
System Specification, Verification and Synthesis
(SSVS) – CS 4830/7485, Fall 2019

A Logic Primer
(DRAFT)

Stavros Tripakis

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 1 / 57

Logic

The α and ω in science.

Basis of mathematics.

Also of engineering.
I Particularly useful for verification (model-checking = checking a model

against a logical formula).
I But also used in other domains, e.g.: Prolog, Datalog, UML OCL

(Object Constraint Language), ...

A myriad of logics:

Propositional logic

First-order logic

Constructive logic

Temporal logic

...

A fascinating history: read Logicomix [Doxiadis et al., 2009]!
The story is still evolving in our days!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 2 / 57

Language and logic

We may think that logic is “built into” our brains, but not really. Our
brains often make logically incorrect deductions.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 3 / 57

Language and logic

We may think that logic is “built into” our brains, but not really. Our
brains often make logically incorrect deductions.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 3 / 57

What is logic?

Logic = Syntax + Semantics + Proofs

Proofs

Manual, or

Automated: Proofs = Computations

Example:

Syntax: boolean formulas

Semantics: boolean functions

Proofs: is a formula satisfiable? valid (a tautology)?
I E.g., for boolean logic: an NP-complete problem (a representative for

many combinatorial problems).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 4 / 57

BOOLEAN LOGIC

(a.k.a. Propositional Logic or Propositional Calculus)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 5 / 57

Syntax

Symbols:

Constants: “false” and “true”, or 0, 1, or ⊥,>
Variable symbols (atomic propositions): p, q, ..., x, y, ...

Boolean connectives: ∧ (and), ∨ (or), ¬ (not), → (implies), ≡ or ↔
(is equivalent to)

Parentheses (): used to make syntax unambiguous

Expressions (formulas):

φ ::= 0 | 1 | p | q | ... | x | y | ...
| φ1 ∧ φ2 | φ1 ∨ φ2
| ¬φ′

| φ1 → φ2 | φ1 ↔ φ2

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 6 / 57

Syntax

Examples:

x ∨ ¬x
x→ y → z (ambiguous)

x→ (y → z)

(x→ y)→ z

(p→ q)↔ (0 ∨ ¬p ∨ q)

¬ usually bings stronger, so ¬p ∨ q means (¬p) ∨ q.

Similarly, p ∧ q ∨ r usually means (p ∧ q) ∨ r,
p ∧ q → a ∨ b usually means (q ∧ q)→ (a ∨ b),
etc.

When unsure, better use parentheses!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 7 / 57

Syntax

Examples:

x ∨ ¬x
x→ y → z (ambiguous)

x→ (y → z)

(x→ y)→ z

(p→ q)↔ (0 ∨ ¬p ∨ q)

¬ usually bings stronger, so ¬p ∨ q means (¬p) ∨ q.

Similarly, p ∧ q ∨ r usually means (p ∧ q) ∨ r,
p ∧ q → a ∨ b usually means (q ∧ q)→ (a ∨ b),
etc.

When unsure, better use parentheses!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 7 / 57

Syntax

Examples:

x ∨ ¬x
x→ y → z (ambiguous)

x→ (y → z)

(x→ y)→ z

(p→ q)↔ (0 ∨ ¬p ∨ q)

¬ usually bings stronger, so ¬p ∨ q means (¬p) ∨ q.

Similarly, p ∧ q ∨ r usually means (p ∧ q) ∨ r,
p ∧ q → a ∨ b usually means (q ∧ q)→ (a ∨ b),
etc.

When unsure, better use parentheses!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 7 / 57

Syntax

Examples:

x ∨ ¬x
x→ y → z (ambiguous)

x→ (y → z)

(x→ y)→ z

(p→ q)↔ (0 ∨ ¬p ∨ q)

¬ usually bings stronger, so ¬p ∨ q means (¬p) ∨ q.

