Satisfiability Is Quasilinear Complete in NQL

C. P. SCHNORR

Umwersitat Frankfurt, Frankfurt am Mam, West Germany

ABsTRACT Considered are the classes QL (quasi/mear) and NQL (nondet quasi/mear) of all those problems
that can be solved by determmmstic (nondetermnistic, respectively) Turing machines m time O(n(log n)*) for
some k Efficient algorithms have time bounds of this type, 1t 1s argued. Many of the “exhaustive search”
type problems such as satisfiability and colorability are complete in NQL with respect to reductions that take
O(n(log n)*) steps This implies that QL = NQL iff satisfiabihty 1s m QL

KEY WORDS AND PHRASES NP-complete problems, nondeterministic Turing machines, logical networks,
satisfrability, colorabihty, graph isomorphism, chque problem

CR CATEGORIES: 5.25

1. Introduction

There is a common agreement that the classes P and NP of all decision problems which
can be solved in polynomial time by deterministic (nondeterministic, respectively)
Turing machines are basic classes for the complexity classification of natural problems.
Recently, much attention has been attracted by the question of whether P = NP? and
by the class of polynomial complete problems in NP; see Cook [1], Karp {5], and Levin
7]

Here we mtroduce two similar classes of problems. Instead of polynomial time
bounds we consider time bounds for multitape Turing machine computations of the type
O(n(log n)*) with k fixed These time bounds are called quasilinear in n. Let QL
{quasi/inear) and NQL (rzondet.quasil/inear) be the classes of all decision problems
which can be solved by deterministic (nondeterministic, respectively) multitape Turing
machines within quasilinear time bounds. These classes are machine independent to a
certain extent. Within the framework of multitape Turing machines they do not depend
on the number of tapes, the number of heads per tape, and the size of the alphabet
provided that there are at least two tapes and two alphabet symbols.

From the recursion-theoretic point of view, these classes are reasonable, too. Diago-
nalization can be applied in a standard manner within these classes. So it follows from
Hennie and Stearns [4] that the classes QL; of all those problems which are solvable
within time bound O(n(log n)*) by some multitape Turing machine yield an infinite
hierarchy within QL, 1.e. QL = U, QL, but QL # U,;, QL, for any k,. It is also clear
how to construct for given k a set A € QL such that every deterministic Turing
machine which decides A takes more than |x| (log|x|*) steps on all but finitely many
input strings x. Here | x| is the length of x.

Quasilinear time bounds are an important landmark in the field of concrete complex-
ity They express the fact that a program works efficiently whereas polynomial time

The results of this paper were part of a main lecture at the annual meeting of the Gesellschaft fur
Angewandte Mathematik und Mechanik, Gottingen, West Germany, April 2-5, 1975

Author’s present address. Johann Wolfgang Goethe Umversitat, Fachbereich Mathematik, Robert-Mayer-
Strasse 6~-10, 6 Frankfurt am Main, West Germany

Journal of the Association for Computing Machinery, Vol 25, No 1, January 1978, pp 136-145

Satisfiability Is Quasilinear Complete in NQL 137

bounds merely say that a program is feasible. Many fundamental problems, such as
integer multiplication, sorting, and searching, can be done in quasilinear time. We
prove that many of the ‘“‘exhaustive search” type problems, such as satisfiability, 3-
colorability, and graph isomorphism, can be solved in nondeterministic quasilinear
time, 1.e. they are in the class NQL.

Using an efficient simulation of Turing machines by logical networks which is based on
the Fischer-Pippenger technique, we can prove that satisfiability 1s quasilinear complete
in NQL, i.e. every problem in NQL can be reduced to satisfiability by a deterministic
Turing machine with a quasilinear time bound. This result gives more information on the
relation between satisfiability and nondeterminism than Cook’s theorem that satisfiabil-
ity is polynomial complete in NP. It reveals that satisfiability lies on the bottom within
the “‘exhaustive search” type problems. Note that each quasilinear complete problem in
NQL is polynomial complete in NP; however, the converse is not true. The hierarchy
results on nondeterministic classes [2] imply that there are polynomial-complete prob-
lems in NP which are not in NQL. We conclude that satisfiability expresses the feature of
nondeterminism as purely as possible and that, to understand the feature of nondeter-
mimsm, we should study quasilinear complete problems in NQL rather than arbitrary
polynomial complete problems in NP.

