 
for every Turlng program p there exists an oblivious Turing program p' which for all m 
simulates p for m steps by using O(m log m) steps o f p ' .  

The next step in the proof  of Theorem 3 1 is to simulate oblivious Turing programs 
by logical networks.  Let V = {x,li ~ N} be a countable set of Boolean variables and let 

be the set of all Boolean functions with varmbles in V. 
A Boolean computation (logical network) /3 is a finite directed acyclic graph such 

that the following are true: 

(1) Every node v of 15 has either 2 or 0 entering edges. A node without entering 
edges is called an entry; all other  nodes are called nonentries of ft. 

(2) Every entry v of /3  is labeled with a Boolean function op(v) ~ V LI K which is 
either a variable or a constant. 

(3) Every nonentry v of 13 is labeled with some binary logical operat ion op(v):KK ~ 
K. The edges which enter  ~, correspond in a fixed ordered way to the arguments of 
op(v). 

With every node v E/3  we assocmte an output function res~ E ~ as follows, res~ -- op(~) 
for all entries ~,. For  a nonentry u, res~ is obtained by applying op(~,) to the outputs of 
the preceding nodes. We say/3 computes res~ for v E /3. Let size(/3) be the number  of 
nonentries (i.e. gates) m/3.  

We can restrict our considerations to logical networks/3 with the following property:  
There exist n, m ~ N such that 1, 2, . . . ,  n are the entries and n + 1, . . . ,  m are the 
nonentries of/3 and x, = op(i) for t = 1 . . . . .  n. 

Each node ~, of/3 is described by a triple (o-(t,), z(u), ~p(u)) of natural numbers,  tr(l,) 
(z(v), respectively) is 0 for all entries v and is the first (second, respectively) predecessor 
of v for all nonentries v. Then the binary encoding C(/3) is the encoding of this list of 
triples where each triple is encoded as c(tr(v)) c(z(v)) c(op(v)). 
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The following Propositions (3.3 and 3.4) contain the heart  of the proof  for Theorem 
3.1. 

PROPOSITION 3.3. For every oblivious program p with quasilinear bounded running 
time Tp there exists a funct ion Fp ~ Q L  f such that fo r  all x ~ K* with length n,  

I~(x) = C(Bp,n)Olc(v), 

where flp,n is a logical ne twork  and v is a node o f  Bp,n such that res~p,, = resatKn. 
PROOF. The proof  is based on a theorem which is due to Fischer and Pippenger [3]. 

For  every oblivious Turing program p there exist logical networks Bp, n such that flp,n 
simulates p on inputs of length n and size(B,.n) = O(Tp(n)). See also [8] for a stronger 
version of this fact. We have to prove that this simulation can be done efficiently in the 
sense that Bp.n can be computed in quasilinear t ime with respect to n. 

We may suppose that p uses the binary alphabet  K and 2 tapes.  We consider p on 
inputs of  length n.  Suppose p has 2 m internal states and uses at most ak(n) tape squares 
and cz~(n) steps. A configuration of  p (modulo the head positions) is encoded as a 
binary string of length m + ctk(n) where the first m bits encode the program state and 
the following ctk(n) bits correspond in one-to-one manner  to the symbols in the used 
tape squares. Only m + 2 bits of the configuration are involved in each step of the 
obhvious computation:  the m bits of the program state and the 2 bits of the observed 
symbols. Let  ~/ be a network which computes the successor configuration SC:K  m+2 
K '~+~ where SC(c(r)xlxz) = (c(s)yly2) means that  c(r) and c(s) are the encodings of the 
present and the next program state, xl ,  x2 are the presently observed symbols, and x, is 
replaced by y, within the present  step. Each step of program p is simulated by a copy of 
"0 with the present  program state and the presently observed symbols as inputs, ak(n) 
steps of program p are simulated by a suitable composition of ak(n) copies of ~.  In 
order  to compose t h e j t h  copy of ~ (simulating t h e j t h  step) in the right way we have to 
know the head positions of program p within the ] th step. This enables us to feed into 
the symbols which are observed within the ] th step of program p .  

