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Abstract. The existing call-by-need λ calculi describe lazy evaluation
via equational logics. A programmer can use these logics to safely as-
certain whether one term is behaviorally equivalent to another or to
determine the value of a lazy program. However, neither of the existing
calculi models evaluation in a way that matches lazy implementations.

Both calculi suffer from the same two problems. First, the calculi never
discard function calls, even after they are completely resolved. Second,
the calculi include re-association axioms even though these axioms are
merely administrative steps with no counterpart in any implementation.

In this paper, we present an alternative axiomatization of lazy evalu-
ation using a single axiom. It eliminates both the function call retention
problem and the extraneous re-association axioms. Our axiom uses a
grammar of contexts to describe the exact notion of a needed compu-
tation. Like its predecessors, our new calculus satisfies consistency and
standardization properties and is thus suitable for reasoning about be-
havioral equivalence. In addition, we establish a correspondence between
our semantics and Launchbury’s natural semantics.
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1 A Short History of the λ Calculus

Starting in the late 1950s, programming language researchers began to look
to Church’s λ calculus [6] for inspiration. Some used it as an analytic tool to
understand the syntax and semantics of programming languages, while others
exploited it as the basis for new languages. By 1970, however, a disconnect had
emerged in the form of call-by-value programming, distinct from the notion of
β and normalization in Church’s original calculus. Plotkin [25] reconciled the
λ calculus and Landin’s SECD machine for the ISWIM language [16] with the
introduction of a notion of correspondence and with a proof that two distinct
variants of the λ calculus corresponded to two distinct variants of the ISWIM
programming language: one for call-by-value and one for call-by-name.

In the early 1970s, researchers proposed call-by-need [12, 14, 28], a third kind
of parameter passing mechanism that could be viewed as yet another variant
of the ISWIM language. Call-by-need is supposed to represent the best of both
worlds. While call-by-value ISWIM always evaluates the argument of a function,
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the call-by-name variant evaluates the argument every time it is needed. Hence,
if an argument (or some portion) is never needed, call-by-name wins; otherwise
call-by-value is superior because it avoids re-evaluation of arguments. Call-by-
need initially proceeds like call-by-name, evaluating a function’s body before
the argument—until the value of the argument is needed; at that point, the
argument is evaluated and the resulting value is used from then onward. In
short, call-by-need evaluates an argument at most once, and only if needed.

Since then, researchers have explored a number of characterizations of call-
by-need [8, 11, 13, 15, 23, 24, 26]. Concerning this paper, three stand out. Launch-
bury’s semantics [17] specifies the meaning of complete programs with a Kahn-
style natural semantics. The call-by-need λ calculi of Ariola and Felleisen [2–4],
and of Maraist, Odersky, and Wadler [4, 20, 21] are equational logics in the spirit
of the λ calculus.

The appeal of the λ calculus has several reasons. First, a calculus is sound
with respect to the observational (behavioral) equivalence relation [22]. It can
therefore serve as the starting point for other, more powerful logics. Second,
its axioms are rich enough to mimic machine evaluation, meaning programmers
can reduce programs to values without thinking about implementation details.
Finally, the λ calculus gives rise to a substantial meta-theory [5, 7] from which
researchers have generated useful and practical results for its cousins.

Unfortunately, neither of the existing by-need calculi model lazy evaluation
in a way that matches lazy language implementations. Both calculi suffer from
the same two problems. First, unlike the by-name and by-value calculi, the by-
need calculi never discard function calls, even after the call is resolved and the
argument is no longer needed. Lazy evaluation does require some accumulation
of function calls due to the delayed evaluation of arguments but the existing
calculi adopt the extreme solution of retaining every call. Indeed, the creators of
the existing calculi acknowledge that a solution to this problem would strengthen
their work but they could not figure out a proper solution.

Second, the calculi include re-association axioms even though these axioms
have no counterpart in any implementation. The axioms are mere administrative
steps, needed to construct β-like redexes. Hence, they should not be considered
computationally on par with other axioms.

In this paper, we overcome these problems with an alternative axiomati-
zation. Based on a single axiom, it avoids the retention of function calls and
eliminates the extraneous re-association axioms. The single axiom uses a gram-
mar of contexts to describe the exact notion of a needed computation. Like its
predecessors, our new calculus satisfies consistency and standardization proper-
ties and is thus suitable for reasoning about behavioral equivalence. In addition,
we establish an intensional correspondence with Launchbury’s semantics.

The second section of this paper recalls the two existing by-need calculi in
some detail. The third section presents our new calculus, as well as a way to
derive it from Ariola and Felleisen’s calculus. Sections 4 and 5 show that our
calculus satisfies the usual meta-theorems and that it is correct with respect to
Launchbury’s semantics. Finally, we discuss some possible extensions.
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2 The Original Call-by-need λ Calculi

The original call-by-need λ calculi are independently due to two groups: Ariola
and Felleisen [2, 3] and Maraist, et al. [20, 21]. They were jointly presented at
POPL in 1995 [4]. Both calculi use the standard set of terms as syntax:

e = x | λx.e | e e (Terms)

Our treatment of syntax employs the usual conventions, including Barendregt’s
standard hygiene condition for variable bindings [5]. Figure 1 specifies the calcu-
lus of Maraist et al., λmow, and λaf, Ariola and Felleisen’s variant. Nonterminals
in some grammar productions have subscript tags to differentiate them from
similar sets elsewhere in the paper. Unsubscripted definitions have the same
denotation in all systems.

vm = x | λx.e

C = [ ] | λx.C | C e | eC

(λx.C[x]) vm = (λx.C[vm]) vm (V)