The quasilinear completeness of satisfiability implies that QL. = NQL if and only if
satisfiability is in QL. This QL = NQL? problem seems to be as fundamental as Cook’s
P = NP? problem. Obviously P # NP implies QL # NQL but the converse is not clear.
Since we expect P # NP and QL # NQL it might well be that “QL # NQL” will be
proved first. It would be sufficient to prove lower time bounds for satisfiability which
are shghtly higher than quasilinear.

2. The Class NQL of Problems Solvable in Nondeterministic Quasilinear Time

We consider Turing machines with a finite number of tapes over a finite alphabet 3. Let
2* be the set of all finite sequences overX. |x|is the length ofx EZ*. Let X ={0,1} C 3,
be the binary input-output alphabet of the Turing machines under consideration.

With any Turing program (i.e. Turing table) we associate a partial function res, : K* —
K* which is computed by p. Let

T(n) = max {running time of program p on input x}
rEK™

be the time bound of program p. Then we consider the class
QL = {res,|3k :V n:T,(n) < n(logn)* + k}
of all functions that are computable by a Turing program in quasilinear time. Let
QL = {A C K*|x4 € QL%}

be the corresponding class of decision problems that are solvable in quasilinear time on
Turing machines. Here x, is the characteristic function of set A .

We shall compare the time class QL with the corresponding nondeterministic time
class. In a nondeterministic Turing program each instruction may have one or two
successor instructions. If all successor instructions are carried out in parallel then the
computational process of a nondeterministic program p on inputx can be figured as the
binary tree shown in Figure 1. With a nondeterministic programp we associate the set

Acc, = {x € K*| there exists a stop-path in the computation of programp on input x}

of all words x such that some path in the nondeterministic computation on input x
reaches a final configuration. Such a path is called a stop-path.
Forx € Acc, we define the running ime RT,(x) as

RT,(x) := minimal length of a stop-path of program p on input x.

138 C. P. SCHNORR

Fic 1

Then we are ready to introduce the class
NQL = {Acc, C K*|3k :Vx € Acc,:RT,(x) < |x|(log |x])* + k}

of all decision problems that are solvable in nondeterministic, quasilinear time on Turing
machines.

With a sequence x = xux, =" x, € K" we associate the double-sequence x =
XX 1Xaxs - Xx,x,01. We use the following characterization of NQL:

Prorosition 2.1. The following assertions are equivalent:
(1) A € NQL,
(2) 3BEQL:3k EN:

={x € K*|u:ax € BN\ |u|=|x|[log)x|]* + k}.

Proor. Consider the binary sequence u as a sequence of branching parameters.
(2) = (1): A representation of A C K* as in (2) yields a nondeterministic decision
procedure for A as follows:

1 Compute ayfx) = |x [[log|x|TF + k
2 Make a nondeterminstic choice of ay(x) branching parameters u = uus - * Uiz

3. Apply the decision procedure for B to the sequence zx.

It is a straightforward matter to see that this procedure can be implemented as a
nondeterministic Turing program with a quasilinear time bound.

(1) > (2): Let p be a nondeterministic program for A with time bound | x [[log| x |T¢
+ k. With p we associate the deterministic program g which on input uzx simulates p on
input x for |u| steps and which uses the sequence u as branching parameters, i.e. u,
describes the binary choice within the ith nondeterministic step of program p. For each
u there is a corresponding path in the computation of p on input x. Program p can be
executed in quasilinear time and p 1s a decision program for some set B which yields a
representation for A as in assertion (2). O

Next we show that various famous problems are in NQL. We need some preliminaries
on binary encodings. Indeed we have to be careful in choosing reasonable encodings.
One can associate small time bounds to any problem A by encoding the mputs into
extremely long binary strings. However, this makes it more difficult to reduce other
problems efficiently to A. Therefore we cannot force any problem A to be quasilinear
complete in NQL by choosing some pathological encoding for A. To obtain strong
completeness results we must choose the binary encoding as short as possible without
making the encoding inefficient.

