
Satisfiability Is Quasilinear Complete in NQL

C. P. SCHNORR

Umversitat Frankfurt, Frankfurt am Main, West Germany

ABSTRACT Considered are the classes QL (quasilinear) and NQL (nondet quasllmear) of all those problems
that can be solved by deterministic (nondetermlnlsttc, respectively) Turmg machines in time O(n(log n) ~) for
some k Effloent algorithms have time bounds of th~s type, it is argued. Many of the "exhausUve search"
type problems such as satlsflablhty and colorabdlty are complete in NQL with respect to reductions that take
O(n(log n) k) steps This lmphes that QL = NQL iff satisfiabdlty is m QL

KEY WORDS AND PHRASES NP-complete problems, nondetermmistlc Turlng machines, logical networks,
satlsfiablhty, colorabdity, graph isomorphism, clique problem

CR CATEGORIES: 5.25

1. Introduction

There is a common agreement that the classes P and NP of all decision problems which
can be solved in polynomial time by deterministic (nondeterministic, respectively)
Turing machines are basic classes for the complexity classification of natural problems.
Recently, much attention has been attracted by the question of whether P = NP? and
by the class of polynomial complete problems in NP; see Cook [1], Karp [5], and Levin
[7].

Here we introduce two similar classes of problems. Instead of polynomial time
bounds we consider time bounds for multitape Turing machine computations of the type
O(n(log n) k) with k fixed These time bounds are called quasilinear in n. Let QL
(quasdinear) and NQL (nondet.quasilinear) be the classes of all decision problems
which can be solved by deterministic (nondeterministtc, respectwely) multitape Turing
machines within quasdinear time bounds. These classes are machine independent to a
certain extent. Within the framework of multitape Turing machines they do not depend
on the number of tapes, the number of heads per tape, and the size of the alphabet
provided that there are at least two tapes and two alphabet symbols.

From the recursion-theoretic point of view, these classes are reasonable, too. Dmgo-
nalization can be applied jn a standard manner wRhm these classes. So it follows from
Hennie and Stearns [4] that the classes QLk of all those problems which are solvable
within time bound O(n(log n) k) by some multltape Turing machine ywld an infinite
hierarchy within QL, i.e. QL = I.Jk QLe but QL :~ LJk~k0 QLk for any k0. It is also clear
how to construct for given k a set A E QL such that every deterministic Turing
machine which decides A takes more than Ix I (loglx[k) steps on all but finitely many
input strings x. Here Ix[is the length of x.

Quasilinear time bounds are an important landmark in the field of concrete complex-
ity They express the fact that a program works effioently whereas polynomial time

The results of this paper were part of a main lecture at the annual meeting of the Geselischaft fur
Angewandte Mathematlk und Mechamk, Goningen. West Germany, Aprd 2-5, 1975

Author's present address. Johann Wolfgang Goethe UmversRat, Fachberetch Mathematik, Robert-Mayer-
Strasse 6-10, 6 Frankfurt am Main, West Germany

Journal of the Association for Computing Machinery, Vol 25. No 1, January 1978, pp 136-1,15

Satisfiability Is Quasilinear Complete in NQL 137

bounds merely say that a program is feasible. Many fundamental problems, such as
integer multiplication, sorting, and searching, can be done in quasilinear time. We
prove that many of the "exhaustive search" type problems, such as satisfiability, 3-
colorability, and graph isomorphism, can be solved in nondeterministic quasilinear
time, i.e. they are in the class NQL.

Using an efficient simulation of Turing machines by logical networks which is based on
the Fischer-Pippenger technique, we can prove that satisfiability is quasilinear complete
in NQL, i.e. every problem in NQL can be reduced to satisfiability by a deterministic
Turing machine with a quasilinear time bound. This result gives more information on the
relation between satisfiabihty and nondeterminism than Cook's theorem that satisfiabil-
ity is polynomial complete in NP. It reveals that satisfiability lies on the bottom within
the "exhaustive search" type problems. Note that each quasilinear complete problem in
NQL is polynomial complete in NP; however, the converse is not true. The hierarchy
results on nondeterministic classes [2] imply that there are polynomial-complete prob-
lems in NP which are not in NQL. We conclude that satisfiability expresses the feature of
nondeterminism as purely as possible and that, to understand the feature of nondeter-
mimsm, we should study quasilinear complete problems in N Q L rather than arbitrary
polynomial complete problems in NP.

The quasilinear completeness of satisflability implies that QL = NQL if and only if
satisflability is in QL. This QL = NQL? problem seems to be as fundamental as Cook's
P = NP? problem. Obviously P 4; NP implies QL ~ NQL but the converse is not clear.
Since we expect P ~ NP and QL ~ NQL it might well be that " Q L -'~ N Q L " will be
proved first. It would be sufficient to prove lower time bounds for satisfiability which
are shghtly higher than quasilinear.

