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In this note, n refers to the length of the input x of
a machine and the length of a propositional for-
mula refers to the number of occurrences of atoms
in it.

Theorem. Let M be a T(n) time-bounded nonde-
terministic multitape Turing machine. For each in-
put X there is a conjunctive normal form proposi-
tional formula F(x) of length O(T(n) log T(n)) such
that F(x) is satisfiable if and only if M accepts x
within T(n) steps.

A weaker form of the above result first ap-
peared in [1], where it was used to show that CNF
satisfiability is NP-hard. The theorem in [1] re-
ferred only to single-tape machines, and the length
bound on the formula was something like T(n)>.
The length bound was improved to T(n) log T(n)
by Robson [4]. Recently, Stearns and Hunt [6]
have given a different construction whicn yields a
slightly longer formula, namely one of length
O(T(n) log2T(n)), but which applies to multitape
Turing machines. All of the above constructions
are fairly elaborate.

Our theorem above can be proved by the meth-
ods of Robson [4]. The proof is also implicit in
Schnorr’s proof [S5] that every language accepted
by a nondeterministic multitape Turing machine
in quasilinear time (i.e., within n log¥n steps for
some k > 1) is quasilinear time reducible to the

satisfiability problem. Our purpose is to state the
result explicitly in its strong form, and point out
that the hard part of the proof is already con-
tained in a standard complexity theory result.

The theorem is interesting because it gives in-
formation about the relative complexity of differ-
ent NP problems. For example, Schnorr [5] uses it
to show that SAT is quasilinear complete, and
hence so are a number of other standard NP-com-
plete problems. Stearns and Hunt [6] use it to
show that, assuming SAT has asymptotic complex-
ity 2", many standard NP-complete problems have
about the same complexity as SAT, but others,
such as the CLIQUE problem, are easier. Dewdney
[2] is interested because of its potential application
to his generic reduction computer, which imple-
ments nondeterministic algorithms.

To prove the theorem, note that we can convert
M to a deterministic machine M, by providing a
second binary input tape I, which specifies the
nondeterministic choices M is to make during its
computation. Thus, M accepts an input x iff there
is some bit string for I, of length T(n) such that
M, accepts x. Thus, by the construction in [3], for
each input length n there is a Boolean circuit C, of
size O(T(n) logT(n)) which accepts the same input.
pairs (x, I,) as M, does. Now for each input x of
length n we construct the CNF formula I'(x) by
introducing, for each gate or input node g of the
circuit C,, an atom P, representing the value of g.
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For each (non-input) gate g, clauses with two or
three literals are introduced which express P, in
terms of the atoms representing the inputs of g. If
g represents one of the input bits of x, then P, is
replaced by either 0 or 1, according to the value of
that bit in x, and the usual simplications are made
to keep the formula in conjunctive normal form.
Finally, if g is the output gate of the circuit, then
the unit clause P, is introduced. The resulting
formula has a fixed number of clauses of length at
most three for each gate in C,, and hence the total
length of F(x) is O(T(n) log T(n)).

Any truth assignment satisfying F(x) gives the
correct values to all gates in the circuit C, for
input x and some input I,, and hence C, has
output 1 and M accepts x. Conversely, if M accepts
X, then there is a satisfying assignment for F(x)
corresponding to an appropriate accepting compu-
tation of C,.

An interesting open question is whether the
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length of the formula F(x) can be shortened, say
to O(T(n)).
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