In the following let [n] = {1, ... , n}.

Let L = ({, € N|i € [m]) be a list (i.e. sequence of natural numbers /;, ... ,1,).Then
the binary encoding C(L) € K* is defined as

C(L) = cly) ¢(a) - ¢,

where c(v) is the binary representation of » € N and ¥ is the “doubled” sequence which
is associated with x. Let A(L) C N be the set of elements of L and let |L] = m be the
number of elements in the list L.

Let & = (L,|: € [m]) be a list of lists L,, ... , L,,, i.e. £ is a two-dimensional list.
Then the encoding C(¥) € K* of £ is defined as

Satisfiability Is Quasilinear Complete in NQL 139

C(F) = C(L)Y01C(L,)01 -+ 01C(Ly,).

A directed graph G with the set [#] of nodes and the set E C [n] X [n] of edges is

considered to be given as a two-dimensional list £ = (L,Ji € [r]) such that A(L) =

{jlG,j) € E}Yfori1 =1, ... ,n. Then C(¥) € K* is a binary encoding of the graph G.
The 1somorphism problem for graphs is the decision problem for the set

graph-iso = {C(G)10C(G)|the graphs G and G are isomorphic.}

Here C(G) and C(G) are the encodings of isomorphic graphs iff G and G have the same
number m of nodes (i.e. C(G) and C(G) both consist of m lists for some m) and if there
exists a permutation ¢ :[m] — [m] such that AL, = ¢(AL,y) fori = 1, ... , m, with L,
and L, bemng the lists of G and G.

THEOREM 2 1. graph-iso 1s in NQL.

The nondeterministic procedure for graph-iso will use some subprograms which will
also be useful later on. We describe various subprograms.

Program p,

Input' C(L) (encoding of a hst L of natural numbers)

Output. C(L?) (encoding of the ordered list L°)

Properties. (1) |L| = |L°| and L°1s a permutation of L, 2) l§ =13,y =1, ... ,|L| -1
Time bound quasihnear in the length of the mput

Proor. In stage: we sort the segments
Lk,i) = {ljk2 =j <k2+ 2} for k=|L|/2

by merging the ordered segments L(2k, i — 1), L(2k + 1, i — 1) which have been
generated at stage : — 1. This requires O(log|L|) stages beginning with stage 1. Since
merging of two lists can be done within linear time with three tapes, each stage can be
done within O(| C(L)|) steps. O

Let L = (I,|: € [n]) be a list and let o:[n] — [n] be a permutation; then we define L7
as L° = (I,»|t € [r]). The encoding C(a) of a function o:[n] — N is the encoding of the
list (o(t)|i € [n]).
Program p,.
Input. C(L)10C(g), where L = (I,: € [n]) 1s a list and o [n] — [n] 1s a permutation.
Output C(L°)
Time bound: quasilinear 1n the length of the input

Description of p,. Sort ¢ and apply the same transformation simultaneously to the
list (i}: € [n]). This yields ™. Sort ¢~* and apply the same transformation simulta-
neously to the Iist L. This yields L, O

Let AZ be the set of elements of a two-dimensional hst £, i.e. AZ consists of the
elements of the hsts in £. Let y:A¥ — N be a function. Then y(&) is the two-
dimensional list which is obtained from £ by replacing each element » of £ by y(v).
Program pg’

Input: C(£)10C(y) where A(£) = [n] and y [n] — N 1s some function

Output: C(y(£))
Time bound quasilinear 1n the length of the input

Sketch of p,

1. Transform £ into a one-dimensional list L by “forgetting” the two-dimensional structure of £ Let m be
the length of L

2 Sort L mto an ordered list L° preserving the multiphicity of elements Apply the same permutation
simultaneously to the unit list (¢|: € [m]). This yields the permutation o~*