2. The Class NQL of Problems Solvable m Nondeterministic Quasilinear Time

We consider Turing machines with a finite number of tapes over a finite alphabet Z. Let
Z* be the set of all finite sequences over ~. Ix I is the length ofx ~ Z*. Let K = {0, 1} C Z
be the binary input-output alphabet of the Turing machines under consideration.

With any Turing program (i.e. Turing table) we associate a partial function resp : K* -->
K* which is computed by p . Let

Tp(n) = max {running time of program p on input x}
X E K n

be the time bound of program p. Then we consider the class

QL t = {resp 13k : V n : Tp(n) ~ n(log n) k + k}

of all functions that are computable by a Turing program in quasilinear time. Let

QL = {A C K*Ixa ~ QL j}

be the corresponding class of decision problems that are solvable in quasilinear time on
Turing machines. Here Xa is the characteristic function of set A .

We shall compare the time class QL with the corresponding nondeterministic time
class. In a nondeterministic Turing program each instruction may have one or two
successor instructions. If all successor instrucuons are carried out in parallel then the
computational process of a nondeterministic program p on input x can be figured as the
binary tree shown m Figure 1. With a nondeterministic programp we associate the set

Ac% = {x E K*[there exists a stop-path in the computation of programp on inputx}

of all words x such that some path m the nondeterministic computation on input x
reaches a final configuration. Such a path is called a stop-path.

For x E ACCp we define the running tJme RTp(x) as

RTp(x) : = minimal length of a stop-path of program p on input x.

138 c .P . SCHNORR

Fm 1

Then we are ready to introduce the class

N Q L = {Ac% C K * 1 3 k : V x ~ Acq, :RT~o(x) -< [xl(loglxl) k + k}

of all decision problems that are solvable in nondeterminist ic, quasil inear time on Turing
machines.

With a sequence x = x~x2 "" x , ~ K" we associate the double-sequence .f =
xlxlx2x2 "'" x ~ , 0 1 . We use the following characterization of NQL:

PROPOSITION 2.1. The f o l l o w i n g assert tons are equiva len t :

(1) A fi NQL,
(2) ::IB E QL:::Ik ~ N:

a = { x 6 K * 1 3 u : t ~ x ~ B A l u l =] x [[l o g l x]] k + k } .

PROOF. Consider the binary sequence u as a sequence of branching parameters .
(2) ~ (1): A representat ion of A C K* as in (2) yields a nondeterminist ic decision

procedure for A as follows:

l Compute o~(x) = txl[toglxl] ~ + k

2 Make a nondetermmlstlc choice of oct(x) branching parameters u = uluz " " u~k~=)

3. Apply the decision procedure for B to the sequence tix.

It is a straightforward matter to see that this procedure can be implemented as a
nondetermimstic Turing program with a quasilinear t ime bound.

(1) ~ (2): Let p be a nondeterminist lc program for A with time bound Ix][log] x]]k
+ k. With p we associate the deterministic program/5 which on input tix simulates p on
input x for lu] steps and which uses the sequence u as branching parameters , i .e. u~
describes the binary choice within the ith nondeterminist ic step of program p . For each
u there is a corresponding path in the computat ion of p on input x. Program/5 can be
executed in quasilinear t ime and/5 is a decision program for some set B which yields a
representat ion for A as in assertion (2). []

Next we show that various famous problems are in NQL. We need some preliminaries
on binary encodings. Indeed we have to be careful in choosing reasonable encodmgs.
One can associate small t ime bounds to any problem A by encoding the inputs into
extremely long binary strings. However , this makes it more difficult to reduce other
problems efficiently to A . Therefore we cannot force any problem A to be quasilinear
complete in NQL by choosing some pathological encoding for A . To obtain strong
completeness results we must choose the binary encoding as short as possible without
making the encoding inefficient.

In the following let In] = {1 n}.
Let L = (l~ E N I i E [m]) be a list (i.e. sequence of natural numbers ll , ... , lm).Then

the binary encoding C (L) ~ K * is defined as

C (L) = c(l ,) c(lz) "'" C(lm),

where c(v) is the binary representat ion of v ~ N and. f is the "doubled" sequence which
is associated with x. Let A(L) C N be the set of elements of L and let ILl = m be the
number of elements in the list L.

Let .~ = (L , lt E [m]) be a list of lists L~ Lm, i.e. £f is a two-dimensional list.
Then the encoding C(~) E K* of ~ is defined as

Satisfiabdlty Is Quasilinear Complete in N Q L 139

C(. f) = C(L,)O1C(L2)O1 ... 01C(Lm).

