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Logic

The α and ω in science.

Basis of mathematics.

Also of engineering.
I Particularly useful for verification (model-checking = checking a model

against a logical formula).
I But also used in other domains, e.g.: Prolog, Datalog, UML OCL

(Object Constraint Language), ...

A myriad of logics:

Propositional logic

First-order logic

Constructive logic

Temporal logic

...

A fascinating history: read Logicomix [Doxiadis et al., 2009]!
The story is still evolving in our days!
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Language and logic

We may think that logic is “built into” our brains, but not really. Our
brains often make logically incorrect deductions.
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What is logic?

Logic = Syntax + Semantics + Proofs

Proofs

Manual, or

Automated: Proofs = Computations

Example:

Syntax: boolean formulas

Semantics: boolean functions

Proofs: is a formula satisfiable? valid (a tautology)?
I E.g., for boolean logic: an NP-complete problem (a representative for

many combinatorial problems).
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BOOLEAN LOGIC

(a.k.a. Propositional Logic or Propositional Calculus)
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Syntax

Symbols:

Constants: “false” and “true”, or 0, 1, or ⊥,>
Variable symbols (atomic propositions): p, q, ..., x, y, ...

Boolean connectives: ∧ (and), ∨ (or), ¬ (not), → (implies), ≡ or ↔
(is equivalent to)

Parentheses (): used to make syntax unambiguous

Expressions (formulas):

φ ::= 0 | 1 | p | q | ... | x | y | ...
| φ1 ∧ φ2 | φ1 ∨ φ2
| ¬φ′

| φ1 → φ2 | φ1 ↔ φ2

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 6 / 57



Syntax

Examples:

x ∨ ¬x
x→ y → z (ambiguous)

x→ (y → z)

(x→ y)→ z

(p→ q)↔ (0 ∨ ¬p ∨ q)

¬ usually bings stronger, so ¬p ∨ q means (¬p) ∨ q.

Similarly, p ∧ q ∨ r usually means (p ∧ q) ∨ r,
p ∧ q → a ∨ b usually means (q ∧ q)→ (a ∨ b),
etc.

When unsure, better use parentheses!
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Alternative syntax

⇒ instead of →, but in modern logic notation, ⇒ is used for
semantical entailment, as in “formula φ entails formula φ′, or φ⇒ φ′,
meaning that φ′ is true when φ is true”

⇔ instead of ↔
+ instead of ∨
· instead of ∧ (often omitted altogether)

x instead of ¬x
E.g.,

xy + z

instead of

(x ∧ y) ∨ (¬z)
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Semantics

The meaning of logical formulas.

E.g., what is the semantics of a boolean formula such as p→ q?

“If p, then q”, of course.

So, why do we even need to talk about semantics?
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Semantics

What is the meaning of a boolean formula?

Different views (all equivalent):

A “truth table”.

A boolean function.

A set containing the “solutions” (“models”) of the formula.

Why not consider the syntax itself to be the semantics?
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Semantics
Formula:

x ∧ (y ∨ z)

Truth table:
x y z result

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

An equivalent formula (different syntax, same semantics):

(x ∧ y) ∨ (x ∧ z)
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Semantics

Boolean function: a function f : Bn → Bm, where B = {0, 1}.

Formula:

x ∧ (y ∨ z)

defines1 the boolean function: f : B3 → B such that:

f(0, 0, 0) = 0
f(0, 0, 1) = 0

...

Note: a boolean function f : A→ B defines a set Sf ⊆ A.

Sf = {a ∈ A | f(a) = 1}

f is often called the characteristic function of Sf .

1assuming an order on the variables: (1) x, (2) y, (3) z.
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Semantics

A formula φ : x ∧ (y ∨ z) defines2 a subset [[φ]] ⊆ B3:

[[φ]] = {(1, 0, 1), (1, 1, 0), (1, 1, 1)}

This is the set of “solutions”: all assignments to x, y, z which make the formula
true.

To be independent from an implicit order on variables, we can also view [[φ]] as a
set of minterms:

[[φ]] = {xyz, xyz, xyz}

We can also view [[φ]] as a set of sets of atomic propositions:

[[φ]] = {{x, z}, {x, y}, {x, y, z}}

What is the type of [[φ]] in this last case?
[[φ]] ⊆ BP = 2P where P is the set of atomic propositions (= formula variables).