3 Compute y(L°) within one pass over the Iists L™ and y

4 Compute L = ('y(L"))"~1 by mverting the permutation ¢ This can be done by sorting the hst o and a
simultaneous application of the same transformation to y(L°)

5 Construct y(£) by implementing the two-dimensional structure of & to L This can be done within one
pass over £ and L

140 C. P. SCHNORR

We are now ready to prove Theorem 2.1.
Sketch of a nondeterministic program for graph-1so
1. Decide whether the mput x is of the type C(G)01C(G) where C(G), C(G) are binary encodings of directed
graphs. In this case goto 2
2 Count the number of nodes n and # of G and G This can be done by counting the number of lists of G
and G If n = 7 then goto 3
3 Make a nondetermiustic choice of a list o = (o) € [n]|: € [r]). This can be done by a nondetermimstic
choice of O(n log n) bits goto 4.
4 Check whether the function o [n] — [n] 1s a permutation This can be done by first sorting the list o If o
1S a permutation then goto 5
5 Compute o(&) = (o(L)|: € [1n]) by applying program p, Here £ 1s the list that describes G Compute
a(#)° = (0(Low)|t € [n]) by applying program p, to the list (&) with elements o(L,) goto 6
6 _Son all hsts in £ (which describes G) and n o(£)°. If the two-dimenstonal bists that result from £ and
a(£)° comade then stop
Using the fact that programs p,, p,, p; have quasilinear time bounds, 1t can easily be
seen that a suitable implementation of the above procedure requires a quasilinear
number of nondeterministic steps on a Turing machine. This proves Theorem 2.1. O

Next we consider the satisfiability problem. Let V = {x,|i € N} be a set of Boolean
variables that take the logical values “1 ~ true” and “0 ~ false”. Let /\, V:K?> - K
and 7:K — K be the logical functions conjuction, disjunction, and negation. We
abbreviate x, = x! and 7x, = x?. A Boolean clause 1s a disjunction of variables and
negated variables (x§8 \V x38 V - Vx&E), with () € N, o(i) € K. A Conjunctive
Form (CF) vy 1s a conjunction of Boolean clauses

kv
y =NV,
=1 j3=1
with 7(i, j)) € N, o, j) € K.

A CF vy is called satisfiable if there is a map g:V — K which associates Boolean
values with all Boolean varnables such that yg <y ian » =1, 1.€. 7y is satisfied under g. A
CF v is described as a two-dimensional list £ of pairs (o(i, j), 7(z, j)). The tth list L, of £
encodes the ith clause of y. Each pair (a(, j), 7(, 7)) is encoded as ¢(a (i, j)) c(7(i, j)) and
v is encoded as a two-dimensional list of these encoded pairs.

The satisfiability problem is the decision problem for the set:

satsfiability = {C(y)|y 1s a satisfiable CF}.

THEOREM 2.2. Satisfiability is in NQL

Proor. We sketch a nondeterministic program for satisfiability.
1 Decde whether the mput x 1s of the type C(¥) where £ 1s a two-dimensional hist of pairs (o, 7), 7, 7)) €
K X N. (Then x 1s the encoding of a CF y) In this case goto 2
2 Sort the set 7(z, j) of ndices of vanables that occur 1n & according to their size and without repetition of
elements Let L be the resulting sorted list with length m = |L]. goto 3

3 Make a nondeterministic choice of a binary hist 8 = (8() € K|i € [m]) Compute the hst &£ which 1s
obtamed from &£ by replacing each element (o(i, J), 7(, 7)) by (o, J), 8(z(, J))). This can be done by applying
program p;. goto 4

4 Evalvate ¥~ sanan r» This can be done by one pass over the list Z If y takes the value 1 then stop

Using the fact that program p; has a quasilinear time bound and that sorting can be
done in quasilinear time, the above procedure for satisfiability can easily be implemented
as a Turing program with a quasilinear time bound. O

Let nonprimes = {c(») € K*|v € N is not a prime} be the encoding of the set of all
nonprimes. Then 1t is a straightforward consequence of the Schonhage-Strassen fast
multiplication algorithm that nonprimes is in NQL.