A d i r ec t ed g raph G wi th the set [n] of n o d e s and the set E C [n] × In] of edges i s
c o n s i d e r e d to be given as a t w o - d i m e n s i o n a l list 9o = (L,i i ~ [n]) such t ha t A(L,) =
{ j l (i , j) E E} f o r t = 1 n . T h e n C (~) E K* is a b ina ry e n c o d i n g of the g r a p h G.

T h e i s o m o r p h i s m p r o b l e m for g raphs is the dec is ion p r o b l e m for the se t

g raph- i so = { C (G) 1 0 C (G) I t h e g r a p h s G a n d G are i somorphic .}

H e r e C(G) and C(G) are the encod ings of i s o m o r p h i c g raphs iff G a n d G h a v e the s ame
n u m b e r m of n o d e s (i .e. C(G) and C(G) b o t h cons is t o f m lists for s o m e m) a n d if t h e r e
exists a p e r m u t a t i o n or : [m] ~ [m] such tha t AL, = or(ALo~,~) for i = 1, ... , m , wi th L,
and L, be ing the lists of G and G.

THEOREM 2 1. graph-tso ts m N Q L .
T h e n o n d e t e r m i n i s t i c p r o c e d u r e for g raph- i so will use some s u b p r o g r a m s which will

also be useful la te r on. W e descr ibe var ious s u b p r o g r a m s .

Program pl
Input' C(L) (encoding of a hst L of natural numbers)
Output. C(L °) (encoding of the ordered list L °)
Properties. (1)ILl =]L °] and L ° is a permutation of L, (2) ly ~. 1~÷1, ! = 1 ILl - 1
Time bound quaslhnear in the length of the input

PROOF. In s tage t we sor t the s e g m e n t s

L (k , i) ={l~]k2 ' -<j < k 2 ' + 2'} for k - <] L I / 2 '

by merg ing the o r d e r e d s e g m e n t s L(2k, i - 1), L(2k + 1, i - 1) which h a v e b e e n
g e n e r a t e d at s tage t - 1. This r equ i res O (l o g l L I) s tages b e g i n n i n g wi th s tage 1. Since
merg ing of two lists can b e d o n e wi th in l inea r t ime wi th t h r e e t apes , e a c h s tage can be
d o n e wi th in O(IC(L)l) s teps . []

Le t L = (/,I t ~ [n]) be a list and let cr:[n] ~ [n] be a p e r m u t a t i o n ; t h e n we def ine L ~
as L ~ = (/o~,~l l E [n]) . T h e e n c o d i n g C(or) of a func t ion or:[n] ~ N is the e n c o d i n g of the
list (or(t)[/ E [n]).

Program p2.
Input. C(L)IOC(Gr), where L = (l,lt E [n]) is a list and o- In] ----> In] is a permutation.
Output C(L ~)
Time bound: quasdmear m the length of the input

Description o f p2. Sort or a n d apply the s ame t r a n s f o r m a t i o n s imu l t aneous ly to the
list (i It E [n]). This yields or-l. Sor t or-i and apply the s ame t r a n s f o r m a t i o n s imul ta-
neous ly to the hs t L . This yields L ~. []

Le t A.~ be the set of e l e m e n t s of a t w o - d i m e n s i o n a l list £g, i . e . A . ~ consis ts of the
e l e m e n t s of the lists in ~ . Le t y : A ~ ~ N be a func t ion . T h e n T(..~) is the two-
d i m e n s i o n a l list which is o b t a i n e d f rom .f# by rep lac ing each e l e m e n t ~, of .~ by y(v) .

Program p3'
Input" c(.~)10c(y) where ~(..~) = In] and y In] ~ N is some function
Output: C(y(.~))
Time bound quasflmear in the length of the input
Sketch Ofpz

1. Transform ~ Into a one-dlmensmnal list L by "forgetting" the two-dlmensmnal structure of ~ Let m be
the length of L

2 Sort L into an ordered list L ~ preserving the multiplicity of elements Apply the same permutation
simultaneously to the umt hst (tit E [m]). This yields the permutation o --~

3 Compute T(L ~) within one pass over the hsts L ~ and Y

4 Compute L = (y(L~)) ~-~ by inverting the permutatmn o- This can be done by sorting the hst o" and a
simultaneous apphcatlon of the same transformation to y(L ~)

5 Construct y(.~) by implementing the two-dlmensmnal structure of .~ to L This can be done within one
pass over ~ and L

140 c . P . SCHNORR

W e are n o w ready to p r o v e T h e o r e m 2.1 .