(λx.e1) e2 e3 = (λx.e1 e3) e2 (C)
(λx.e1)((λy.e2) e3) = (A)

(λy.(λx.e1) e2) e3

(λx.e1) e2 = e1, x /∈ fv(e1) (G)

v = λx.e

aaf = v | (λx.aaf) e
Eaf = [ ] | Eaf e | (λx.Eaf) e | (λx.Eaf[x])Eaf

(λx.Eaf[x]) v = (λx.Eaf[v]) v (deref)

(λx.aaf) e1 e2 = (λx.aaf e2) e1 (lift)

(λx.Eaf[x]) ((λy.aaf) e) = (assoc)

(λy.(λx.Eaf[x]) aaf) e

Fig. 1. Existing call-by-need λ calculi (left: λmow, right: λaf)

In both calculi, the analog to the β axiom—also called a basic notion of re-
duction [5]—replaces variable occurrences, one at a time, with the value of the
function’s argument. Value substitution means that there is no duplication of
work as far as argument evaluation is concerned. The function call is retained
because additional variable occurrences in the function body may need the ar-
gument. Since function calls may accumulate, the calculi come with axioms that
re-associate bindings to pair up functions with their arguments. For example,
re-associating (λx.(λy.λz.z) vy) vx vz in λaf exposes a deref redex:

(λx.(λy.λz.z) vy) vx vz
lift→ (λx.(λy.λz.z) vy vz) vx

lift→ (λx.(λy.(λz.z) vz) vy) vx

The two calculi differ from each other in their timing of variable replacements.
The λmow calculus allows the replacement of a variable with its value anywhere in
the body of its binding λ. The λaf calculus replaces a variable with its argument
only if evaluation of the function body needs it, where “need” is formalized via
so-called evaluation contexts (Eaf). Thus evaluation contexts in λaf serve the
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double purpose of specifying demand for arguments and the standard reduction
strategy. The term (λx.λy.x) v illustrates this difference between the two calculi.
According to λmow, the term is a V redex and reduces to (λx.λy.v) v, whereas in
λaf, the term is irreducible because the x occurs in an inner, unapplied λ, and
is thus not “needed.”

Also, λmow is more lenient than λaf when it comes to re-associations. The λaf
calculus re-associates the left or right hand side of an application only if it has
been completely reduced to an answer, but λmow permits re-association as soon
as one nested function layer is revealed. In short, λmow proves more equations
than λaf, i.e., λafλafλaf ⊂ λmowλmowλmow.

In λaf, programs reduce to answers:

evalaf(e) = done iff there exists an answer aaf such that λafλafλaf ` e = aaf

In contrast, Maraist et al. introduce a “garbage collection” axiom into λmow to
avoid answers and to use values instead. This suggests the following definition:

evalmow(e) = done iff there exists a value vm such that λmowλmowλmow ` e = vm

This turns out to be incorrect, however. Specifically, let evalname be the analo-
gous call-by-name evaluator. Then evalaf = evalname but evalmow 6= evalname.
Examples such as (λx.λy.x)Ω confirm the difference.

In recognition of this problem, Maraist et al. use Ariola and Felleisen’s ax-
ioms and evaluation contexts to create their Curry-Feys-style standard reduction
sequences. Doing so reveals the inconsistency of λmow with respect to Plotkin’s
correspondence criteria [25]. According to Plotkin, a useful calculus corresponds
to a programming language, meaning its axioms (1) satisfy the Church-Rosser
and Curry-Feys Standardization properties, and (2) define a standard reduction
function that is equal to the evaluation function of the programming language.
Both the call-by-name and the call-by-value λ calculi satisfy these criteria with
respect to call-by-name and call-by-value SECD machines for ISWIM, respec-
tively. So does λaf with respect to a call-by-need SECD machine, but some of
λmow’s axioms cannot be used as standard reduction relations.

Finally, the inclusion of G is a brute-force attempt to address the function call
retention problem. Because G may discard arguments even before the function is
called, both sets of authors consider it too coarse and acknowledge that a tighter
solution to the function call retention issue would “strengthen the calculus and
its utility for reasoning about the implementations of lazy languages” [4].

3 A New Call-by-need λ Calculus

Our new calculus, λneed, uses a single axiom, βneed. The new axiom evaluates the
argument when it is first demanded, replaces all variable occurrences with that
result, and then discards the argument and thus the function call. In addition,
the axiom performs the required administrative scope adjustments as part of the
same step, rendering explicit re-association axioms unnecessary. In short, every
reduction step in our calculus represents computational progress.
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Informally, to perform a reduction, three components must be identified:

1. the next demanded variable,
2. the function that binds that demanded variable,
3. and the argument to that function.

In previous by-need calculi the re-association axioms rewrite a term so that the
binding function and its argument are adjacent.

Without the re-association axioms, finding the function that binds the de-
manded variable and its argument requires a different kind of work. The following
terms show how the demanded variable, its binding function, and its argument
can appear at seemingly arbitrary locations in a program:

• (λx.(λy.λz.x) ey) ex ez
• (λx.(λy.λz.y) ey) ex ez
• (λx.(λy.λz.z) ey) ex ez

Our βneed axiom employs a grammar of contexts to describe the path from a
demanded variable to its binding function and from there to its argument.

The first subsection explains the syntax and the contexts of λneed in a gradual
fashion. The second subsection presents the βneed axiom and also shows how to
derive it from Ariola and Felleisen’s λaf calculus.