Similarly, p ∧ q ∨ r usually means (p ∧ q) ∨ r,
p ∧ q → a ∨ b usually means (q ∧ q)→ (a ∨ b),
etc.

When unsure, better use parentheses!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 7 / 57

Alternative syntax

⇒ instead of →, but in modern logic notation, ⇒ is used for
semantical entailment, as in “formula φ entails formula φ′, or φ⇒ φ′,
meaning that φ′ is true when φ is true”

⇔ instead of ↔
+ instead of ∨
· instead of ∧ (often omitted altogether)

x instead of ¬x
E.g.,

xy + z

instead of

(x ∧ y) ∨ (¬z)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 8 / 57

Semantics

The meaning of logical formulas.

E.g., what is the semantics of a boolean formula such as p→ q?

“If p, then q”, of course.

So, why do we even need to talk about semantics?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 9 / 57

Semantics

The meaning of logical formulas.

E.g., what is the semantics of a boolean formula such as p→ q?

“If p, then q”, of course.

So, why do we even need to talk about semantics?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 9 / 57

Semantics

What is the meaning of a boolean formula?

Different views (all equivalent):

A “truth table”.

A boolean function.

A set containing the “solutions” (“models”) of the formula.

Why not consider the syntax itself to be the semantics?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 10 / 57

Semantics

What is the meaning of a boolean formula?

Different views (all equivalent):

A “truth table”.

A boolean function.

A set containing the “solutions” (“models”) of the formula.

Why not consider the syntax itself to be the semantics?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 10 / 57

Semantics
Formula:

x ∧ (y ∨ z)

Truth table:
x y z result

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

An equivalent formula (different syntax, same semantics):

(x ∧ y) ∨ (x ∧ z)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 11 / 57

Semantics
Formula:

x ∧ (y ∨ z)

Truth table:
x y z result

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

An equivalent formula (different syntax, same semantics):

(x ∧ y) ∨ (x ∧ z)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 11 / 57

Semantics

Boolean function: a function f : Bn → Bm, where B = {0, 1}.

Formula:

x ∧ (y ∨ z)

defines1 the boolean function: f : B3 → B such that:

f(0, 0, 0) = 0
f(0, 0, 1) = 0

...

Note: a boolean function f : A→ B defines a set Sf ⊆ A.

Sf = {a ∈ A | f(a) = 1}

f is often called the characteristic function of Sf .

1assuming an order on the variables: (1) x, (2) y, (3) z.
Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 12 / 57

Semantics

Boolean function: a function f : Bn → Bm, where B = {0, 1}.

Formula:

x ∧ (y ∨ z)

defines1 the boolean function: f : B3 → B such that:

f(0, 0, 0) = 0
f(0, 0, 1) = 0

...

Note: a boolean function f : A→ B defines a set Sf ⊆ A.

Sf = {a ∈ A | f(a) = 1}

f is often called the characteristic function of Sf .

1assuming an order on the variables: (1) x, (2) y, (3) z.
Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 12 / 57

Semantics

A formula φ : x ∧ (y ∨ z) defines2 a subset [[φ]] ⊆ B3:

[[φ]] = {(1, 0, 1), (1, 1, 0), (1, 1, 1)}

This is the set of “solutions”: all assignments to x, y, z which make the formula
true.

To be independent from an implicit order on variables, we can also view [[φ]] as a
set of minterms:

[[φ]] = {xyz, xyz, xyz}

We can also view [[φ]] as a set of sets of atomic propositions:

[[φ]] = {{x, z}, {x, y}, {x, y, z}}

What is the type of [[φ]] in this last case?
[[φ]] ⊆ BP = 2P where P is the set of atomic propositions (= formula variables).

2assuming an order on the variables: (1) x, (2) y, (3) z.
Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 13 / 57

Semantics

A formula φ : x ∧ (y ∨ z) defines2 a subset [[φ]] ⊆ B3:

[[φ]] = {(1, 0, 1), (1, 1, 0), (1, 1, 1)}

This is the set of “solutions”: all assignments to x, y, z which make the formula
true.