Sketch of a nondetermlnistic program for graph-lso

1. Decide whether the input x is of the type C(G)O1C(G) where C(G), C(G) are binary encodings of directed
graphs. In this case goto 2

2 Count the number of nodes n and d of G and G This can be done by counting the number of lists of G
andG Ifn = f i t h e n g o t o 3

3 Make a nondetermmlstlc choice of a hst o- = (o-(:) E In]It ~ In]). This can be done by a nondetermimstlc
choice of O(n log n) bits goto 4.

4 Check whether the function o- In] ~ In] is a permutation This can be done by first sorting the list ~r If o-
is a permutation then goto 5

5 Compute o ' (~ = (o'(L31t E In]) by applying program P3 Here ~ is the hst that describes G Compute
~r(~ ~ = (~r(L~,))]: ~ [n]) by applying program p2 to the list o-(.~ with elements ~r(L.) goto 6

6 Sort all lists m .L' (which describes G) and in cr(~ *. If the two-dimensional hsts that result from ~ and
o-(.~ * coincide then stop
U s m g the fact tha t p r o g r a m s Pi , P2, P3 h a v e quas l l i nea r t ime b o u n d s , tt can easi ly be
seen t ha t a su i t ab le i m p l e m e n t a t i o n of the a b o v e p r o c e d u r e r equ i r e s a quas i l i nea r
n u m b e r of n o n d e t e r m i n i s t i c s teps o n a T u r i n g m a c h i n e . This p r o v e s T h e o r e m 2.1 . []

Nex t we cons ide r the sat isf iabt l i ty p r o b l e m . L e t V = {x,li ~ N} b e a se t of B o o l e a n
va r i ab les t ha t t ake the logical va lues "1 ~ t r u e " a n d " 0 - f a l se" . Le t A , V : K 2 ~ K
and ~ : K ~ K be the logical func t ions c o n j u c t i o n , d i s junc t ion , and n e g a t i o n . W e
a b b r e v i a t e x, = x~ a n d ~x~ = x~ °. A B o o l e a n clause ts a d i s junc t ton of va r i ab le s and

o'(z) cr(2) n e g a t e d va r i ab le s (x ~ . k/x~2) k / " ' " k / x ~)) , w i th z(i) @ N , or(i) E K. A C o n j u n c t i v e
F o r m (CF) T ts a c o n j u n c t i o n of B o o l e a n c lauses

k l(z)

3' = A \ /~ , ro , j)
V "¢ r(z,j)

t = l .1=1

with ~-(i, j) E N , ~r(t,]) ~ K.
A C F T is cal led satisfiable if t h e r e is a m a p g : V ~ K which assoc ia tes B o o l e a n

va lues wt th all B o o l e a n va r i ab l e s such t ha t T~x,=u~x,)l~n o = 1 , 1 . e . 3' is sa t isf ied u n d e r g . A
C F 3" is desc r ibed as a t w o - d i m e n s i o n a l list ~ o f pa i rs (o-(i, j) , r(t , j)) . T h e t th list L~ of .~
e n c o d e s the i th c lause of T- E a c h pa i r (or(t, j) , 70 ,1)) is e n c o d e d as c(o-(i, j)) c(z(i, j)) a n d
3" is e n c o d e d as a t w o - d i m e n s i o n a l list of these e n c o d e d pai rs .

The sat isf iabi l i ty p r o b l e m is the dec is ion p r o b l e m for the set:

sa t t s f iab ih ty = {C(3")13' ~s a sa t is f iable CF}.

THEOREM 2.2 . Satisfiability is m N Q L
PROOF. W e ske tch a n o n d e t e r m i n i s t i c p r o g r a m for sat isf iabi l i ty .

1 Decide whether the input x is of the type C(&) where .~' is a two-dlmensmnal hst of pairs (o-(1,1), ~'0,1))
K x N. (Then x is the encoding of a CF T) In this case goto 2

2 Sort the set z(~, 1) of mdmes of variables that occur m ~ according to their sine and without repetition of
elements Let L be the resulting sorted hst with length m = ILl- goto 3

3 Make a nondetermlniStlC choice of a binary bst ~5 = (~(:) ~ Kli ~ Ira]) Compute the list ~ which is
obtained from ~ by replacing each element (o-(i, I), *(t, 1)) by (cr(t, I), 8(*(t, 1))). This can be done by applying
program pz. goto 4

4 Evaluate 3%~- ~ tan ~ This can be done by one pass over the hst .~' If T takes the value 1 then stop

Us ing the fact tha t p r o g r a m p~ has a q u a s i h n e a r t ime b o u n d a n d t h a t s o r t m g can be
d o n e in quas i l i nea r t ime , the a b o v e p r o c e d u r e for sa t i s f iabdi ty can easi ty b e i m p l e m e n t e d
as a T u r i n g p r o g r a m with a q u a s i h n e a r t ime b o u n d . []

Le t n o n p r i m e s = {c(v) ~ K*lv ~ N is no t a prime} b e the e n c o d i n g of the set of all
n o n p r i m e s . T h e n it is a s t r a i gh t f o r w a r d c o n s e q u e n c e of the S c h 6 n h a g e - S t r a s s e n fast
mul t ip l i ca t ion a lgo r i t hm tha t n o n p r i m e s is in N Q L .