3.1 Contexts

Like the existing by-need calculi, the syntax of our calculus is that of Church’s
original calculus. In λneed, calculations evaluate terms e to answers A[v], which
generalize answers from Ariola and Felleisen’s calculus:

e = x | λx.e | e e (Terms)

v = λx.e (Values)

a = A[v] (Answers)

A = [ ] | A[λx.A] e (Answer Contexts)

Following Ariola and Felleisen, the basic axiom uses evaluation contexts to
specify the notion of demand for variables:

E = [ ] | E e | . . . (Evaluation Contexts)

The first two kinds, taken from λaf, specify that a variable is demanded, and that
a variable in the operator position of an application is demanded, respectively.

Since the calculus is to model program evaluation, we are primarily interested
in demanded variables under a λ-abstraction. This kind of evaluation context is
defined using an answer context A:

E = . . . | A[E] | . . . (Another Evaluation Context)
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Using answer contexts, this third evaluation context dictates that demand exists
under a λ if a corresponding argument exists for that λ. Note how an answer
context descends under the same number of λs as arguments for those λs. In
particular, for any term A[λx.e1] e2, e2 is always the argument of λx.e1. The
third evaluation context thus generalizes the function-is-next-to-argument re-
quirement found in both call-by-name and call-by-value. The generalization is
needed due to the retention of function calls in λneed.

Here are some example answer contexts that might be used:

A0 = (λx.[ ]) ex︸ ︷︷ ︸
A1 = (λx. (λy.[ ]) ey︸ ︷︷ ︸) ex︸ ︷︷ ︸
A2 = (λx. (λy. (λz.[ ]) ez︸ ︷︷ ︸) ey︸ ︷︷ ︸) ex︸ ︷︷ ︸

An underbrace matches each function to its argument. The examples all juxta-
pose functions and their arguments. In contrast, the next two separate functions
from their arguments:

A3 = (λx.λy.λz.[ ]) ex︸ ︷︷ ︸ ey ez︸ ︷︷ ︸︸ ︷︷ ︸
A4 = (λx.(λy.λz.[ ]) ey︸ ︷︷ ︸) ex ez︸ ︷︷ ︸︸ ︷︷ ︸

To summarize thus far, when a demanded variable is discovered under a λ,
the surrounding context looks like this:

A[E[x]]

where both the function binding x and its argument are in A. The decomposition
of the surrounding context into A and E assumes that A encompasses as many
function-argument pairs as possible; in other words, it is impossible to merge
the outer part of E with A to form a larger answer context.

To know which argument corresponds to the demanded variable, we must
find the λ that binds x in A. To this end, we split answer contexts so that we
can “highlight” a function-argument pair within the context:

∧
A = [ ] | A[

∧
A] e (Partial Answer Contexts–Outer)

∨
A = [ ] | A[λx.

∨
A] (Partial Answer Contexts–Inner)

Using these additional contexts, any answer context can be decomposed into

∧
A[A[λx.

∨
A[ ]] e]
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where e is the argument of λx.
∨
A[ ]. For a fixed function-argument pair in an

answer context, this partitioning into
∧
A, A, and

∨
A is unique. The

∧
A subcontext

represents the part of the answer context around the chosen function-argument

pair; the
∨
A subcontext represents the part of the answer context in its body; and

A here is the subcontext between the function and its argument. Naturally we

must demand that
∧
A composed with

∨
A is an answer context as well so that the

overall context remains an answer context. The following table lists the various
subcontexts for the example A4 for various function-argument pairs:

A4 = (λx.(λy.λz.[ ]) ey) ex ez
∧
A = [ ] ez (λx.[ ]) ex ez [ ]
A = [ ] [ ] (λx.(λy.[ ]) ey) ex
∨
A = (λy.λz.[ ]) ey λz.[ ] [ ]

A4 =
∧
A[A[λx.

∨
A] ex]

∧
A[A[λy.

∨
A] ey]

∧
A[A[λz.

∨
A] ez]

Now we can define the fourth kind of evaluation context:

E = . . . |
∧
A[A[λx.

∨
A[E[x]]]E], where

∧
A[

∨
A] ∈ A (Final Eval. Context)

This final evaluation context shows how demand shifts to an argument when a
function parameter is in demand within the function body.

3.2 The βneed Axiom and a Derivation

Figure 2 summarizes the syntax of λneed as developed in the preceding section.1

In this section we use these definitions to formulate the β axiom for our calculus.

e = x | λx.e | e e (Terms)

v = λx.e (Values)

a = A[v] (Answers)

A = [ ] | A[λx.A] e (Answer Contexts)
∧
A = [ ] | A[

∧
A] e (Partial Answer Contexts–Outer)

∨
A = [ ] | A[λx.

∨
A] (Partial Answer Contexts–Inner)

E = [ ] | E e | A[E] |
∧
A[A[λx.

∨
A[E[x]]]E], (Evaluation Contexts)

where
∧
A[

∨
A] ∈ A

Fig. 2. The syntax and contexts of the new call-by-need λ calculus, λneed.

Here is the single axiom of λneed:
∧
A[A1[λx.

∨
A[E[x]]]A2[v]] =

∧
A[A1[A2[

∨
A[E[x]]{x :=v}]]], (βneed)

where
∧
A[

∨
A] ∈ A

1 We gratefully acknowledge Casey Klein’s help with the A production.
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A βneed redex determines which parameter x of some function is “in demand”
and how to locate the corresponding argument A2[v], which might be an answer
not necessarily a value. The contexts from the previous section specify the path
from the binding position (λ) to the variable occurrence and the argument. A
βneed reduction substitutes the value in A2[v] for all free occurrences of the func-
tion parameter—just like in other λ calculi. In the process, the function call is
discarded. Since the argument has been reduced to a value, there is no duplica-
tion of work, meaning our calculus satisfies the requirements of lazy evaluation.
Lifting A2 to the top of the evaluation context ensures that its bindings remain
intact and visible for v.

