
CSG399: Gems of Theoretical Computer Science. Lectures 4,5. Jan. 20,23, 2009.
Instructor: Emanuele Viola Scribe: Aldo Cassola

Parity Requires Large Constant-Depth Circuits (I)

In the following lectures we will examine how the PARITY function correlates with
circuits.

1 Parity Requires Large Circuits

Theorem 1. Consider the PARITY function on n bits. There is an absolute constant ε > 0
such that for every circuit C : {0, 1}n → {0, 1} of depth d and size w := 2nε/d

we have

COR(PARITY, C) ≤ 1/w.

We will prove this theorem in 2 stages. First, we will establish that the correlation is
less than 1. That is, PARITY cannot be computed exactly by such circuits. Then, we will
prove that said correlation is at most 1/w. But before we start with the proof, let’s do some
warmup that will be useful for it.

1.1 Warmup

Consider the circuits of type ∧.

Claim 1. Such circuits cannot compute PARITY regardless of size.

Proof. Take one such circuit C, and say it is fed input x as a series of bits. Consider the
input x = 1000 . . . 0 (a one followed only by zeros). Then PARITY(x) = 1, C(x) = 0

The second round of warmup considers circuits of DNF form, i.e. (x1 ∧ x2)∨ (x3 ∧¬x4 ∧
¬x1) ∨ . . ..

Claim 2. Any DNF for PARITY on n bits requires size w ≥ 2n−1.

Recall (for comparison) the fact that any function can be computed by circuits of size
O(n · 2n)

Proof. Suppose some ∧ gate has fan-in less than n. Therefore, it doesn’t depend on some
xi. Fix an input that makes ∧ = 1. This will make the whole circuit output 1. If we flip one
of the xi on which ∧ does not depend, the value of the circuit will stay the same, but the
parity will flip.

This means that each ∧ gate has a fan-in of exactly n, which in turn implies there is
only one input that will make the gate output 1 (namely, the input on which every one of
the in-wires carries 1.) On the other hand, there exist 2n−1 inputs that give a parity of 1.
Therefore, we need 2n−1 ∧ gates.
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This concludes the warmup. We have seen a function (parity) that requires size 2n−1 ∧∨
circuits. Challenge: Prove bounds of the form 20.001n for ∧∨∧ circuits. Just one more layer!

It seems hard to extend previous techniques to higher depth. We now use different
techniques to show a bound of the form 2nε

. Moreover our techniques will also give correlation
bounds. The argument has two stages. Stage 1 shows that small constant-depth circuits can
be “well-approximated” by low-degree polynomials, Stage 2 shows that parity cannot. The
combination of these two facts establishes the lower bound.

1.2 Stage 1: Parity Cannot be computed exactly by small circuits

1.2.1 Low Degree Polynomials

A polynomial P of degree d is a function from {0, 1}n → R:

∑

M⊆[n],|M |≤d

CM

∏
i∈M

xi

with the sum and product over the reals.
For instance, the polynomial P = x1x2 + x3 + x3x1 has n = 3, degree(P ) = 2.

Theorem 2 (Small circuits are well approximated by low-degree polynomials). ∀ε For any
circuit C : {0, 1}n → {0, 1} of size w ≥ n and depth d, there exists a polynomial P :
{0, 1}n → R such that

Prx∈{0,1}n [C(x) = P (x)] ≥ 1− ε,

and degree(P ) = logO(d)(w/ε)

You can think of w = poly(n) , ε = 0.001, d = 10, degree(P ) = polylog(n).

The plan to prove the above theorem is to replace each gate by a polynomial. The final
polynomial will be the composition of the ones coming before it. The degree at each gate
will be O(log(w/ε)), and composing will raise this to a power. The final degree bound will
be (the degree at each gate)d. This construction will be probabilistic.

First, we write the circuit with the basis ∨,¬ (using DeMorgan’s law
∧

i xi = ¬∨
i ¬xi).

We show how to build a polynomial from every kind of gate. We start with the ¬ gate.

Lemma 3. There is a polynomial P of degree 1 such that P (b) = ¬b for all b ∈ {0, 1}.
Proof. P (b) := 1− b.

The next more challenging lemma deals with ∨ gates. Note that the lemma crucially
holds for any distribution. This is because we need to apply the lemma to internal gates of
the circuit that can be fed inputs with distributions we do not have a grasp of. In the next
lemma we use n for the input length of the ∨ gate, which should not be confused with the
input length of the parity function we will ultimately be proving a lower bound for. We use
n here for convenience; later we will bound from above this parameter by w, the size of the
circuit.
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Lemma 4. For all distributions D on {0, 1}n, for all ε, there exists a polynomial P :
{0, 1}n → R such that

Prx∼D[∨(x) = P (x)] ≥ 1− ε,

and degree(P ) = O(log n · log(1/ε)).

Proof. Let S0 := {1, . . . , n} be the input variables to ∨. Build the set Si = Si−1 by keeping
each element in the set independently with probability 1/2 for i = 1, . . . , log n + 1. (i.e.
before adding each element to Si, toss a coin to determine if that element will go into the
set or not.)

Let
Pi(x) :=

∑
i∈Si

xi

for i = 0, . . . , log n + 1.
The proof of the following claim is obvious.

Claim 3. x = 0n implies Pi(x) = 0 for all i.

Claim 4. For all x ∈ {0, 1}n, x 6= 0n, with probability at least 1/6 over P0, . . . , Plog n+1 ∃i
such that Pi(x) = 1.