3. A Quasilinear Reduction of NQL to Satisfiability
We shall use the following concept of quasilinear reduction instead of polynomial time

Sausfiability Is Quasilinear Complete in NQL 141

bounded reduction which has been used in the work of Cook, Karp, and Levin.
The quasilinear reducibility 4 =, B for sets A, B C K* is defined as follows:

A= BOIEQUVx EK*x €A & ¢Ylx) € B.

The relation =, is reflexive and it can easily be seen that =<, is transitive, i.e. 4 =4 B
and B = C implies A =, C.

Definition 3.1. A C K* is quasilinear complete (i.e. =, complete) if (1) A € NQL
and (2) VB € NQL:B =, A.

These definitions immediately imply Proposition 3.1.

ProrositioN 1. The following assertions are equivalent for all <,-complete sets A:
()NQL = QL, (2)A € QL.

ProoF. (1) = (2): Trivial. (2) > (1): B =4 A and A € QL implies B € QL.

We are now ready to state the matn result of the paper.

MaIN THEOREM 3.1. Sansfiability 1s quasilinear complete.

One part of Theorem 3.1 has already been proved in Theorem 2.2. So it remains to
prove “YA € NQL:A =, satisfiability ” This part of the proof will be prefaced by
Propositions 3.2-3.4, which describe a sequence of simulations.

Let A € NQL be given by a representation according to Proposition 2.1:

A ={x € K*Ju:ux € BN |u] = |x| [log |x [+ k},

withk € N and B € QL.

In a first step we remark that we may restrict our considerations to oblivious Turing
pragrams for B. A Turing program p is cailed oblivious if the position of head i in the jth
configuration of program p on mput x is a function pos(, j, | x|) that only depends on ¢, j
and the length |x| of x.

ProrosiTion 3.2. For every B € QL there exists an oblwvious program p for B (i.e. p
computes xg) which has a quasilinear bounded running time and which uses two tapes.

This proposition follows immediately from a theorem of Fischer [3], whe proved that
for every Turing program p there exists an oblivious Turing program p’ which for all m
simulates p for m steps by using O(m log m) steps of p'.

The next step in the proof of Theorem 3 1 is to simulate oblivious Turing programs
by logical networks. Let V = {x,|i € N} be a countable set of Boolean variables and let
) be the set of all Boolean functions with vanables in V.

A Boolean computation (logical network) B8 is a finite directed acyclic graph such
that the following are true:

(1) Every node v of B has either 2 or 0 entering edges. A node without entering
edges is called an entry; all other nodes are called nonentries of B.

(2) Every entry v of g is labeled with a Boolean function op(v) € V U K which is
either a variable or a constant.

(3) Every nonentry v of 8 is labeled with some binary logical operation op(v): K% —

K. The edges which enter v correspond in a fixed ordered way to the arguments of
op(v).
With every node v € 8 we associate an output function res; € () as follows. resh = op(»)
for all entries ». For a nonentry v, resj is obtained by applying op(») to the outputs of
the preceding nodes. We say 8 computes resh for v € B. Let size(8) be the number of
nonentries (i.e. gates) in 3.

We can restrict our considerations to logical networks B with the following property:
There exist n, m € N such that 1, 2, ..., n are the entnes andn + 1, ..., m are the
nonentries of 8 and x, = op(i) for: = 1 , n.

Each node v of 8 is described by a trlple (0'(1/) 7(v), op(v)) of natural numbers. o(v)
(r(v), respectively) is O for all entries v and is the first (second, respectively) predecessor
of v for all nonentries ». Then the binary encoding C(8) 1s the encoding of this list of
triples where each triple is encoded as c(o(v)) c(v(v)) c(op(v)).

142 C. P. SCHNORR

The following Propositions (3.3 and 3.4) contain the heart of the proof for Theorem
3.1.

ProrositioN 3.3. For every oblivious program p with quasilinear bounded running
time T, there exists a function 'y, € QL' such that for all x € K* with length n,

Fo(x) = C(By.0)01c(v),

where B, is a logical network and v is a node of By,n such that resi = resggn.