Here is a sample reduction in λneed, where −→ is the one-step reduction:

((λx.(λy.λz.z y x)λy.y)λx.x)λz.z (1)

−→ (λx.(λy.(λz.z) y x)λy.y)λx.x (2)

−→ (λx.((λz.z)λy.y)x)λx.x (3)

−→ (λx.(λy.y) x)λx.x (4)

The “in demand” variable is in bold; its binding λ and argument are underlined.
Line 1 is an example of a reduction that involves a non-adjoined function and
argument pair. In line 2, the demand for the value of z (twice underlined) triggers
a demand for the value of y ; line 4 contains a similar demand chain.

v = λx.e (Values)

aaf = Aaf[v] (Answers)

Aaf = [ ] | (λx.Aaf) e (Answer Contexts)

Eaf = [ ] | Eaf e | Aaf[Eaf] | (λx.Eaf[x])Eaf (Evaluation Contexts)

(λx.Eaf[x]) v = Eaf[x]{x :=v} (β′
need)

(λx.Aaf[v]) e1 e2 = (λx.Aaf[v e2]) e1 (lift′)

(λx.Eaf[x]) ((λy.Aaf[v]) e) = (λy.Aaf[(λx.Eaf[x]) v]) e (assoc′)

Fig. 3. A modified calculus, λaf-mod.

To furnish additional intuition into βneed, we use the rest of the section to
derive it from the axioms of λaf. The λaf-mod calculus in figure 3 combines λaf
with two insights. First, Garcia et al. [13] observed that when the answers in λaf’s
lift and assoc redexes are nested deeply, multiple re-associations are performed
consecutively. Thus we modify lift and assoc to perform all these re-associations
in one step.2 The modified calculus defines answers via answer contexts, Aaf, and
the modified lift′ and assoc′ axioms utilize these answer contexts to do the multi-
step re-associations. Thus programs in this modified calculus reduce to answers

2 The same modifications cannot be applied to C and A in λmow because they allow
earlier re-association and thus not all the re-associations are performed consecutively.
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Aaf[v]. Also, the Aaf answer contexts are identical to the third kind of evaluation
context in λaf-mod and the new definition of Eaf reflects this relationship.

Second, Maraist et al. [19] observed that once an argument is reduced to
a value, all substitutions can be performed at once. The β′

need axiom exploits
this idea and performs a full substitution. Obviously β′

need occasionally performs
more substitutions than deref. Nevertheless, any term with an answer in λaf
likewise has an answer when reducing with β′

need.
Next an inspection of the axioms shows that the contractum of a assoc′ redex

contains a β′
need redex. Thus the assoc′ re-associations and β′

need substitutions
can be performed with one merged axiom:3

(λx.Eaf[x])Aaf[v] = Aaf[Eaf[x]{x :=v}] (β′′
need)

The final step is to merge lift′ with β′′
need, which requires our generalized

answer and evaluation contexts. A näıve attempt may look like this:

A1[λx.E[x]]A2[v] = A1[A2[E[x]{x :=v}]] (β′′′
need)

As the examples in the preceding subsection show, however, the binding oc-
currence for the “in demand” parameter x may not be the inner-most binding
λ once the re-association axioms are eliminated. That is, in comparison with
βneed, β′′′

need incorrectly assumes E is always next to the binder. We solve this
final problem with the introduction of partial answer contexts.

4 Consistency, Determinism, and Soundness

If a calculus is to model a programming language, it must satisfy some essen-
tial properties, most importantly a Church-Rosser theorem and a Curry-Feys
standardization theorem [25]. The former guarantees consistency of evaluation;
that is, we can define an evaluator function with the calculus. The latter implies
that the calculus comes with a deterministic evaluation strategy. Jointly these
properties imply the calculus is sound with respect to observational equivalence.

4.1 Consistency: Church-Rosser

The λneed calculus defines an evaluator for a by-need language:

evalneed(e) = done iff there exists an answer a such that λneedλneedλneed ` e = a

To prove that the evaluator is indeed a (partial) function, we prove that the
notion of reduction satisfies the Church-Rosser property.

Theorem 1. evalneed is a partial function.

Proof. The theorem is a direct consequence of lemma 1 (Church-Rosser).

3 Danvy et al. [8] dub a β′′
need redex a “potential redex” in unrelated work.
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Our strategy is to define a parallel reduction relation for λneed [5]. Define →
to be the compatible closure of a βneed reduction, and →→ to be the reflexive,
transitive closure of →. Additionally, define ⇒ to be the relation that reduces
βneed redexes in parallel.

Definition 1 (⇒).

e⇒ e
∧
A[A1[λx.

∨
A[E[x]]]A2[v]]⇒

∧
A′[A′

1[A′
2[

∨
A′[E′[x]]{x :=v′}]]],

if
∧
A[

∨
A] ∈ A,

∧
A′[

∨
A′] ∈ A,

∧
A⇒

∧
A′, A1 ⇒ A′

1,

A2 ⇒ A′
2,

∨
A⇒

∨
A′, E ⇒ E′, v ⇒ v′

e1 e2 ⇒ e′1 e
′
2, if e1 ⇒ e′1, e2 ⇒ e′2

λx.e⇒ λx.e′, if e⇒ e′

The parallel reduction relation ⇒ relies on notion of parallel reduction for
contexts; for simplicity, we overload the relation symbol to denote both relations.

Definition 2 (⇒ for Contexts).

[ ]⇒ [ ]
A1[λx.A2] e⇒ A′

1[λx.A′
2] e′, if A1 ⇒ A′

1, A2 ⇒ A′
2, e⇒ e′

A[
∧
A] e⇒ A′[

∧
A′] e′, if A⇒ A′,

∧
A⇒

∧
A′, e⇒ e′

A[λx.
∨
A]⇒ A′[λx.