To be independent from an implicit order on variables, we can also view [[φ]] as a
set of minterms:

[[φ]] = {xyz, xyz, xyz}

We can also view [[φ]] as a set of sets of atomic propositions:

[[φ]] = {{x, z}, {x, y}, {x, y, z}}

What is the type of [[φ]] in this last case?
[[φ]] ⊆ BP = 2P where P is the set of atomic propositions (= formula variables).

2assuming an order on the variables: (1) x, (2) y, (3) z.
Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 13 / 57

Semantics

A formula φ : x ∧ (y ∨ z) defines2 a subset [[φ]] ⊆ B3:

[[φ]] = {(1, 0, 1), (1, 1, 0), (1, 1, 1)}

This is the set of “solutions”: all assignments to x, y, z which make the formula
true.

To be independent from an implicit order on variables, we can also view [[φ]] as a
set of minterms:

[[φ]] = {xyz, xyz, xyz}

We can also view [[φ]] as a set of sets of atomic propositions:

[[φ]] = {{x, z}, {x, y}, {x, y, z}}

What is the type of [[φ]] in this last case?
[[φ]] ⊆ BP = 2P where P is the set of atomic propositions (= formula variables).

2assuming an order on the variables: (1) x, (2) y, (3) z.
Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 13 / 57

Semantics

A formula φ : x ∧ (y ∨ z) defines2 a subset [[φ]] ⊆ B3:

[[φ]] = {(1, 0, 1), (1, 1, 0), (1, 1, 1)}

This is the set of “solutions”: all assignments to x, y, z which make the formula
true.

To be independent from an implicit order on variables, we can also view [[φ]] as a
set of minterms:

[[φ]] = {xyz, xyz, xyz}

We can also view [[φ]] as a set of sets of atomic propositions:

[[φ]] = {{x, z}, {x, y}, {x, y, z}}

What is the type of [[φ]] in this last case?

[[φ]] ⊆ BP = 2P where P is the set of atomic propositions (= formula variables).

2assuming an order on the variables: (1) x, (2) y, (3) z.
Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 13 / 57

Semantics

A formula φ : x ∧ (y ∨ z) defines2 a subset [[φ]] ⊆ B3:

[[φ]] = {(1, 0, 1), (1, 1, 0), (1, 1, 1)}

This is the set of “solutions”: all assignments to x, y, z which make the formula
true.

To be independent from an implicit order on variables, we can also view [[φ]] as a
set of minterms:

[[φ]] = {xyz, xyz, xyz}

We can also view [[φ]] as a set of sets of atomic propositions:

[[φ]] = {{x, z}, {x, y}, {x, y, z}}

What is the type of [[φ]] in this last case?
[[φ]] ⊆ BP = 2P where P is the set of atomic propositions (= formula variables).

2assuming an order on the variables: (1) x, (2) y, (3) z.
Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 13 / 57

Semantics: satisfaction relation

Satisfaction relation:
a |= φ

means a is a “solution” (or model) of φ (“a satisfies φ”).

So
a |= φ iff a ∈ [[φ]]

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 14 / 57

Satisfiability and Validity

A formula φ is satisfiable if [[φ]] is non-empty, i.e., if there exists a |= φ.

A formula φ is valid (a tautology) if for all a, a |= φ, i.e., if [[φ]] = 2P .

Note: a formula can be one of three things:

Unsatisfiable

Valid

Neither: satisfiable, but not valid

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 15 / 57

Satisfiability and Validity

A formula φ is satisfiable if [[φ]] is non-empty, i.e., if there exists a |= φ.

A formula φ is valid (a tautology) if for all a, a |= φ, i.e., if [[φ]] = 2P .