3. A Quasihnear Reduction o f N Q L to SaUsfiabihty

W e shal l use the fo l lowing c o n c e p t of q u a s i h n e a r r e d u c t i o n m s t e a d of p o l y n o m i a l t ime

Sattsfiability Is Quasihnear Complete in NQL 141

bounded reduction which has been used m the work of Cook, Karp, and Levin.
The quasdinear reducibility A -<q~ B for sets A , B C K* is defined as follows:

A --<q~ B ~ 3 g / ~ QU:Vx ~ K*:x C A ¢:~(x) ~ B .

The relation _<q~ is reflexive and it can easily be seen that .~q~ is transitive, i .e. A --<q~ B
and B -<ql C implies A -<ql C.

Definition 3.1. A C K* is quasilinear complete (i.e. -<ql complete) if (1) A ~ N Q L
and (2) VB ~ N Q L : B -<ql A .

These definitions immediately imply Propositmn 3.1.
PROPOSITION 1. The following assertions are equivalent for all --<ql-complete sets A:

(1) N Q L = QL, (2) A ~ QL.
PROOF. (1) ~ (2): Trivial. (2) ~ (1): B -<ql A and A ~ QL implies B E QL.
We are now ready to state the mare result of the paper.
MAIN THEOREM 3.1. Sattsfiability is quasilinear complete.
One part of Theorem 3.1 has already been proved m Theorem 2.2. So it remains to

prove "VA ~ N Q L : A _<q~ sat~sfiabihty " This part of the proof will be prefaced by
Propositions 3 .2-3.4 , which describe a sequence of simulations.

Let A ~ NQL be given by a representat ion according to Propositmn 2.1:

A = {x E K*[3u:dx E B / k [u[= [xl [log Ix[] k + k},

wl thk E N a n d B ~ QL.
In a first step we remark that we may restrict our considerations to oblivious Turing

pro.grams for B. A Turing program p is called oblivtous if the position of head i in the j th
configuration of program p on input x is a function pos(i , / , I xl) that only depends on t,]
and the length I xl of x.

PROPOSmON 3.2. For every B E QL there exists an obhvwus program p for B (i.e. p
computes XB) which has a quasilinear bounded running time and which uses two tapes.

This proposit ion follows immediately from a theorem of F~scher [3], who proved that
for every Turlng program p there exists an oblivious Turing program p' which for all m
simulates p for m steps by using O(m log m) steps o f p ' .

The next step in the proof of Theorem 3 1 is to simulate oblivious Turing programs
by logical networks. Let V = {x,li ~ N} be a countable set of Boolean variables and let

be the set of all Boolean functions with varmbles in V.
A Boolean computation (logical network) /3 is a finite directed acyclic graph such

that the following are true:

(1) Every node v of 15 has either 2 or 0 entering edges. A node without entering
edges is called an entry; all other nodes are called nonentries of ft.

(2) Every entry v of /3 is labeled with a Boolean function op(v) ~ V LI K which is
either a variable or a constant.

(3) Every nonentry v of 13 is labeled with some binary logical operat ion op(v):KK ~
K. The edges which enter ~, correspond in a fixed ordered way to the arguments of
op(v).

With every node v E/3 we assocmte an output function res~ E ~ as follows, res~ -- op(~)
for all entries ~,. For a nonentry u, res~ is obtained by applying op(~,) to the outputs of
the preceding nodes. We say/3 computes res~ for v E /3. Let size(/3) be the number of
nonentries (i.e. gates) m/3.

We can restrict our considerations to logical networks/3 with the following property:
There exist n, m ~ N such that 1, 2, . . . , n are the entries and n + 1, . . . , m are the
nonentries of/3 and x, = op(i) for t = 1 n.

Each node ~, of/3 is described by a triple (o-(t,), z(u), ~p(u)) of natural numbers, tr(l,)
(z(v), respectively) is 0 for all entries v and is the first (second, respectively) predecessor
of v for all nonentries v. Then the binary encoding C(/3) is the encoding of this list of
triples where each triple is encoded as c(tr(v)) c(z(v)) c(op(v)).

142 c . P . SCHNORR

The following Propositions (3.3 and 3.4) contain the heart of the proof for Theorem
3.1.