Let/3~ be the composition of the f i r s t j  copies of "0 and C(flj) its encoding. We sketch 
s tage j  of the computaaon  where C(B,-0 is extended to C(Bj) by composing a copy of  a~ 
with B~-~. The head positions within the j th  step of program p can be obtained by 
simulating the ]th step of program p on input 1 n within each stage ]. With these head 
positions available one concatenates to C(B,-~) the encoding C('03) of a correct composi- 
tion of ~ with B,-1. This can be done in a straightforward way. 

B~t~ has size (~) 'o te(n)  nodes and a suitable binary encoding of B,~,~) has length 
O(ak(n)log Otk(n)). The above sketch ymlds a Turing program for B~t~ which requires 
O(ctk(n)log Otk(n)) steps. This finishes the proof  of Proposit ion 3.3. O 

The final step of the proof  of Theorem 3.1 requires a simulation of logical networks 
by conjunctive forms. This simulation uses an idea which is due to Sanden (a student 
with the author):  

PROPOSITION 3.4 (Sandeh-Schnorr) .  Let  t3 be any logical network with input vari- 
ables x l  . . . .  , xn and nonentries n + 1 . . . . .  m and op(i) = x~for  i = 1 . . . .  , n. Then there 
is a CF 7 a which depends on x l ,  ... , xn, ... , xm such that 

(1) for  all nodes v, 

3y.res~(y) = 1 ¢-~ 7~x~ =1 ts satisfiable; 

here 71x~.=1/s obtained f r o m  7 ~ by substituting I f o r  x~; 
(2) y a has at most  f our  size(B) clauses, each clause having at most  three literais; 
(3) there is a funct ion ~o ~ QLS such that ~(C(B)) = C(7B) for  all logical networks/3 .  
PROOF. We may assume that /3 has the entries 1, . . . ,  m where x, = op( i )  is the 

input of  node i. Let n + 1, . . . ,  m be the nonentries of/3.  The variable x~ will describe 
the output  function of tess of node v. Consider the Boolean function 

y =  ~k [ x , =  op(i)(Xo~,,,x,~,))], 
t ~ n + l  
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where or(i) is the first and ~'(t) is the second predecessor of node i. This construction 
implies for all nodes v: 

3y E ~ :rest(y) = 1 ~ Yl . . . .  1 is satisfiable. 

It remains to rewrite a factor [x, = op(t)(xo~,), x~o)] as a product of Boolean clauses. For 
instance,x, = x~ Ax~  can be written as (x~ V ~x,)(x~ V ~x,)(~x, V ~ x ,  Vx~) and [x~ = 
(x~ ® x,)] can be written as a product with four Boolean clauses. Therefore, yn is 
obtained from T by transforming the factors of y into products of Boolean clauses. This 
proves (1) and (2). Observe that C(T ~) can be constructed from C(/3) by one pass over 
the input. The running time of a suitable program is linearly bounded in the length of 
the input. [] 

PROOF OF THEOREM 3.1. Using Propositions 3.2-3.4,  we can prove VA ~ NQL;  
A -<q~ satlsfiability. Let A ~ NQL  be given by B E QL according to Proposition 2.1. 
Let p be an oblivious program for B such that Tp(n) -< n [log n] k + k for all n. We 
abbreviate c~k(n) := n[log n] k + k. 

With every input y ~ K" of program p we associate a CF y~ as follows: 

( t )  Apply Fp in Proposition 3.3 in order to compute a network/3(y) and a node v of 
/3(y) such that 

res~u ~ = ku[resv(tiy)], 

where u ranges over binary sequences with length ~k(n). 
(2) Compute ~o(C3(y)) := C(T t~u~) according to Proposition 3.4. Letx~ correspond to 

the output function res~u); then compute the encoding of 'y~ := y~:=~. 