2assuming an order on the variables: (1) x, (2) y, (3) z.
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Semantics: satisfaction relation

Satisfaction relation:
a |= φ

means a is a “solution” (or model) of φ (“a satisfies φ”).

So
a |= φ iff a ∈ [[φ]]
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Satisfiability and Validity

A formula φ is satisfiable if [[φ]] is non-empty, i.e., if there exists a |= φ.

A formula φ is valid (a tautology) if for all a, a |= φ, i.e., if [[φ]] = 2P .

Note: a formula can be one of three things:

Unsatisfiable

Valid

Neither: satisfiable, but not valid
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Satisfiability and Validity

Is it decidable to check satisfiability and validity of propositional logic
formulas?

Yes:

Brute-force method for satisfiability (SAT): test all possible variable
assignments. If the formula has n variables ⇒ 2n possible
assignments.

Can we do better?

In the worst case, no: 3-SAT (SAT of formulas where each clause has
at most 3 literals) is a classic NP-complete problem.

In practice, modern SAT solvers can handle formulas with thousands
of variables or more.

What about validity?
Check satisfiability of ¬φ: ¬φ is unsat iff φ is valid.
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NORMAL FORMS
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CNF and DNF

Literal: a variable x or its negation x.

Clause: a disjunction of literals. E.g.:

clause 1 : x+ y

clause 2 : x+ z + w

CNF (conjunctive normal form): conjunction of clauses, i.e., conjunction
of disjunctions of literals (also called POS - “product of sums”). E.g.:

(x+ y) · (x+ z + w) · · ·

DNF (disjunctive normal form): disjunction of conjunctions of literals
(also called SOP - “sum of products”). E.g.:

(xy) + (xzw) + · · ·
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NNF: Negation Normal Form

All negations are “pushed” into literals.
E.g.:

(x∧ y)→ (z ∧w) ;

(¬(x∧ y))∨ (z ∧w) ; (¬x∨¬y)∨ (z ∧w)
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Translation into DNF

Every formula can be trivially transformed into DNF.
How?

By taking the disjunction of all the satisfying assignments of the formula
(every satisfying assignment is a minterm).
This procedure is not efficient, as a formula may have exponentially many
satisfying assignments.

Are there more efficient ways to transform into DNF? (Hint: how easy is it
to check whether a DNF formula is SAT? how hard is SAT?)

No, because SAT is NP-hard in general but SAT on DNF formulas is linear
(just find one conjunction that can be satisfied).
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Translation into CNF

Given a formula in NNF, how to transform it into CNF?
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Translation to CNF
1: CNF(φ):
2: if φ is a literal then
3: return φ;
4: else if φ is φ1 ∧ φ2 then
5: return CNF(φ1) ∧ CNF(φ2);
6: else if φ is φ1 ∨ φ2 then
7: return DistributeOr

(
CNF(φ1), CNF(φ2)

)
;

8: else
9: error: φ not in NNF;

10: end if

1: DistributeOr(φ1, φ2):
2: if φ1 is φ11 ∧ φ12 then
3: return DistributeOr(φ11, φ2) ∧ DistributeOr(φ12, φ2);
4: else if φ2 is φ21 ∧ φ22 then
5: return DistributeOr(φ1, φ21) ∧ DistributeOr(φ1, φ22);
6: else
7: return φ1 ∨φ2; /* both must be literals or disjunctions at this point */
8: end if
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Translation to CNF
1: CNF(φ):

2: if φ is a literal then

3: return φ;

4: else if φ is φ1 ∧ φ2 then

5: return CNF(φ1) ∧ CNF(φ2);

6: else if φ is φ1 ∨ φ2 then

7: return DistributeOr
(
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)
;

8: else
9: error: φ not in NNF;

10: end if

1: DistributeOr(φ1, φ2):

2: if φ1 is φ11 ∧ φ12 then
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4: else if φ2 is φ21 ∧ φ22 then

5: return DistributeOr(φ1, φ21) ∧ DistributeOr(φ1, φ22);

6: else
7: return φ1 ∨ φ2; /* both must be literals or disjunctions at this point */

8: end if

How large can CNF(φ) be in the worst-case?

Exponential, e.g., translate

(a1 ∧ b1) ∨ (a2 ∧ b2) ∨ · · · ∨ (an ∧ bn)

We’ll discuss polynomial translations when we talk about SAT solving.
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FIRST-ORDER LOGIC

(also called PREDICATE LOGIC)
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Limitations of propositional logic

All humans are mortal.