PROPOSITION 3.3. For every oblivious program p with quasilinear bounded running
time Tp there exists a funct ion Fp ~ Q L f such that fo r all x ~ K* with length n,

I~(x) = C(Bp,n)Olc(v),

where flp,n is a logical ne twork and v is a node o f Bp,n such that res~p,, = resatKn.
PROOF. The proof is based on a theorem which is due to Fischer and Pippenger [3].

For every oblivious Turing program p there exist logical networks Bp, n such that flp,n
simulates p on inputs of length n and size(B,.n) = O(Tp(n)). See also [8] for a stronger
version of this fact. We have to prove that this simulation can be done efficiently in the
sense that Bp.n can be computed in quasilinear t ime with respect to n.

We may suppose that p uses the binary alphabet K and 2 tapes. We consider p on
inputs of length n. Suppose p has 2 m internal states and uses at most ak(n) tape squares
and cz~(n) steps. A configuration of p (modulo the head positions) is encoded as a
binary string of length m + ctk(n) where the first m bits encode the program state and
the following ctk(n) bits correspond in one-to-one manner to the symbols in the used
tape squares. Only m + 2 bits of the configuration are involved in each step of the
obhvious computation: the m bits of the program state and the 2 bits of the observed
symbols. Let ~/ be a network which computes the successor configuration SC:K m+2
K '~+~ where SC(c(r)xlxz) = (c(s)yly2) means that c(r) and c(s) are the encodings of the
present and the next program state, xl , x2 are the presently observed symbols, and x, is
replaced by y, within the present step. Each step of program p is simulated by a copy of
"0 with the present program state and the presently observed symbols as inputs, ak(n)
steps of program p are simulated by a suitable composition of ak(n) copies of ~. In
order to compose t h e j t h copy of ~ (simulating t h e j t h step) in the right way we have to
know the head positions of program p within the] th step. This enables us to feed into
the symbols which are observed within the] th step of program p .

Let/3~ be the composition of the f i r s t j copies of "0 and C(flj) its encoding. We sketch
s tage j of the computaaon where C(B,-0 is extended to C(Bj) by composing a copy of a~
with B~-~. The head positions within the j th step of program p can be obtained by
simulating the]th step of program p on input 1 n within each stage]. With these head
positions available one concatenates to C(B,-~) the encoding C('03) of a correct composi-
tion of ~ with B,-1. This can be done in a straightforward way.

B~t~ has size (~) 'o te(n) nodes and a suitable binary encoding of B,~,~) has length
O(ak(n)log Otk(n)). The above sketch ymlds a Turing program for B~t~ which requires
O(ctk(n)log Otk(n)) steps. This finishes the proof of Proposit ion 3.3. O

The final step of the proof of Theorem 3.1 requires a simulation of logical networks
by conjunctive forms. This simulation uses an idea which is due to Sanden (a student
with the author):

PROPOSITION 3.4 (Sandeh-Schnorr) . Let t3 be any logical network with input vari-
ables x l , xn and nonentries n + 1 m and op(i) = x~for i = 1 , n. Then there
is a CF 7 a which depends on x l , ... , xn, ... , xm such that

(1) for all nodes v,

3y.res~(y) = 1 ¢-~ 7~x~ =1 ts satisfiable;

here 71x~.=1/s obtained f r o m 7 ~ by substituting I f o r x~;
(2) y a has at most f our size(B) clauses, each clause having at most three literais;
(3) there is a funct ion ~o ~ QLS such that ~(C(B)) = C(7B) for all logical networks/3 .
PROOF. We may assume that /3 has the entries 1, . . . , m where x, = op(i) is the

input of node i. Let n + 1, . . . , m be the nonentries of/3. The variable x~ will describe
the output function of tess of node v. Consider the Boolean function

y = ~k [x , = op(i)(Xo~,,,x,~,))],
t ~ n + l

Satisfiabtlity Is Quasilinear Complete in NQL 143

where or(i) is the first and ~'(t) is the second predecessor of node i. This construction
implies for all nodes v:

3y E ~ :rest(y) = 1 ~ Yl 1 is satisfiable.

It remains to rewrite a factor [x, = op(t)(xo~,), x~o)] as a product of Boolean clauses. For
instance,x, = x~ Ax~ can be written as (x~ V ~x,)(x~ V ~x,)(~x, V ~ x , Vx~) and [x~ =
(x~ ® x,)] can be written as a product with four Boolean clauses. Therefore, yn is
obtained from T by transforming the factors of y into products of Boolean clauses. This
proves (1) and (2). Observe that C(T ~) can be constructed from C(/3) by one pass over
the input. The running time of a suitable program is linearly bounded in the length of
the input. []

PROOF OF THEOREM 3.1. Using Propositions 3.2-3.4, we can prove VA ~ NQL;
A -<q~ satlsfiability. Let A ~ NQL be given by B E QL according to Proposition 2.1.
Let p be an oblivious program for B such that Tp(n) -< n [log n] k + k for all n. We
abbreviate c~k(n) := n[log n] k + k.