∨
A′], if A⇒ A′,

∨
A⇒

∨
A′

E e⇒ E′ e′, if E ⇒ E′, e⇒ e′

A[E]⇒ A′[E′], if A⇒ A′, E ⇒ E′
∧
A[A[λx.

∨
A[E1[x]]]E2]⇒

∧
A′[A′[λx.

∨
A′[E′

1[x]]]E′
2],

if
∧
A[

∨
A] ∈ A,

∧
A⇒

∧
A′, A⇒ A′,

∨
A⇒

∨
A′, E1 ⇒ E′

1, E2 ⇒ E′
2

Lemma 1 (Church-Rosser). If e→→ e1 and e→→ e2, then there exists a term
e′ such that e1 →→ e′ and e2 →→ e′.

Proof. By lemma 2, ⇒ satisfies a diamond property. Since ⇒ extends →, →→ is
also the transitive-reflexive closure of⇒, so→→ also satisfies a diamond property.

Lemma 2 (Diamond Property of ⇒). If e⇒ e1 and e⇒ e2, there exists e′

such that e1 ⇒ e′ and e2 ⇒ e′.

Proof. The proof proceeds by structural induction on the derivation of e⇒ e1.

4.2 Deterministic Behavior: Standard Reduction

A language calculus should also come with a deterministic algorithm for applying
the reductions to evaluate a program. Here is our standard reduction:

E[e] 7−→ E[e′], where e βneed e′

Our standard reduction strategy picks exactly one redex in a term.
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Proposition 1 (Unique Decomposition). For all closed terms e, e either is
an answer or e = E[e′] for a unique evaluation context E and βneed redex e′.

Proof. The proof proceeds by structural induction on e.

Since our calculus satisfies the unique decomposition property, we can use
the standard reduction relation to define a (partial) evaluator function:

evalsrneed(e) = done iff there exists an answer a such that e →7−→ a

where →7−→ is the reflexive, transitive closure of 7−→. Proposition 1 shows evalsrneed
is a function. The following theorem confirms that it equals evalneed.

Theorem 2. evalneed = evalsrneed

Proof. The theorem follows from lemma 3, which shows how to obtain a standard
reduction sequence for any arbitrary reduction sequence. The front-end of the
former is a series of standard reduction steps.

Definition 3 (Standard Reduction Sequences R).

• x ⊂ R
• λx.e1 � · · · � λx.em ∈ R, if e1 � · · · � em ∈ R
• e0 � e1 � · · · � em ∈ R, if e0 7−→ e1 and e1 � · · · � em ∈ R
• (e1 e

′
1)�· · ·�(em e′1)�(em e′2)�· · ·�(em e′n) ∈ R, if e1�· · ·�em, e′1�· · ·�e′n ∈ R.

Lemma 3 (Curry-Feys Standardization). e →→ e′ iff there exists e1 � · · · �
en ∈ R such that e = e1 and e′ = en.

Proof. Replace →→ with ⇒s, and the lemma immediately follows from lemma 4.

The key to the remaining proofs is a size metric for parallel reductions.

Definition 4 (Size of ⇒ Reduction).

e⇒ e = 0

(e1 e2)⇒ (e′1 e
′
2) = e1 ⇒ e′1 + e2 ⇒ e′2

λx.e⇒ λx.e′ = e⇒ e′

r = 1 +
∧
A⇒

∧
A′ + A1 ⇒ A′

1 +
∨
A[E[x]]⇒

∨
A′[E′[x]] +

A2 ⇒ A′
2 + #(x,

∨
A′[E′[x]])× v ⇒ v′

where r =
∧
A[A1[λx.

∨
A[E[x]]]A2[v]]⇒

∧
A′[A′

1[A′
2[

∨
A′[E′[x]]{x :=v′}]]]

#(x, e) = the number of free occurrences of x in e

The size of a parallel reduction of a context equals the sum of the sizes of the
parallel reductions of the subcontexts and subterms that comprise the context.

Lemma 4. If e0 ⇒ e1 and e1 � · · ·�en ∈ R, there exists e0 �e′1 � · · ·�e′p �en ∈ R.

Proof. By triple lexicographic induction on (1) length n of the given standard
reduction sequence, (2) e0 ⇒ e1 , and (3) structure of e0.4

4 We conjecture that the use of Ralph Loader’s technique [18] may simplify our proof.
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4.3 Observational Equivalence

Following Morris [22] two expressions e1 and e2 are observationally equivalent,
e1 ' e2, if they are indistinguishable in all contexts. Formally, e1 ' e2 if and
only if evalneed(C[e1]) = evalneed(C[e2]) for all contexts C, where

C = [ ] | λx.C | C e | eC (Contexts)

An alternative definition of the behavioral equivalence relation uses co-induction.
In either case, λneed is sound with respect to observational equivalence.

Theorem 3 (Soundness). If λneedλneedλneed ` e1 = e2, then e1 ' e2.

Proof. Following Plotkin, a calculus is sound if it satisfies Church-Rosser and
Curry-Feys theorems.

5 Correctness

Ariola and Felleisen [3] prove that λaf defines the same evaluation function as
the call-by-name λ calculus. Nakata and Hasegawa [23] additionally demonstrate
extensional correctness of the same calculus with respect to Launchbury’s natural
semantics [17]. In this section, we show that λneed defines the same evaluation
function as Launchbury’s semantics. While our theorem statement is extensional,
the proof illuminates the tight intensional relationship between the two systems.