How to write it in propositional logic?

We can associate one proposition pi for every human i, with the meaning
“human i is mortal”, and then state:

p1 ∧ p2 ∧ · · · ∧ p7000000000

But even this is not enough, since we also want to talk about future
generations.
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Expressing this in (first-order) predicate logic

∀x : H(x)→M(x)

x: variable

H, M : predicates (functions that return “true” or “false”)

H(x): “x is human”.

M(x): “x is mortal”.

∀: “for all” quantifier.
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First-Order Predicate Logic (FOL) – Syntax

Terms:

t ::= x | c | f(t1, ..., tn)

where x is any variable symbol, c is any constant symbol,3 and f is any
function symbol of some arity n.

Formulas:

φ ::= P (t1, ..., tn)

| (φ ∧ φ) | (φ ∨ φ) | (¬φ) | · · ·
| (∀x : φ) | (∃x : φ)

where P is any predicate symbol of some arity n, and ti are terms.

3constants can also be seen as functions of arity 0
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FOL – Syntax

Example:

∀x : x > 0→ x+ 1 > 0

or, more pedantically:

∀x : >(x, 0)→ >(+(x, 1), 0)

0, 1: constants

x: variable symbol

+: function symbol of arity 2

>: predicate symbol of arity 2
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FOL – Syntax

Note:

This is also a syntactically well-formed formula:

x > 0→ x+ 1 > 0

so is this:

∀x : x > y

or this:

∀x : 2z > f(y)
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Parse Tree of Formula

Formula: ∀x : x > 0→ x+ 1 > 0

Parse tree: ∀x

→

>

x 0

>

+

x 1

0
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Free and Bound Variables

Formula: ∀x : x > y

Parse tree: ∀x

>

x y

y is free in the formula: no ancestor of the leaf node y is a node of the
form ∀y or ∃y.

x is bound in the formula: has ancestor ∀x.

A formula is closed if it has no free variables.
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Scope of Variables
Formula: (∀x : x = x ∧ ∃x : P (x)) ∧ x > 0

Parse tree: ∧

∀x

∧

=

x x

∃x

P

x

>

x 0
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Renaming
Formula: (∀x : x = x ∧ ∃x : P (x)) ∧ x > 0 ; (∀y : y = y ∧ ∃z : P (z)) ∧ x > 0

Parse tree: ∧

∀y

∧

=

y y

∃z

P

z

>

x 0
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FOL – Semantics

In propositional logic, a “solution” (model) of a formula was simply an
assignment of truth values to the propositional variables. E.g.,

(p := 1, q := 0)︸ ︷︷ ︸
model

|= p ∨ q︸ ︷︷ ︸
formula

What are the “solutions” (models) of predicate logic formulas?

???︸︷︷︸
model

|= ∀x : P (x)→ ∃y : Q(x, y)︸ ︷︷ ︸
formula

Cannot give meaning to the formula without first giving meaning to P,Q
and also specifying where x, y range over.
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FOL – Semantics

Let P and F be the sets of predicate and function symbols (for simplicity
F also includes the constants).

A model M for the pair (P,F) consists of the following:

A non-empty set U , the universe of concrete values.

For each 0-arity symbol c ∈ F , a concrete value cM ∈ U .

For each f ∈ F with arity n, a function fM : Un → U .

For each P ∈ P with arity n, a set PM ⊆ Un.

Note:

c, f, P are just symbols (syntactic objects).

cM, fM, PM are semantical objects (values, functions, sets).
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FOL – Semantics

Example:

∀x : P (x)→ ∃y : Q(x, y)

Let M be such that

U = N: the set of naturals.

PM = {0, 2, ...}: the set of even naturals.

QM = {(0, 1), (1, 2), (2, 3), ...}: the set of pairs (n, n+ 1), for n ∈ N.

Then the statement above is true.

Of course, it could have been written “more clearly” (for a human):

∀x : Even(x)→ ∃y : y = x+ 1

... but a computer (or a person who does not speak English) is equally clueless as
to what P or Even means ...
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FOL – Semantics

Example:

∀x : P (x)→ ∃y : Q(x, y)

Let M′ be another model such that

U = N: the set of naturals.

PM′ = {0, 2, ...}: the set of even naturals.

QM′ = {(1, 0), (3, 1), (5, 2), ...}: the set of pairs (2n+ 1, n), for
n ∈ N.