Proor. The proof is based on a theorem which is due to Fischer and Pippenger (3].
For every oblivious Turing program p there exist logical networks 8,, such that 8,,
simulates p on inputs of length n and size(B,,,) = O(T,(n)). See also [8] for a stronger
version of this fact. We have to prove that this simulation can be done efficiently in the
sense that B8,, can be computed in quasilinear time with respect to n.

We may suppose that p uses the binary alphabet K and 2 tapes. We consider p on
inputs of length n. Suppose p has 2™ internal states and uses at most oy(n) tape squares
and a(n) steps. A configuration of p (modulo the head positions) is encoded as a
binary string of length m + oy(n) where the first m bits encode the program state and
the following ax(n) bits correspond in one-to-one manner to the symbols in the used
tape squares. Only m + 2 bits of the configuration are involved in each step of the
oblivious computation: the m bits of the program state and the 2 bits of the observed
symbols. Let n be a network which computes the successor configuration SC: K™% —
K™*2 where SC{c(r)x,x;) = (c(s)y,y2) means that ¢c() and c(s) are the encodings of the
present and the next program state, x,, x, are the presently observed symbols, and x, is
replaced by y, within the present step. Each step of program p is simulated by a copy of
mn with the present program state and the presently observed symbols as inputs. ()
steps of program p are simulated by a suitable composition of ax(n) copies of 5. In
order to compose the jth copy of (simulating the jth step) in the right way we have to
know the head positions of program p within the jth step. This enables us to feed into 7
the symbols which are observed within the jth step of program p.

Let B; be the composition of the first j copies of and C(8,) its encoding. We sketch
stage j of the computation where C(B,_,) is extended to C(B;) by composing a copy of n
with B;_,. The head positions within the jth step of program p can be obtained by
simulating the jth step of program p on input 1" within each stage j. With these head
positions available one concatenates to €(f,-,) the encoding C(),) of a correct composi-
tion of n with B, ;. This can be done in a straightforward way.

Baym has size (n)-ar(n) nodes and a suitable binary encoding of B,,m has length
O(ay(n)Ylog a(n)). The above sketch yields a Turing program for 8., which requires
O(ay(n)log ay(n)) steps. This finishes the proof of Proposition 3.3. O

The final step of the proof of Theorem 3.1 requires a simulation of logical networks
by conjunctive forms. This simulation uses an idea which is due to Sanden (a student
with the author):

Prorosition 3.4 (Sanden-Schnorr). Let B8 be any logical network with input vari-
ables x,, ... , x, and nonentriesn + 1, ... ,m and op(i) = x, fori = 1, ... , n. Then there
is a CF y* which depends on x,, ... , Xn, ... , Xy such that

(1) for all nodes v,

y-resily) = 1 & yfy, -, 15 satisfiable;

here vy, -, is obtained from y* by substituting 1 for x,;

(2) ¥® has at most four size(B) clauses, each clause having at most three literals;

(3) there is a function ¢ € QL such that ¢(C(B)) = C(yP) for all logical networks B.

Proor. We may assume that 8 has the entries 1, ..., m where x, = op(i) is the
input of node ;. Letn + 1, ..., m be the nonentries of 8. The variable x, will describe
the output function of resj of node ». Consider the Boolean function

Y= }"\ [x. = op()xow» X))

i=n+1

Satisfiability Is Quasilinear Complete in NQL 143

where o (i) is the first and r(z) is the second predecessor of node i. This construction
implies for all nodes v:

Jy € K":resi(y) = 1 & 5, is satisfiable.

It remains to rewrite a factor [x, = op(1)(x 5y, X))} as a product of Boolean clauses. For
instance, x, = x, /\ x,, can be written as (x,, \/ 7x)(xr, V "w)(w, V ",V x,) and[x, =
(x, ® x,)] can be written as a product with four Boolean clauses. Therefore, y* is
obtained from y by transforming the factors of y into products of Boolean clauses. This
proves (1) and (2). Observe that C(y®) can be constructed from C(8) by one pass over
the input. The running time of a suitable program is linearly bounded in the length of
the input. O

Proor oF THEOREM 3.1. Using Propositions 3.2-3.4, we can prove VA € NQL;
A =, satisfiability. Let A € NQL be given by B € QL according to Proposition 2.1.
Let p be an oblivious program for B such that T,(n) = nflog n]* + k for all n. We
abbreviate ay(n) = n[log n}* + k.