Note: a formula can be one of three things:

Unsatisfiable

Valid

Neither: satisfiable, but not valid

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 15 / 57

Satisfiability and Validity

Is it decidable to check satisfiability and validity of propositional logic
formulas?

Yes:

Brute-force method for satisfiability (SAT): test all possible variable
assignments. If the formula has n variables ⇒ 2n possible
assignments.

Can we do better?

In the worst case, no: 3-SAT (SAT of formulas where each clause has
at most 3 literals) is a classic NP-complete problem.

In practice, modern SAT solvers can handle formulas with thousands
of variables or more.

What about validity?
Check satisfiability of ¬φ: ¬φ is unsat iff φ is valid.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 16 / 57

Satisfiability and Validity

Is it decidable to check satisfiability and validity of propositional logic
formulas?

Yes:

Brute-force method for satisfiability (SAT): test all possible variable
assignments. If the formula has n variables ⇒ 2n possible
assignments.

Can we do better?

In the worst case, no: 3-SAT (SAT of formulas where each clause has
at most 3 literals) is a classic NP-complete problem.

In practice, modern SAT solvers can handle formulas with thousands
of variables or more.

What about validity?
Check satisfiability of ¬φ: ¬φ is unsat iff φ is valid.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 16 / 57

Satisfiability and Validity

Is it decidable to check satisfiability and validity of propositional logic
formulas?

Yes:

Brute-force method for satisfiability (SAT): test all possible variable
assignments. If the formula has n variables ⇒ 2n possible
assignments.

Can we do better?

In the worst case, no: 3-SAT (SAT of formulas where each clause has
at most 3 literals) is a classic NP-complete problem.

In practice, modern SAT solvers can handle formulas with thousands
of variables or more.

What about validity?

Check satisfiability of ¬φ: ¬φ is unsat iff φ is valid.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 16 / 57

Satisfiability and Validity

Is it decidable to check satisfiability and validity of propositional logic
formulas?

Yes:

Brute-force method for satisfiability (SAT): test all possible variable
assignments. If the formula has n variables ⇒ 2n possible
assignments.

Can we do better?

In the worst case, no: 3-SAT (SAT of formulas where each clause has
at most 3 literals) is a classic NP-complete problem.

In practice, modern SAT solvers can handle formulas with thousands
of variables or more.

What about validity?
Check satisfiability of ¬φ: ¬φ is unsat iff φ is valid.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 16 / 57

NORMAL FORMS

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 17 / 57

CNF and DNF

Literal: a variable x or its negation x.

Clause: a disjunction of literals. E.g.:

clause 1 : x+ y

clause 2 : x+ z + w

CNF (conjunctive normal form): conjunction of clauses, i.e., conjunction
of disjunctions of literals (also called POS - “product of sums”). E.g.:

(x+ y) · (x+ z + w) · · ·

DNF (disjunctive normal form): disjunction of conjunctions of literals
(also called SOP - “sum of products”). E.g.:

(xy) + (xzw) + · · ·

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 18 / 57

NNF: Negation Normal Form

All negations are “pushed” into literals.
E.g.:

(x∧ y)→ (z ∧w) ;

(¬(x∧ y))∨ (z ∧w) ; (¬x∨¬y)∨ (z ∧w)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 19 / 57

NNF: Negation Normal Form

All negations are “pushed” into literals.
E.g.:

(x∧ y)→ (z ∧w) ; (¬(x∧ y))∨ (z ∧w) ;

(¬x∨¬y)∨ (z ∧w)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 19 / 57

NNF: Negation Normal Form

All negations are “pushed” into literals.
E.g.:

(x∧ y)→ (z ∧w) ; (¬(x∧ y))∨ (z ∧w) ; (¬x∨¬y)∨ (z ∧w)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 19 / 57

Translation into DNF

Every formula can be trivially transformed into DNF.
How?