Proof. If x has weight 1 (i.e.
∑

xi = 1), then P0(x) = 1 and we are done.
If

∑
xi > 1, we can prove the claim by showing that Pr[∀i, Pi(x) 6= 1] has an upper

bound of 5/6. Let Fi be the event that among (P0(x) , . . . , Plog n+1(x)), Pi(x) gives the first
value ≤ 1. Then

Pr[∀i, Pi(x) 6= 1] ≤
log n+1∑

j=0

Pr[∀i, Pi(x) 6= 1|Fj] · Pr[Fj] + Pr[∀i, Pi(x) > 1]

≤
log n+1∑

j=0

Pr[∀i, Pi(x) 6= 1|Fj] · Pr[Fj] +
1

2
.

Consider Pr[∀i, Pi(x) |Fj]. We have that j = 0 gives Pr[∀i, Pi(x) 6= 1|F0] = 0. Also, for
j > 0, we have

Pr[Pj(x) = 1|Fj] =
Pj−1(x)

Pj−1(x) + 1
≥ 2

3

since Pj−1 > 1. So,

Pr[∀i, Pi(x) 6= 1] ≤ 1

3

log n+1∑
j=0

Pr[Fj] +
1

2
≤ 1

3
+

1

2
=

5

6
.
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Define

P ′(x) := 1−
log n+1∏

i=0

(1− Pi(x))

If x = 0, then P ′(x) = 0. If x 6= 0 then Pr[P ′(x) = 1] ≥ 1/6 by Claim 4. Also degree(P ′) =
O(log n + 1)

We can reduce the error in P ′ by using the same trick. Let

Pε(x) := 1−
O(log 1/ε)∏

i=0

(1− P ′
i (x))

where P ′
i (x) are independent copies of P ′ above. If x = 0 then Pε(x) = 0. If x 6= 0,

Pr[Pε(x) = 1] ≥ Pr[∃i : P ′
i (x) = 1]

= 1− Pr[∀i, P ′
i (x) 6= 1]

= 1− Pr[P ′(x) 6= 1]
O(log 1/ε)

≥ 1− (5/6)O(log 1/ε) = 1− ε.

Also, degree(Pε) = O(log n · log 1/ε) .
We have constructed Pε such that

∀x, PrPε [Pε(x) 6= ∨(x)] ≤ ε.

In particular,
Prx∼D,Pε [Pε(x) 6= ∨(x)] ≤ ε.

This implies that ∃P̂ such that

Prx∼D

[
P̂ (x) 6= ∨(x)

]
≤ ε.

Noting that degree
(
P̂

)
= O(log n · log 1/ε) concludes the proof.

We are now ready to prove Theorem 2. We will use the above lemmas on every gate.

Proof of Theorem 2. Given ε, set εlemma = ε/w. Invoke lemmas for every gate g with respect
to the distribution Dg induced by a uniform input at that gate. This gives a polynomial Pg

of degree O(log w · log(w/ε)) that approximates g with respect to Dg, and has error ε/w.
Now we compose the polynomials for every gate. Let P be the composition of Pg that

corresponds to the circuit.

Prx∈{0,1}n [P (x) 6= C(x)] ≤
∑

g

Pry∼Dgon input x[Pg(y) = g(y)]

≤ w · ε/w = ε.

The degree of P is logO(d) (w/ε).
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1.3 Computing parity

Claim 5. Suppose P : {0, 1}n → R is a polynomial of degree d such that

Prx∈{0,1}n [P (x) = PARITY(x)] = δ

Then there exists another polynomial P ′ : {−1, 1}n → R of degree d such that

Prx∈{−1,1}n

[
P ′(x) =

n∏
i=1

xi

]
= δ (1)

Proof. Observe the map b ∈ {−1, 1} → b+1
2
∈ {0, 1}. This is linear and invertible, so

P ′(x1, . . . , xn) = 2P
(

x1+1
2

, . . . , xn+1
2

) − 1. Since the map is linear, then both the degrees of
P and P ′ are d.

We will show that achieving Equation 1 requires large degree by showing how we can
build another polynomial P̄ that “weakly computes” parity, and that the latter requires
maximum degree n. Recall the sign function that outputs +1 if the input is positive, and
−1 otherwise (it is irrelevant how we define the output when the input is 0).

Definition 5. A polynomial P̄ weakly computes parity when

1. P̄ is not the 0 polynomial, and

2. If P̄ (x) 6= 0, then sign(P̄ (x)) =
∏n

i=1 xi, with x ∈ {−1, 1}n.

Claim 6. To weakly compute parity on n bits, degree n is required.

Proof. Let p : {−1, 1}n → R be a polynomial of degree n− 1:

p(x) :=
∑

M⊆[n],|M |≤n−1

cM

∏
i∈M

xi.

On the one hand, Ex∈{−1,1}n [p(x) ·∏n
i=1 xi] > 0, since the polynomial is not identically 0

and when it is not zero its sign is
∏n

i=1 xi.
On the other hand, by linearity of expectation,

Ex∈{−1,1}n

[
p(x) ·

n∏
i=1

xi

]
=

∑

M⊆[n],|M |≤n−1

cMEx∈{−1,1}n

[∏
i∈M

xi ·
n∏

i=1

xi

]

=
∑

M⊆[n],|M |≤n−1

cMEx∈{−1,1}n

[∏

i6∈M

xi

]
= 0,

where the last equality holds because |M | < n, and so the product
∏

i 6∈M xi contains at least
one variable, and thus over a uniform choice of x this product will be +1 with probability
1/2 and −1 also with probability 1/2, giving 0 expectation.
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