5.1 Overview

The gap between the λneed standard reduction “machine” and Launchbury’s
natural semantics is huge. While the latter’s store-based natural semantics uses
the equivalent of assignment statements to implement the “evaluate once, only
when needed” policy, the λneed calculus exclusively relies on term substitutions.
To close the gap, we systematically construct a series of intermediate systems
that makes comparisons easy, all while ensuring correctness at each step. A first
step is to convert the natural semantics into a store-based machine [27].

To further bridge the gap we note that a single-use assignment statement is
equivalent to a program-wide substitution of shared expressions [10]. A closely
related idea is to reduce shared expressions simultaneously. This leads to a par-
allel program rewriting system, dubbed λ‖. Equipped with λ‖ we get closer to
λneed but not all the way there because reductions in λneed and λ‖ are too coarse-
grained for direct comparison. Fortunately, it is easy to construct an intermediate
transition system that eliminates the remainder of the gap. We convert λneed to
an equivalent CK transition system [9], where the program is partitioned into
a control string (C) and an explicit context (K) and we show that there is a
correspondence between this transition system and λ‖.

Figure 4 outlines our proof strategy pictorially. The four horizontal layers
correspond to the four rewriting systems. While λneed and λ‖ use large steps to
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store machine

ψ
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ξ
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��

� // �go under λ //

dd

� //

55

� βneed-ck //

ss ��λneed
� βneed //

Fig. 4. Summary of correctness proof technique.

progress from term to term, the machine-like systems take several small steps.
The solid vertical arrows between the layers figure indicate how mapping func-
tions relate the rewriting sequences and the dashed arrows show how the smaller
machine steps correspond to the larger steps of λneed and λ‖:

• The ψ function maps states from the store-based machine to terms in the
λ‖ world. For every step in the natural-semantics machine, the resulting
operation in λ‖ is either a no-op or a β‖ reduction, with assignment in the
store-machine being equivalent to program-wide substitution in λ‖.

• Similarly, the ξ function maps states of the CK transition system to the
λ‖ space and for every CK transition, the resulting λ‖ operation is also
either a no-op or a β‖ reduction, with the transition that descends under a
λ-abstraction being equivalent to substitution in λ‖.

• Finally, the φ function maps states of the CK transition system to λneed
terms and is used to show that the CK system and λneed are equivalent. For
every CK transition, the equivalent λneed operation is either a no-op or a
βneed reduction.

Syntax

SL = 〈e, FLs, Γ 〉 (States)
FLs = FL, . . . (List of Frames)
FL = (arg e) | (var x) (Frames)
Γ = (x 7→e, . . .) (Heaps)

Transitions

〈e1 e2, FLs, Γ 〉
ckh7−→ 〈e1, ((arg e2), FLs), Γ 〉 (push-arg-ckh)

〈λx.e1, ((arg e2), FLs), Γ 〉
ckh7−→ 〈e1{x :=y}, FLs, (Γ, y 7→e2)〉 , y fresh (descend-lam-ckh)

〈x, FLs, (Γ, x 7→ e)〉 ckh7−→ 〈e, ((var x), FLs), Γ 〉 (lookup-var-ckh)

〈v, ((var x), FLs), Γ 〉
ckh7−→ 〈v, FLs, (Γ, x 7→ v)〉 (update-heap-ckh)

Fig. 5. The natural semantics as an abstract machine.
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Subsections 5.2 and 5.3 present the store-based machine and the parallel
rewriting semantics, respectively, including a proof of equivalence. Subsection 5.4
presents the CK system and subsection 5.5 explains the rest of the proof.

5.2 Adapting Launchbury’s Natural Semantics

Figure 5 describes the syntax and transitions of the store machine.5 It is dubbed
CKH because it resembles a three-register machine [9]: a machine state SL is
comprised of a control string (C), a list of frames (K) that represents the control
context in an inside-out manner, and a heap (H). The . . . notation means “zero of
more of the preceding kind of element.” An (arg e) frame represents the argument
in an application and the (var x) frame indicates that a heap expression is
the current control string. Parentheses are used to group a list of frames when
necessary. The initial machine state for a program e is 〈e, (), ()〉. Computation
terminates when the control string is a value and the list of frames is empty.

The push-arg-ckh transition moves the argument in an application to a new
arg frame in the frame list and makes the operator the next control string.
When that operator is a λ-abstraction, the descend-lam-ckh transition adds its
argument to the heap,6 mapped to a fresh variable name, and makes the body of
the operator the new control string. The lookup-var-ckh transition evaluates an
argument from the heap when the control string is a variable. The mapping is
removed from the heap and a new (var x) frame remembers the variable whose
corresponding expression is under evaluation. Finally, when the heap expression
is reduced to a value, the update-heap-ckh transition extends the heap again.

5.3 Parallel Rewriting

The syntax of the parallel λ-rewriting semantics is as follows:

e‖ = e | e‖x (Terms)

v‖ = v | v‖x (Values)

E‖ = [ ] | E‖ e‖ | E‖
x (Evaluation Contexts)

This system expresses computation with a selective parallel reduction strategy.
When a function application is in demand, the system substitutes the argument
for all free occurrences of the bound variable, regardless of the status of the
argument. When an instance of a substituted argument is reduced, however, all
instances of the argument are reduced in parallel. Here is a sample reduction:

(λx.x x) (I I)
‖7−→ (I I)x (I I)x

‖7−→ Ix Ix
‖7−→ I

5 To aid comparisons, we slightly alter Launchbury’s rules (and the resulting machine)
to use pure λ terms. Thus we avoid Launchbury’s preprocessing and special syntax.