Then the statement above is false.
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FOL – Semantics

What is the meaning of ∀x : x > y ?

Undefined if we know nothing about the value of y.

We need one more thing: environments (or “look-up tables” for variables).

Environment:
l : VariableSymbols→ U

assigns a concrete value to every variable symbol.

Notation:
l[x; a]

is a new environment l′ such that l′(x) = a and l′(y) = l(y) for any other
variable y.
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FOL – Semantics: Giving concrete values to terms

Once we have M and l, every term evaluates to a concrete value in U .

Example:

M: U = N, ”0” = 0, ”1” = 1, ..., + = addition function, ...
l: x; 2, y ; 1

term t value Ml(t)

x+ 1 3
x · y 2

...

For a term t, we denote this value by Ml(t).
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FOL – Semantics

Finally we can define the satisfaction relation for first-order predicate logic
(M: model, l: environment, φ: formula):

M, l |= φ

M, l |= P (t1, ..., tn) iff

(
Ml(t1), ...,Ml(tn)

)
∈ PM

M, l |= φ1 ∧ φ2 iff M, l |= φ1 and M, l |= φ2
M, l |= ¬φ iff M, l 6|= φ
M, l |= ∀x : φ iff for all a ∈ U :M, l[x; a] |= φ holds
M, l |= ∃x : φ iff for some a ∈ U :M, l[x; a] |= φ holds
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FOL – Semantics: Satisfiability, Validity

A FOL formula φ is satisfiable if there exist M, l such that M, l |= φ
holds.

A formula φ is valid (a tautology) if for all M, l, it holds M, l |= φ.
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Satisfiability, Validity

Examples:

1 ∀x : P (x)→ P (x)

Valid.

2 x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

Satisfiable.

Example model: U = N, x 7→ 0, y 7→ 1, f( ) 7→ 0, 6= is the “not equal to”
relation on N: 6= 7→ {(0, 1), (0, 2), ..., (1, 0), (1, 2), ...}.

3 x+ 2 = y ∧ f(read(write(A, x, 3), y − 2)) 6= f(y − x+ 1)

Satisfiable with a non-standard interpretation of +,− or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of
arithmetic and arrays). Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 42 / 57



Satisfiability, Validity

Examples:

1 ∀x : P (x)→ P (x)

Valid.

2 x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

Satisfiable.

Example model: U = N, x 7→ 0, y 7→ 1, f( ) 7→ 0, 6= is the “not equal to”
relation on N: 6= 7→ {(0, 1), (0, 2), ..., (1, 0), (1, 2), ...}.

3 x+ 2 = y ∧ f(read(write(A, x, 3), y − 2)) 6= f(y − x+ 1)

Satisfiable with a non-standard interpretation of +,− or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of
arithmetic and arrays). Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 42 / 57



Satisfiability, Validity

Examples:

1 ∀x : P (x)→ P (x)

Valid.

2 x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

Satisfiable.

Example model: U = N, x 7→ 0, y 7→ 1, f( ) 7→ 0, 6= is the “not equal to”
relation on N: 6= 7→ {(0, 1), (0, 2), ..., (1, 0), (1, 2), ...}.

3 x+ 2 = y ∧ f(read(write(A, x, 3), y − 2)) 6= f(y − x+ 1)

Satisfiable with a non-standard interpretation of +,− or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of
arithmetic and arrays). Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 42 / 57



Satisfiability, Validity

Examples:

1 ∀x : P (x)→ P (x)

Valid.

2 x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

Satisfiable.

Example model: U = N, x 7→ 0, y 7→ 1, f( ) 7→ 0, 6= is the “not equal to”
relation on N: 6= 7→ {(0, 1), (0, 2), ..., (1, 0), (1, 2), ...}.

3 x+ 2 = y ∧ f(read(write(A, x, 3), y − 2)) 6= f(y − x+ 1)

Satisfiable with a non-standard interpretation of +,− or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of
arithmetic and arrays). Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 42 / 57



Satisfiability, Validity

Examples:

1 ∀x : P (x)→ P (x)

Valid.

2 x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

Satisfiable.

Example model: U = N, x 7→ 0, y 7→ 1, f( ) 7→ 0,

6= is the “not equal to”
relation on N: 6= 7→ {(0, 1), (0, 2), ..., (1, 0), (1, 2), ...}.