With every input y € K" of program p we associate a CF vy, as follows:

(1) Apply T, in Proposition 3.3 1n order to compute a network B(y) and a node v of
B(y) such that

resy, = Au[resy(ity),
where u ranges over binary sequences with length o (n).

(2) Compute p(CB(y)) = C(y*¥) according to Proposition 3.4. Letx, correspond to
the output function resy,,; then compute the encoding of y, = yf.,.

This construction implies

yEASIuE Kwgy € B& Au € KVires,(uy) = 1
& Ju € KoV iresh,u) = 1 © vy, is satisfiable.
Using Propositions 3.3 and 3.4 one can easily see that the function ¢ ;y— C(y,) is in QL.

Observe that the composition of functions in QL' always yields a function QL’. This
finishes the proof of Theorem 3.1. O

4. Further Quasilinear Complete Problems

There is a number of known reductions ¢ of satisfiability to other problems where { has a
quasilinear time bound. We shall only specify these problems and the corresponding
reductions.

3-satisfiability = {C(y)|y is a satisfiable CF with at most three literals per clause}.

It is a straightforward matter to see that 3-satisfiability is quasilinear complete. We
define

3-colorability = {C(G)|G is a fimte graph which is 3-colorable}.

THEOREM 4.1. 3-colorability is quasilinear complete.

Proor. It can easily be seen that 3-colorability is in NQL. On the other hand there
is a quasilinear reduction y:3-satisfiability — 3-colorability which is due to Specker
[10]. ¢ works as follows: Let the CF

m
Y= NGV IRV xS
=1
depend onx,, ..., x,. Then the graph {(y) with the set of vertices V and set of edges E is
defined as:

0,2} U {x}, xli =n} U{pkli =m, k = 5},
{0, 2} U {x},2), 63,2), &}, x)|j = n} U {788, pl)li = m, k = 3} U {the
edges of Figure 2|i < m}.

|4
E

144 C. P. SCHNORR

Fie 2

The reduction works [10] and ¢(y) can be computed n linear time from C(y). O
Remember that £ = (L,)i = 1, ..., m) denotes a two-dimensional list and A(Z),
A(L)) are the set of elements of &£ and L,.

3 subfamuly L,,, ..., L, :A(L,) are pairwise
disjoint and U2, A(L,)) = A(D) :

partition = { (&)

THEOREM 4.2. Partition is quasilinear complete.

Proor. By the use of sorting techniques, it can be proved in a straightforward
manner that partition is in NQL. A reduction :3-colorability — partition can be
defined as follows [10]:

Let G = (V, E) be a graph. Then the associated double list & is defined such that
A(L),: = 1, ..., m, is the following family of sets:

S = ppU{e,Plvisanodeofe EE}CVUE X [3] for vEV, f=1,2,3
Se, = {e,f)} for e€E, f=1,2,3.

It follows that G 1s 3-colorable & C(Z£) € partition and the reduction :C(G) —» C(¥)
can be computed 1n linear time.

Finally, we consider a quasilinear complete problem which seems to be particularly
interesting: the anticlique problem, which is also called the discrete subgraph problem.
Let G be a directed graph with vertex set V; then a subset U C V of pairwise
nonadjacent vertices is called an anticlique of G We set

il

t

there is an anticlique }

anticlique := { A0 | 1y of G with U | = &

Under a somewhat different encoding the anticlique problem is almost rdentical to the
chque problem. Let the Boolean variable x, , be true iff there is no edge fromi toj in G;
then the variables (x, ,|1 < i,j < n) encode the directed graphs with vertex set [n] and the
problem of deciding whether there exists an anticlique of size k i such a graph is
precisely the problem of computing the following Boolean function:
CL,,’k = V A xl,,,l,,,'
1sy< <p=n Isvusk

If the representation of graphs is changed such that x, , 1s true iff there is an edge fromi to
j then CL, ; encodes the problem of deciding whether there exists a clique of size k in a
graph with vertex set [z]. It has been proved by Schnorr [9] that any rational monotone
computation for CL,, , requires at least (}) — 1 additions, which shows that the anticlique
problem 1s exponentially hard, at least in a restricted model of computation.