6 The notation (Γ, x 7→e) is a heap Γ , extended with the variable-term mapping x 7→e.
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The λ‖ semantics keeps track of arguments via labeled terms e‖
x, where

labels are variables. Values in λ‖ also include labeled λ-abstractions. Reducing
a labeled term triggers the simultaneous reduction of all other terms with the
same label. Otherwise, labels do not affect program evaluation.

We require that all expressions with the same label must be identical.

Definition 5. A program e‖ is consistently labeled (CL) when for any two sub-
terms e‖

x1
1 and e‖

x2
2 of e‖, x1 = x2 implies e‖1 = e‖2.

In the reduction of λ‖ programs, evaluation contexts E‖ determine which part
of the program to reduce next. The λ‖ evaluation contexts are the call-by-name
evaluation contexts with the addition of the labeled E‖

x context, which dictates
that a redex search goes under labeled terms. Essentially, when searching for a
redex, terms tagged with a label are treated as if they were unlabeled.

The parallel semantics can exploit simpler evaluation contexts than λneed
because substitution occurs as soon as an application is encountered:

E‖[((λx.e‖1)~y) e‖2]
‖7−→


E‖[e‖], if [ ] is not under a label in E‖

E‖[e‖]{{z⇐E‖2[e‖]}}, if E‖[ ] = E‖1[(E‖2[ ])z]

and [ ] is not under a label in E‖2

(β‖)

where e‖ = e‖1{x :=e‖
w
2}, w fresh

On the left-hand side of β‖, the program is partitioned into a context and a

β-like redex. A term e~y may have any number of labels and possibly none. On
the right-hand side, the redex is contracted to a term e‖1{x := e‖

w
2} such that

the argument is tagged with an unique label w. Obsolete labels ~y are discarded.

There are two distinct ways to contract a redex: when the redex is not under
any labels and when the redex occurs under at least one label. For the former,
the redex is the only contracted part of the program. For the latter, all other
instances of that labeled term are similarly contracted. In this second case, the
evaluation context is further subdivided as E‖[ ] = E‖1[(E‖2[ ])z], where z is the
label nearest the redex, i.e., E‖2 contains no additional labels. A whole-program
substitution function is used to perform the parallel reduction:

e‖
x
1{{x⇐e‖}} = e‖

x

e‖
x
1{{y⇐e‖}} = (e‖1{{y⇐e‖}})x, x 6= y

(λx.e‖1){{x⇐e‖}} = λx.(e‖1{{x⇐e‖}})
(e‖1 e‖2){{x⇐e‖}} = (e‖1{{x⇐e‖}} e‖2{{x⇐e‖}})

otherwise, e‖1{{x⇐e‖}} = e‖1

Rewriting terms with β‖ preserves the consistent labeling property.

Proposition 2. If e‖ is CL and e‖
‖7−→ e‖

′, then e‖
′ is CL.
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The ψ function reconstructs a λ‖ term from a CKH machine configuration:

ψ : SL → e‖ψ(〈e, ((var x), FLs), Γ 〉) = ψ(〈x, FLs, (x 7→e, Γ )〉)
ψ(〈e1, ((arg e2), FLs), Γ 〉) = ψ(〈e1 e2, FLs, Γ 〉)

ψ(〈e, (), Γ 〉) = e{{Γ}}

The operation e{{Γ}}, using overloaded notation, replaces all free variables in e
with their corresponding terms in Γ and tags them with appropriate labels.

Lemma 5 demonstrates the bulk of the equivalence of the store machine and
λ‖.7 The rest of the equivalence proof is straightforward [9].

Lemma 5. If 〈e, FLs, Γ 〉
ckh7−→ 〈e′, FLs′, Γ ′〉, then either:

1. ψ(〈e, FLs, Γ 〉) = ψ(〈e′, FLs′, Γ ′〉)
2. ψ(〈e, FLs, Γ 〉)

‖7−→ ψ(〈e′, FLs′, Γ ′〉)

5.4 A Transition System for Comparing λneed and λ‖

The CK layer in figure 4 mediates between λ‖ and λneed. The corresponding
transition system resembles a two-register CK machine [9]. Figure 6 describes
the syntax and the transitions of the system.8

Syntax

S = 〈e, Fs〉 (States)
Fs = F, . . . (List of Frames)
F = (arg e) | (lamx) | (bodxFsFs) (Frames)

Transitions

〈e1 e2, Fs〉
ck7−→〈e1, ((arg e2), Fs)〉 (push-arg-ck)

〈λx.e, Fs〉 ck7−→〈e, ((lamx), Fs)〉 (descend-lam-ck)
if balance(Fs) > 0

〈x, (Fs1, (lamx), Fs2, (arg e), Fs)〉
ck7−→〈e, ((bodxFs1 Fs2), Fs)〉 (lookup-var-ck)

if φF (Fs1) ∈
∨
A[E], φF (Fs2) ∈ A, φF (Fs) ∈ E[

∧
A],

∧
A[

∨
A] ∈ A

〈v, (Fs3, (bodxFs1 Fs2), Fs)〉
ck7−→〈v, (Fs1{x :=v}, Fs3, Fs2, Fs)〉 (βneed-ck)

if φF (Fs3) ∈ A

Fig. 6. A transition system for comparing λneed and λ‖.

States consist of a subterm and a list of frames representing the context. The
first kind of frame represents the argument in an application and the second

7 The lemma relies on an extension of the typical α-equivalence classes of terms to
include variables in labels as well.

8 The CK transition system is a proof-technical device. Unlike the original CK ma-
chine, ours is ill-suited for an implementation.