By taking the disjunction of all the satisfying assignments of the formula
(every satisfying assignment is a minterm).
This procedure is not efficient, as a formula may have exponentially many
satisfying assignments.

Are there more efficient ways to transform into DNF? (Hint: how easy is it
to check whether a DNF formula is SAT? how hard is SAT?)

No, because SAT is NP-hard in general but SAT on DNF formulas is linear
(just find one conjunction that can be satisfied).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 20 / 57

Translation into DNF

Every formula can be trivially transformed into DNF.
How?

By taking the disjunction of all the satisfying assignments of the formula
(every satisfying assignment is a minterm).
This procedure is not efficient, as a formula may have exponentially many
satisfying assignments.

Are there more efficient ways to transform into DNF? (Hint: how easy is it
to check whether a DNF formula is SAT? how hard is SAT?)

No, because SAT is NP-hard in general but SAT on DNF formulas is linear
(just find one conjunction that can be satisfied).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 20 / 57

Translation into DNF

Every formula can be trivially transformed into DNF.
How?

By taking the disjunction of all the satisfying assignments of the formula
(every satisfying assignment is a minterm).
This procedure is not efficient, as a formula may have exponentially many
satisfying assignments.

Are there more efficient ways to transform into DNF? (Hint: how easy is it
to check whether a DNF formula is SAT? how hard is SAT?)

No, because SAT is NP-hard in general but SAT on DNF formulas is linear
(just find one conjunction that can be satisfied).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 20 / 57

Translation into DNF

Every formula can be trivially transformed into DNF.
How?

By taking the disjunction of all the satisfying assignments of the formula
(every satisfying assignment is a minterm).
This procedure is not efficient, as a formula may have exponentially many
satisfying assignments.

Are there more efficient ways to transform into DNF? (Hint: how easy is it
to check whether a DNF formula is SAT? how hard is SAT?)

No, because SAT is NP-hard in general but SAT on DNF formulas is linear
(just find one conjunction that can be satisfied).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 20 / 57

Translation into CNF

Given a formula in NNF, how to transform it into CNF?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 21 / 57

Translation to CNF
1: CNF(φ):
2: if φ is a literal then
3: return φ;
4: else if φ is φ1 ∧ φ2 then
5: return CNF(φ1) ∧ CNF(φ2);
6: else if φ is φ1 ∨ φ2 then
7: return DistributeOr

(
CNF(φ1), CNF(φ2)

)
;

8: else
9: error: φ not in NNF;

10: end if

1: DistributeOr(φ1, φ2):
2: if φ1 is φ11 ∧ φ12 then
3: return DistributeOr(φ11, φ2) ∧ DistributeOr(φ12, φ2);
4: else if φ2 is φ21 ∧ φ22 then
5: return DistributeOr(φ1, φ21) ∧ DistributeOr(φ1, φ22);
6: else
7: return φ1 ∨φ2; /* both must be literals or disjunctions at this point */
8: end if

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 22 / 57

Translation to CNF
1: CNF(φ):

2: if φ is a literal then

3: return φ;

4: else if φ is φ1 ∧ φ2 then

5: return CNF(φ1) ∧ CNF(φ2);

6: else if φ is φ1 ∨ φ2 then

7: return DistributeOr
(
CNF(φ1), CNF(φ2)

)
;

8: else
9: error: φ not in NNF;

10: end if

1: DistributeOr(φ1, φ2):

2: if φ1 is φ11 ∧ φ12 then

3: return DistributeOr(φ11, φ2) ∧ DistributeOr(φ12, φ2);

4: else if φ2 is φ21 ∧ φ22 then

5: return DistributeOr(φ1, φ21) ∧ DistributeOr(φ1, φ22);

6: else
7: return φ1 ∨ φ2; /* both must be literals or disjunctions at this point */

8: end if

How large can CNF(φ) be in the worst-case?