This construction implies 

y E A ~ 3u E K ~ul :tiy ~ B ¢¢, 3u ~ K "~lul :res~(tiy) = 1 
¢¢, ~]u ~ K ~1~1 :resCue(u) = 1 ~ 7u is satisfiable. 

Using Propositions 3.3 and 3.4 one can easily see that the function 0 :y ~ C('yu) is in QU.  
Observe that the composition of functions in Q U  always yields a function QL z. This 
finishes the proof of Theorem 3.1. [] 

4. Further Quasilinear Complete Problems 

There is a number of known reductions qJ of satisfiability to other problems where ~ has a 
quasilinear time bound. We shall only specify these problems and the corresponding 
reductions. 

3-satisfiability = {C(y) Iy is a satisfiable CF with at most three literals per clause}. 

It is a straightforward matter to see that 3-satisfiability is quasilinear complete. We 
define 

3-colorability := {C(G)I G is a fimte graph which is 3-colorable}. 

THEOREM 4.1. 3-colorabihty is quasilinear complete. 
PROOF. It can easily be seen that 3-colorability is in NQL. On the other hand there 

is a quasilinear reduction q~:3-satisfiabihty ~ 3-colorabihty which is due to Specker 
[10]. ~b works as follows: Let the CF 

,y = ~ /vO'(b 1) \ /vO't,t,  2) \ / vo ' ( l ,3 ) '~  
\ - ~ z ,  1) V.'~'7(*,2) V - ~ ' ~ I , 3 ) ]  

~=1 

depend onxl ,  . . . ,  xn. Then the graph ~/(T) with the set of vertices V and set of edgesE is 
defined as: 

V = {0, 2} U {xJ, x3°~ -<n} U {p~li -< m, k -< 5}, 
g = {(0, 2)} U {(x], 2), (x~, 2), (x~, x~ °) IJ -< n} U {(x~';~ ~, pie)I i --< m, k -< 3} U {the 

edges of Figure 2]i --< m}. 
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The reduction works [10] and 0(~) can be computed m linear time from C(~). [] 
Remember that ~ '  = (L~li = 1, . . . ,  m) denotes a two-dimensional list and A(~.~), 

A(L,) are the set of elements of ~ and L~. 

partition = { C(A°) 3 subfamdy L,~, . . . ,  L, :A(L,~)are pairw,se} 
disjoint and I3L~A(L~) = A(.t) 

THEOREM 4.2. Partition is quasihnear complete. 
PROOF. By the use of sorting techniques, it can be proved in a straightforward 

manner that partiUon is in NQL.  A reducUon ~:3-colorability ~ partition can be 
defined as follows [10]: 

Let G = (V, E) be a graph. Then the associated double list ~ is defined such that 
A ( L , ) ,  t = 1 . . . . .  m, is the following family of sets: 

S~,r = {v} U { ( e , f ) l v i s a n o d e o f e  E E }  C V U E  x [3] for v ~ V , f =  1 , 2 , 3 ,  
Se~ = {(e,f)} for e 6 E ,  f =  1 , 2 , 3 .  

It follows that G *s 3-colorable ~ C(,~') 6 partition and the reduction 0:C(G) ~ C(Sf) 
can be computed in linear time. 

Finally, we consider a quasdinear complete problem which seems to be particularly 
interesting: the anticlique problem, which is also called the discrete subgraph problem. 
Let G be a directed graph with vertex set V; then a subset U C V of pairwise 
nonadjacent vertices is called an antlclique of G We set 

an t ic l ique :={  C(G)Olc(k) there is an anticlique k}" 
U of G with U u II = 

Under a somewhat different encoding the anticlique problem is almost ldenhcal to the 
chque problem. Let the Boolean variable x,., be true iff there is no edge from i to l  in G; 
then the variables (x,.~[ 1 -< i,] -< n) encode the directed graphs with vertex set In] and the 
problem of deciding whether there exists an anticlique of size k m such a graph is 
precisely the problem of computing the following Boolean function: 

CL,,k = V A x,~,,~. 