THEOREM 4.3. Anticlique 1s quasilinear complete in NQL.

Proor. It can easily be seen that anticlique is in NQL: Given a graph G with vertex
set [n] and given k < n, one guesses k nodes j,, ..., j, which takes O(n log n)
nondetermunistic steps. Then, by using techniques for sorting, one can check in quasi-
linear time whether j,, ..., ji is an anticlique.

On the other hand, we reduce 3-satisfiability to antichque. Let a CF

Satisfiability Is Quasilinear Complete in NQL 145

>3

- o1, 1) al1, 2) a1, 3)
Y= & B VxRV xid

T

1

be given. At first we transform y into another CF ¥ such that each variable x, occurs at
most 3 times in the clauses of § (negated occurrences of x, included). If x, occurs more
than three times 1n vy, then we introduce a new variable x;, we substitute one occurrence
of x, in y by x;, and we add the clauses (x, \V ;) (x5 V ;) to y. These additional
clauses imply x, = x;. Obviously the transformation C(y) — C(y) can be done in
quasilinear time and ¥ is satisfiable iff y is satisfiable. So far we have proved that in our
reduction of 3-satisfiability to anticlique we may restrict to CFs vy such that each variable
occurs at most three times. Now let y be such a CF with m clauses as above. We associate
with y a graph G with vertex set

V = {(y, i}|the literal y occurs in the ith clause of v}

and edge set

E ={((y, 1), (2, L2))|ts = 12 01 y, ="},

It is known from the reduction of satisfiability to clique in Karp [5] that the above
reduction works, i.e. y is satisfiable iff (V, E) has an antichque of size m. On the other
hand, it follows from our assumptions on y that there are at most 3m + 3n edgesm E,
where n is the number of variables in y. Therefore, the length of the binary encoding of
the graph (V, E) is quasilinear in the length of C(y). Hence the transformation C(y) >
C(V, E) can be done n quasilinear time. O

REFERENCES
(Note Reference [6] 1s not cited in the text)

1 Cook, S A The complexity of theorem-proving procedures Proc Third Annual ACM Symp on
Theory of Comptng , 1971, pp 151-158
2 Cook, S A A hierarchy for non-determimstic time complexity Proc Fourth Annual ACM Symp on
Theory of Computing, 1972, pp 187-192
3 FiscHER, M J Lectures on network complexity Preprint, U Frankfurt, 1974
4 HEennNig, F C, aND Stearns, R E Two-tape simulation of multitape Turmg machies J ACM 13, 4
(Oct 1966), 533-546
5 Kare, RM Reducibility among combinatonal problems In Complexity of Computer Computations,
R E Miller and J W Thatcher, Eds , Plenum Press, New York, 1972, pp 85-104
6 KnutH, D E The Art of Computer Programnung, Vol 3. Sorting and Searching. Addison-Wesley,
Reading, Mass., 1973
7. Levin, LA Umniversal enumeration problems (in Russian) Problem: Peredaci Informacu, Tom IX,
1972, pp 115-116
8 ScHNORR, CP The network complexity and the Turing machine complexity of fimte functions ACTA
Informanca 7 (1976), 95-107
9 ScuHNORR, CP A lower bound on the number of additions in monotone computations. Theoretical
Comptr. Sar 2 (1976), 305-315
10 SPECKER, R , AND StRASSEN, V Komplexitat von Entscheidungsproblemen Lecture Notes m Computer
Science, Vol 43, Springer-Verlag, Berlin, 1976

RECEIVED JULY 1975, REVISED APRIL 1977

’

Journal of the A 10n for C Machinery, Vol 25, No 1, January 1978

P 14