Exponential, e.g., translate

(a1 ∧ b1) ∨ (a2 ∧ b2) ∨ · · · ∨ (an ∧ bn)

We’ll discuss polynomial translations when we talk about SAT solving.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 23 / 57

Translation to CNF
1: CNF(φ):

2: if φ is a literal then

3: return φ;

4: else if φ is φ1 ∧ φ2 then

5: return CNF(φ1) ∧ CNF(φ2);

6: else if φ is φ1 ∨ φ2 then

7: return DistributeOr
(
CNF(φ1), CNF(φ2)

)
;

8: else
9: error: φ not in NNF;

10: end if

1: DistributeOr(φ1, φ2):

2: if φ1 is φ11 ∧ φ12 then

3: return DistributeOr(φ11, φ2) ∧ DistributeOr(φ12, φ2);

4: else if φ2 is φ21 ∧ φ22 then

5: return DistributeOr(φ1, φ21) ∧ DistributeOr(φ1, φ22);

6: else
7: return φ1 ∨ φ2; /* both must be literals or disjunctions at this point */

8: end if

How large can CNF(φ) be in the worst-case? Exponential, e.g., translate

(a1 ∧ b1) ∨ (a2 ∧ b2) ∨ · · · ∨ (an ∧ bn)

We’ll discuss polynomial translations when we talk about SAT solving.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 23 / 57

Translation to CNF
1: CNF(φ):

2: if φ is a literal then

3: return φ;

4: else if φ is φ1 ∧ φ2 then

5: return CNF(φ1) ∧ CNF(φ2);

6: else if φ is φ1 ∨ φ2 then

7: return DistributeOr
(
CNF(φ1), CNF(φ2)

)
;

8: else
9: error: φ not in NNF;

10: end if

1: DistributeOr(φ1, φ2):

2: if φ1 is φ11 ∧ φ12 then

3: return DistributeOr(φ11, φ2) ∧ DistributeOr(φ12, φ2);

4: else if φ2 is φ21 ∧ φ22 then

5: return DistributeOr(φ1, φ21) ∧ DistributeOr(φ1, φ22);

6: else
7: return φ1 ∨ φ2; /* both must be literals or disjunctions at this point */

8: end if

How large can CNF(φ) be in the worst-case? Exponential, e.g., translate

(a1 ∧ b1) ∨ (a2 ∧ b2) ∨ · · · ∨ (an ∧ bn)

We’ll discuss polynomial translations when we talk about SAT solving.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 23 / 57

FIRST-ORDER LOGIC

(also called PREDICATE LOGIC)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 24 / 57

Limitations of propositional logic

All humans are mortal.

How to write it in propositional logic?

We can associate one proposition pi for every human i, with the meaning
“human i is mortal”, and then state:

p1 ∧ p2 ∧ · · · ∧ p7000000000

But even this is not enough, since we also want to talk about future
generations.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 25 / 57

Limitations of propositional logic

All humans are mortal.

How to write it in propositional logic?

We can associate one proposition pi for every human i, with the meaning
“human i is mortal”, and then state:

p1 ∧ p2 ∧ · · · ∧ p7000000000

But even this is not enough, since we also want to talk about future
generations.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 25 / 57

Limitations of propositional logic

All humans are mortal.

How to write it in propositional logic?

We can associate one proposition pi for every human i, with the meaning
“human i is mortal”, and then state:

p1 ∧ p2 ∧ · · · ∧ p7000000000

But even this is not enough, since we also want to talk about future
generations.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 25 / 57

Expressing this in (first-order) predicate logic

∀x : H(x)→M(x)

x: variable

H, M : predicates (functions that return “true” or “false”)

H(x): “x is human”.

M(x): “x is mortal”.

∀: “for all” quantifier.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 26 / 57

First-Order Predicate Logic (FOL) – Syntax

Terms:

t ::= x | c | f(t1, ..., tn)

where x is any variable symbol, c is any constant symbol,3 and f is any
function symbol of some arity n.