3 x+ 2 = y ∧ f(read(write(A, x, 3), y − 2)) 6= f(y − x+ 1)

Satisfiable with a non-standard interpretation of +,− or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of
arithmetic and arrays). Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 42 / 57



Satisfiability, Validity

Examples:

1 ∀x : P (x)→ P (x)

Valid.

2 x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

Satisfiable.

Example model: U = N, x 7→ 0, y 7→ 1, f( ) 7→ 0, 6= is the “not equal to”
relation on N: 6= 7→ {(0, 1), (0, 2), ..., (1, 0), (1, 2), ...}.

3 x+ 2 = y ∧ f(read(write(A, x, 3), y − 2)) 6= f(y − x+ 1)

Satisfiable with a non-standard interpretation of +,− or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of
arithmetic and arrays). Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 42 / 57



Satisfiability, Validity

Examples:

1 ∀x : P (x)→ P (x)

Valid.

2 x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

Satisfiable.

Example model: U = N, x 7→ 0, y 7→ 1, f( ) 7→ 0, 6= is the “not equal to”
relation on N: 6= 7→ {(0, 1), (0, 2), ..., (1, 0), (1, 2), ...}.

3 x+ 2 = y ∧ f(read(write(A, x, 3), y − 2)) 6= f(y − x+ 1)

Satisfiable with a non-standard interpretation of +,− or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of
arithmetic and arrays). Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 42 / 57



Satisfiability, Validity

Examples:

1 ∀x : P (x)→ P (x)

Valid.

2 x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

Satisfiable.

Example model: U = N, x 7→ 0, y 7→ 1, f( ) 7→ 0, 6= is the “not equal to”
relation on N: 6= 7→ {(0, 1), (0, 2), ..., (1, 0), (1, 2), ...}.

3 x+ 2 = y ∧ f(read(write(A, x, 3), y − 2)) 6= f(y − x+ 1)

Satisfiable with a non-standard interpretation of +,− or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of
arithmetic and arrays). Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 42 / 57



Satisfiability, Validity

Examples:

1 ∀x : P (x)→ P (x)

Valid.

2 x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

Satisfiable.

Example model: U = N, x 7→ 0, y 7→ 1, f( ) 7→ 0, 6= is the “not equal to”
relation on N: 6= 7→ {(0, 1), (0, 2), ..., (1, 0), (1, 2), ...}.

3 x+ 2 = y ∧ f(read(write(A, x, 3), y − 2)) 6= f(y − x+ 1)

Satisfiable with a non-standard interpretation of +,− or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of
arithmetic and arrays). Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 42 / 57



Normal forms for FOL

Negation normal form: “push” negation across quantifiers, and then
across boolean connectives as in propositional logic

¬∀x : F [x]⇔ ∃x : ¬F [x] and ¬∃x : F [x]⇔ ∀x : ¬F [x]

CNF and DNF:
I First put the formula in prenex normal form (PNF), where all

quantifiers appear at the beginning of the formula, e.g.,

(∀x : P (x))→ (∃y : R(y)) ; ∃x : ∃y : ¬P (x) ∨R(y)

I Then convert the “main body” subformula, which is quantifier-free, to
CNF or DNF using same methods as for propositional logic.
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Prenex normal form

Procedure to convert a formula φ in PNF (prenex normal form)
[Bradley and Manna, 2007]:

1 Convert φ to NNF, to obtain φ1.

2 Rename quantified variables so that there are no such variables that
have the same name but are in different scopes, to obtain φ2.

3 Remove quantifiers from φ2 to obtain quantifier-free formula φ3.

4 Add all removed quantifiers at the head of φ3, to obtain φ4:

φ4 := Q1x1 : Q2x2 : · · ·Qnxn : φ3

so that if quantifier Qj is in the scope of Qi in φ1, then i < j.

Let’s run this on some examples:

(∀x : P (x))→ (∃y : R(y)), ∀x : ¬(∃y : P (x, y)∧ P (x, z))∨ ∃y : P (x, y)
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THEORIES
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First-order theories

FOL is very general (and also undecidable)

In practice, we often use restricted subsets, where symbols have the
expected meaning, e.g.,

I Arithmetic formulas: ∀n : n+ 1 > n

We formalize this concept as a theory, e.g.,
I Theory of Peano arithmetic (addition, multiplication)
I Theory of Presburger arithmetic (addition, no multiplication)
I Theory of arrays
I Theory of uninterpreted functions with equality
I ...
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First-order theories