With every input y ~ K" of program p we associate a CF y~ as follows:

(t) Apply Fp in Proposition 3.3 in order to compute a network/3(y) and a node v of
/3(y) such that

res~u ~ = ku[resv(tiy)],

where u ranges over binary sequences with length ~k(n).
(2) Compute ~o(C3(y)) := C(T t~u~) according to Proposition 3.4. Letx~ correspond to

the output function res~u); then compute the encoding of 'y~ := y~:=~.

This construction implies

y E A ~ 3u E K ~ul :tiy ~ B ¢¢, 3u ~ K "~lul :res~(tiy) = 1
¢¢, ~]u ~ K ~1~1 :resCue(u) = 1 ~ 7u is satisfiable.

Using Propositions 3.3 and 3.4 one can easily see that the function 0 :y ~ C('yu) is in QU.
Observe that the composition of functions in Q U always yields a function QL z. This
finishes the proof of Theorem 3.1. []

4. Further Quasilinear Complete Problems

There is a number of known reductions qJ of satisfiability to other problems where ~ has a
quasilinear time bound. We shall only specify these problems and the corresponding
reductions.

3-satisfiability = {C(y) Iy is a satisfiable CF with at most three literals per clause}.

It is a straightforward matter to see that 3-satisfiability is quasilinear complete. We
define

3-colorability := {C(G)I G is a fimte graph which is 3-colorable}.

THEOREM 4.1. 3-colorabihty is quasilinear complete.
PROOF. It can easily be seen that 3-colorability is in NQL. On the other hand there

is a quasilinear reduction q~:3-satisfiabihty ~ 3-colorabihty which is due to Specker
[10]. ~b works as follows: Let the CF

,y = ~ /vO'(b 1) \ /vO't,t, 2) \ / vo ' (l ,3) '~
\ - ~ z , 1) V.'~'7(*,2) V - ~ ' ~ I , 3)]

~=1

depend onxl , . . . , xn. Then the graph ~/(T) with the set of vertices V and set of edgesE is
defined as:

V = {0, 2} U {xJ, x3°~ -<n} U {p~li -< m, k -< 5},
g = {(0, 2)} U {(x], 2), (x~, 2), (x~, x~ °) IJ -< n} U {(x~';~ ~, pie)I i --< m, k -< 3} U {the

edges of Figure 2]i --< m}.

144 c . P . SCHNORR

i
P3

Pl

Fm 2

The reduction works [10] and 0(~) can be computed m linear time from C(~). []
Remember that ~ ' = (L~li = 1, . . . , m) denotes a two-dimensional list and A(~.~),

A(L,) are the set of elements of ~ and L~.

partition = { C(A°) 3 subfamdy L,~, . . . , L, :A(L,~)are pairw,se}
disjoint and I3L~A(L~) = A(.t)

THEOREM 4.2. Partition is quasihnear complete.
PROOF. By the use of sorting techniques, it can be proved in a straightforward

manner that partiUon is in NQL. A reducUon ~:3-colorability ~ partition can be
defined as follows [10]:

Let G = (V, E) be a graph. Then the associated double list ~ is defined such that
A (L ,) , t = 1 m, is the following family of sets:

S~,r = {v} U { (e , f) l v i s a n o d e o f e E E } C V U E x [3] for v ~ V , f = 1 , 2 , 3 ,
Se~ = {(e,f)} for e 6 E , f = 1 , 2 , 3 .

It follows that G *s 3-colorable ~ C(,~') 6 partition and the reduction 0:C(G) ~ C(Sf)
can be computed in linear time.

Finally, we consider a quasdinear complete problem which seems to be particularly
interesting: the anticlique problem, which is also called the discrete subgraph problem.
Let G be a directed graph with vertex set V; then a subset U C V of pairwise
nonadjacent vertices is called an antlclique of G We set

an t ic l ique :={ C(G)Olc(k) there is an anticlique k}"
U of G with U u II =

Under a somewhat different encoding the anticlique problem is almost ldenhcal to the
chque problem. Let the Boolean variable x,., be true iff there is no edge from i to l in G;
then the variables (x,.~[1 -< i,] -< n) encode the directed graphs with vertex set In] and the
problem of deciding whether there exists an anticlique of size k m such a graph is
precisely the problem of computing the following Boolean function:

CL,,k = V A x,~,,~.

If the representation of graphs is changed such that x,,, is true iff there is an edge from i to
] then CL~,e encodes the problem of deciding whether there exists a clique of sine k in a
graph w~th vertex set In]. It has been proved by Schnorr [9] that any rational monotone
computation for CL~,~ requires at least (g) - 1 additions, which shows that the anticlique
problem ~s exponentially hard, at least in a restricted model of computation.