The Call-by-need Lambda Calculus, Revisited 17

frame represents a λ-abstraction with a hole in the body. The last kind of frame
has two frame list components, the first representing a context in the body of
the λ, and the second representing the context between the λ and its argument.
The variable in this last frame is the variable bound by the λ expression under
evaluation. The initial state for a program e is 〈e, ()〉, where () is an empty list
of frames, and evaluation terminates when the control string is a value and the
list of frames is equivalent to an answer context.

The push-arg-ck transition makes the operator in an application the new
control string and adds a new arg frame to the frame list containing the ar-
gument. The descend-lam-ck transition goes under a λ, making the body the
control string, but only if that λ has a corresponding argument in the frame list,
as determined by the balance function, defined as follows:

balance : Fs→ Z
balance(Fs3, (bodxFs1 Fs2), Fs) = balance(Fs3)

balance(Fs) = #arg-frames(Fs)− #lam-frames(Fs)
Fs contains no bod frames

The balance side condition for descend-lam-ck dictates that evaluation goes
under a λ only if there is a matching argument for it, thus complying with the
analogous evaluation context. The balance function employs #arg-frames and
#lam-frames to count the number of arg or lam frames, respectively, in a list
of frames. Their definitions are elementary and therefore omitted.

The lookup-var-ck transition is invoked if the control string is a variable,
somewhere in a λ body, and the rest of the frames have a certain shape consistent
with the corresponding parts of a βneed redex. With this transition, the argument
associated with the variable becomes the next control string and the context
around the variable in the λ body and the context between the λ and argument
are saved in a new bod frame. Finally, when an argument is an answer, indicated
by a value control string and a bod frame in the frame list—with the equivalent
of an answer context in between—the value gets substituted into the body of the
λ according to the βneed-ck transition. The βneed-ck transition uses a substitution
function on frame lists, Fs{x :=e}, which overloads the notation for regular term
substitution and has the expected definition.

Figure 7 defines metafunctions for the CK transition system. The φ function
converts a CK state to the equivalent λneed term, and uses φF to convert a list
of frames to an evaluation context.

Now we can show that an evaluator defined with
ck7−→ is equivalent to evalsrneed.

The essence of the proof is a lemma that relates the shape of CK transition
sequences to the shape of λneed standard reduction sequences. The rest of the
equivalence proof is straightforward [9].

Lemma 6. If 〈e, Fs〉 ck7−→〈e′, Fs′〉, then either:

1. φ(〈e, Fs〉) = φ(〈e′, Fs′〉)
2. φ(〈e, Fs〉) 7−→ φ(〈e′, Fs′〉)
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φ : S → e

φ(〈e, Fs〉) = φF (Fs)[e]

φF : Fs→ E

φF (()) = [ ]

φF ((lamx), Fs) = φF (Fs)[λx.[ ]]

φF ((arg e), Fs) = φF (Fs)[[ ] e]

φF ((bodxFs1 Fs2), Fs) =

φF (Fs)[φF (Fs2)[λx.φF (Fs1)[x]] [ ]]

ξ : S → e‖

ξ(〈e, Fs〉) = ξF (Fs, e)

ξF : Fs× e‖ → e‖

ξF ((), e‖) = e‖

ξF (((arg e‖1), Fs), e‖) = ξF (Fs, e‖ e‖1)

ξF (((bodxFs1 Fs2), Fs), e‖) =

ξF ((Fs1, (lamx), Fs2, (arg e‖), Fs), x)

ξF (((lamx), Fs1, (arg e‖1), Fs2), e‖) =

ξF ((Fs1, Fs2), e‖{x :=e‖
y
1})

φF (Fs1) ∈ A, y fresh

Fig. 7. Functions to map CK states to λneed (φ) and λ‖ (ξ).

Finally, we show how the CK system corresponds to λ‖. The ξ function
defined in figure 7 constructs a λ‖ term from a CK configuration.

Lemma 7. If 〈e, Fs〉 ck7−→〈e′, Fs′〉, then either:

1. ξ(〈e, Fs〉) = ξ(〈e′, Fs′〉)
2. ξ(〈e, Fs〉) ‖7−→ ξ(〈e′, Fs′〉)

5.5 Relating all Layers

In the previous subsections, we have demonstrated the correspondence between
λ‖, the natural semantics, and the λneed standard reduction sequences via lem-
mas 5 through 7. We conclude this section with the statement of an extensional
correctness theorem, where evalnatural is an evaluator defined with the store ma-
chine transitions. The theorem follows from the composition of the equivalences
of our specified rewriting systems.

Theorem 4. evalneed = evalnatural

6 Extensions and Variants

Data Constructors Real-world lazy languages come with data structure con-
struction and extraction operators. Like function arguments, the arguments to
a data constructor should not be evaluated until there is demand for their val-
ues [12, 14]. The standard λ calculus encoding of such operators [5] works well:

cons = λx.λy.λs.s x y, car = λp.p λx.λy.x, cdr = λp.p λx.λy.y

Adding true algebraic systems should also be straightforward.
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Recursion Our λneed calculus represents just a core λ calculus and does not
include an explicit letrec constructor for cyclic terms. Since cyclic programming
is an important idiom in lazy programming languages, others have extensively
explored cyclic by-need calculi, e.g., Ariola and Blum [1], and applying their
solutions to our calculus should pose no problems.

7 Conclusion

Following Plotkin’s work on call-by-name and call-by-value, we present a call-
by-need λ calculus that expresses computation via a single axiom in the spirit of
β. Our calculus is close to implementations of lazy languages because it captures
the idea of by-need computation without retaining every function call and with-
out need for re-associating terms. We show that our calculus satisfies Plotkin’s
criteria, including an intensional correspondence between our calculus and a
Launchbury-style natural semantics. Our future work will leverage our λneed
calculus to derive a new abstract machine for lazy languages.
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