A first-order theory is defined by

its signature: the set of constant, function, and predicate symbols
The signature defines the syntax of the theory.

its set of axioms: these are closed FOL formulas (no free variables)
which have symbols only from the theory’s signature.
The axioms define the meaning of the symbols, i.e., the semantics of
the theory!
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Example: Presburger arithmetic

Signature: ΣN = {0, 1,+,=}, where
I 0, 1 are constants
I + is a binary function
I = is a binary predicate

Axioms:
1 ∀x : x+ 0 = x (zero is the neutral element for addition)
2 ∀x : ¬(x+ 1 = 0) (no negative numbers)
3 ∀x, y : x+ 1 = y + 1→ x = y
4 F [0] ∧ (∀x : F [x]→ F [x+ 1])→ ∀x : F [x] (induction – this is in fact

an axiom schema, an infinite set of axioms, for any instance of F )
5 ∀x, y : x+ (y + 1) = (x+ y) + 1

Note: we write ∀x : x+ 0 = x for convenience. The legal syntax is
∀x : = (+(x, 0), x).

Presburger arithmetic is decidable! (i.e., it is decidable, given a formula, to
check whether it is satisfiable, or valid)
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Example: Peano arithmetic

Signature: ΣPA = {0, 1,+, ·,=}, where
I 0, 1 are constants
I +, · are binary functions
I = is a binary predicate

Axioms: the axioms of Presburger arithmetic, plus
6 ∀x : x · 0 = 0
7 ∀x, y : x · (y + 1) = (x · y) + x

Peano arithmetic is undecidable.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 49 / 57



Example: Peano arithmetic

Signature: ΣPA = {0, 1,+, ·,=}, where
I 0, 1 are constants
I +, · are binary functions
I = is a binary predicate

Axioms: the axioms of Presburger arithmetic, plus
6 ∀x : x · 0 = 0
7 ∀x, y : x · (y + 1) = (x · y) + x

Peano arithmetic is undecidable.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 49 / 57



PROOFS
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Proofs

Suppose we want to prove that a given formula is valid.
How to do it?

We can use the brute-force method, but this only applies to
propositional logic formulas, and even there, is intractable.

We can try to reason in natural language, as in

(p ∧ p→ q)→ q is valid, because assuming both p and p→ q to be
true, since p is true, and p implies q by p→ q, we can conclude that q
must also be true.

Not very satisfactory ...

We can try a more systematic and rigorous method (which we can
also hope to automate, either fully or partially).
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Proof rules for propositional logic

Suppose we want to prove that propositional formula φ is valid.
Let’s try to reason by contradiction, and attempt to find an assignment a
such that a 6|= φ. If we succeed, then φ is invalid (not valid). If we reach a
contradiction, φ is valid.

We use the following proof rules (or deduction rules), based on the
syntax of φ:

For negation:

a 6|= ¬φ
a |= φ

neg1
a |= ¬φ
a 6|= φ

neg2

The way you read such a rule, e.g., neg1, is: if we assume a 6|= ¬φ, then
we can deduce a |= φ.
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Proof rules for propositional logic

For conjunction:

a 6|= φ1 ∧ φ2
a 6|= φ1 | a 6|= φ2

(proof generates 2 “or” branches)

and1

a |= φ1 ∧ φ2
a |= φ1
a |= φ2

(proof generates 2 deductions)

and2

Note: here we are going downwards; often proofs are written in the
opposite way, going upwards.
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Proof rules for propositional logic

For disjunction:

a 6|= φ1 ∨ φ2
a 6|= φ1
a 6|= φ2

or1 a |= φ1 ∨ φ2
a |= φ1 | a |= φ2

or2
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Proof rules for propositional logic

For implication:

a 6|= φ1 → φ2

a |= φ1
a 6|= φ2

impl1 a |= φ1 → φ2

a 6|= φ1 | a |= φ2
impl2

For equivalence:

a 6|= φ1 ↔ φ2

a |= φ1 ∧ ¬φ2 | a |= ¬φ1 ∧ φ2
equiv1

a |= φ1 ↔ φ2

a |= φ1 ∧ φ2 | a 6|= φ1 ∨ φ2
equiv2
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Proof rules for propositional logic

When do we reach a contradiction?

Contradiction rule:
a 6|= φ
a |= φ

a |= ⊥ contra

Let’s try to prove this using our proof system:

(p→ q) ∧ (q → r)→ (p→ r)
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