THEOREM 4.3. Anticlique ts quasilinear complete in N Q L .
PROOF. It can easily be seen that anticlique is m NQL: Given a graph G frith vertex

set In] and given k -< n, one guesses k nodes j~ jk which takes O(n log n)
nondetermmistic steps. Then, by using techniques for sorting, one can check in quasi-
linear time whether jl, . . . , j~ is an anticlique.

On the other hand, we reduce 3-satisfiability to antichque. Let a CF

Satisfiabihty Is Quasdmear Complete in N Q L 145

~ t~o'(~, 1) \ / ~o'(~, 2) V X °'(~" 3)t
"Y -~ \ - ~ , 1) v ~r(t , 2) z(z, 3) /

be given. A t first we t r a n s f o r m T in to a n o t h e r CF ~ such t ha t e ach va r i ab l e x~ occurs at
mos t 3 t imes in the clauses of.~ (n e g a t e d occu r r ences o f x v m c l u d e d) . I f xv occurs m o r e
t han th r ee t imes m T, t h e n we i n t r o d u c e a new va r i ab l e x~, we subs t i tu t e o n e o c c u r r e n c e
of x~ in T by x~, and we add the c lauses (x~ ~/-~x~) (x~ V ~x~) to T. T h e s e add i t iona l
c lauses imply xv = x~. Obv ious ly the t r a n s f o r m a t i o n C(T) ~ C('~) can b e d o n e in
quaml inea r t ime and ~ is sa t is f iable iff T is sa t isf iable . So far we have p r o v e d t ha t in ou r
r e d u c t i o n of 3-sat isf iabi l i ty to an t i c l ique we m ay res t r ic t to CFs T such t h a t e a c h va r i ab l e
occurs at mos t t h r ee t imes . N ow let T be such a C F wi th m clauses as a b o v e . W e assoc ia te
wi th T a g r a p h G wi th ve r t ex set

V = {(y, i) l the l i teral y occurs in the i th c lause of T}

and edge set

E = {((3'1, zi), (Y2, z2))ltl = t2 o r y i =~Yz}.

It is k n o w n f rom the r educ t i on of sat isf iabil i ty to c l ique in K a r p [5] t h a t t he a b o v e
r educ t ion works , i .e. 3' is sa t is f iable lff (V, E) has an a n t i c h q u e of size m . O n the o t h e r
h a n d , it fol lows f rom our a s s u m p t i o n s on y tha t t h e r e a re at mos t 3m + 3n edges m E ,
whe re n is the n u m b e r of va r i ab les in y . T h e r e f o r e , the l e n g t h of the b ina ry e n c o d i n g of
the g r a p h (V, E) is quas i l i nea r m the l eng th of C(T). H e n c e the t r a n s f o r m a t i o n C(T)
C(V, E) can be d o n e m quas i l i nea r t ime . []

REFERENCES

(Note Reference [6] is not cited in the text)

1 COOK, S A The complexity of theorem-proving procedures Proc Third Annual ACM Syrup on
Theory of Comptng , 1971, pp 151-158

2 COOK, S A A hierarchy for non-determlmstlc time complexity Proc Fourth Annual ACM Symp on
Theory of Computing, 1972, pp 187-192

3 FISCHER, M J Lectures on network complexity Preprint, U Frankfurt, 1974
4 HENNIE, F C , AND STEARNS, R E Two-tape simulation of multltape Turing machines J ACM 13, 4

(Oct 1966), 533-546
5 KARP, R M Reducibility among combinatorial problems In Complexity of Computer Computations,

R E Miller and J W Thatcher, Eds , Plenum Press, New York, 1972, pp 85-104
6 KNUTH, D E The Art of Computer Programming, Vol 3. Sorting and Searching. Addison-Wesley,

Reading, Mass., 1973
7. LEViN, L.A Universal enumeration problems (in Russian) Problemt Peredaci lnformacu, Tom IX,

1972, pp 115-116
8 SCHNORR, C P The network complexity and the Turing machine compLexity of finite functions ACTA

Informatica 7 (1976), 95-107
9 SCHNORR, C P A lower bound on the number of additions in monotone computations. Theoretical

Comptr. Sct 2 (1976), 305-315
10 SPECKER, R , AND STRASSEN, V Komplexitat von Entscheidungsproblemen Lecture Notes in Computer

Science, Vol 43, Springer-Verlag, Berlin, 1976

RECEIVED JULY 1975, REVISED APRIL 1 9 7 7

Journal of the Association for Computing Machinery, Vol 25, No 1, January 1978