If  the representation of graphs is changed such that x,,, is true iff there is an edge from i to 
] then CL~,e encodes the problem of deciding whether there exists a clique of sine k in a 
graph w~th vertex set In]. It has been proved by Schnorr [9] that any rational monotone 
computation for CL~,~ requires at least (g) - 1 additions, which shows that the anticlique 
problem ~s exponentially hard, at least in a restricted model of computation. 

THEOREM 4.3. Anticlique ts quasilinear complete in N Q L .  
PROOF. It can easily be seen that anticlique is m NQL: Given a graph G frith vertex 

set In] and given k -< n, one guesses k nodes j~ . . . . .  jk which takes O(n log n) 
nondetermmistic steps. Then, by using techniques for sorting, one can check in quasi- 
linear time whether jl,  . . . ,  j~ is an anticlique. 

On the other hand, we reduce 3-satisfiability to antichque. Let a CF 
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~ t~o'(~, 1) \ / ~o'(~, 2) V X °'(~" 3)t 
"Y -~ \ - ~ ,  1) v ~r( t ,  2) z(z, 3) / 

be  given.  A t  first we t r a n s f o r m  T in to  a n o t h e r  CF  ~ such  t ha t  e ach  va r i ab l e  x~ occurs  at  
mos t  3 t imes  in the  clauses  of.~ ( n e g a t e d  occu r r ences  o f x v  m c l u d e d ) .  I f xv  occurs  m o r e  
t han  th r ee  t imes  m T, t h e n  we i n t r o d u c e  a new va r i ab l e  x~, we subs t i tu t e  o n e  o c c u r r e n c e  
of  x~ in T by  x~, and  we add  the  c lauses  (x~ ~/-~x~) (x~ V ~x~) to T. T h e s e  add i t iona l  
c lauses  imply xv = x~. Obv ious ly  the  t r a n s f o r m a t i o n  C(T ) ~ C('~) can  b e  d o n e  in 
quaml inea r  t ime  and  ~ is sa t is f iable  iff T is sa t isf iable .  So far  we have  p r o v e d  t ha t  in ou r  
r e d u c t i o n  of  3-sat isf iabi l i ty  to  an t i c l ique  we m ay  res t r ic t  to  CFs T such  t h a t  e a c h  va r i ab l e  
occurs  at  mos t  t h r ee  t imes .  N ow  let  T be  such  a C F  wi th  m clauses  as a b o v e .  W e  assoc ia te  
wi th  T a g r a p h  G wi th  ve r t ex  set  

V = {(y, i ) l the  l i teral  y occurs  in the  i th  c lause of  T} 

and  edge  set 

E = {((3'1, zi), (Y2, z2))ltl = t2 o r y i  =~Yz}.  

It  is k n o w n  f rom the  r educ t i on  of  sat isf iabil i ty to  c l ique in K a r p  [5] t h a t  t he  a b o v e  
r educ t ion  works ,  i .e. 3' is sa t is f iable  lff (V, E)  has  an  a n t i c h q u e  of  size m .  O n  the  o t h e r  
h a n d ,  it fol lows f rom our  a s s u m p t i o n s  on  y tha t  t h e r e  a re  at  mos t  3m + 3n edges  m E ,  
whe re  n is the  n u m b e r  of  va r i ab les  in y .  T h e r e f o r e ,  the  l e n g t h  of  the  b ina ry  e n c o d i n g  of  
the  g r a p h  (V, E)  is quas i l i nea r  m the  l eng th  of  C(T). H e n c e  the  t r a n s f o r m a t i o n  C(T) 
C(V,  E)  can  be  d o n e  m quas i l i nea r  t ime .  []  
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