Formulas:

φ ::= P (t1, ..., tn)

| (φ ∧ φ) | (φ ∨ φ) | (¬φ) | · · ·
| (∀x : φ) | (∃x : φ)

where P is any predicate symbol of some arity n, and ti are terms.

3constants can also be seen as functions of arity 0
Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 27 / 57

FOL – Syntax

Example:

∀x : x > 0→ x+ 1 > 0

or, more pedantically:

∀x : >(x, 0)→ >(+(x, 1), 0)

0, 1: constants

x: variable symbol

+: function symbol of arity 2

>: predicate symbol of arity 2

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 28 / 57

FOL – Syntax

Example:

∀x : x > 0→ x+ 1 > 0

or, more pedantically:

∀x : >(x, 0)→ >(+(x, 1), 0)

0, 1: constants

x: variable symbol

+: function symbol of arity 2

>: predicate symbol of arity 2

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 28 / 57

FOL – Syntax

Example:

∀x : x > 0→ x+ 1 > 0

or, more pedantically:

∀x : >(x, 0)→ >(+(x, 1), 0)

0, 1: constants

x: variable symbol

+: function symbol of arity 2

>: predicate symbol of arity 2

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 28 / 57

FOL – Syntax

Note:

This is also a syntactically well-formed formula:

x > 0→ x+ 1 > 0

so is this:

∀x : x > y

or this:

∀x : 2z > f(y)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 29 / 57

FOL – Syntax

Note:

This is also a syntactically well-formed formula:

x > 0→ x+ 1 > 0

so is this:

∀x : x > y

or this:

∀x : 2z > f(y)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 29 / 57

FOL – Syntax

Note:

This is also a syntactically well-formed formula:

x > 0→ x+ 1 > 0

so is this:

∀x : x > y

or this:

∀x : 2z > f(y)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 29 / 57

Parse Tree of Formula

Formula: ∀x : x > 0→ x+ 1 > 0

Parse tree: ∀x

→

>

x 0

>

+

x 1

0

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 30 / 57

Free and Bound Variables

Formula: ∀x : x > y

Parse tree: ∀x

>

x y

y is free in the formula: no ancestor of the leaf node y is a node of the
form ∀y or ∃y.

x is bound in the formula: has ancestor ∀x.

A formula is closed if it has no free variables.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 31 / 57

Free and Bound Variables

Formula: ∀x : x > y

Parse tree: ∀x

>

x y

y is free in the formula: no ancestor of the leaf node y is a node of the
form ∀y or ∃y.

x is bound in the formula: has ancestor ∀x.

A formula is closed if it has no free variables.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 31 / 57

Scope of Variables
Formula: (∀x : x = x ∧ ∃x : P (x)) ∧ x > 0

Parse tree: ∧

∀x

∧

=

x x

∃x

P

x

>

x 0

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 32 / 57

Renaming
Formula: (∀x : x = x ∧ ∃x : P (x)) ∧ x > 0 ; (∀y : y = y ∧ ∃z : P (z)) ∧ x > 0

Parse tree: ∧

∀y

∧

=

y y

∃z

P

z

>

x 0

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 33 / 57

FOL – Semantics

In propositional logic, a “solution” (model) of a formula was simply an
assignment of truth values to the propositional variables. E.g.,

(p := 1, q := 0)︸ ︷︷ ︸
model

|= p ∨ q︸ ︷︷ ︸
formula

What are the “solutions” (models) of predicate logic formulas?

???︸︷︷︸
model

|= ∀x : P (x)→ ∃y : Q(x, y)︸ ︷︷ ︸
formula

Cannot give meaning to the formula without first giving meaning to P,Q
and also specifying where x, y range over.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 34 / 57

FOL – Semantics

In propositional logic, a “solution” (model) of a formula was simply an
assignment of truth values to the propositional variables. E.g.,

(p := 1, q := 0)︸ ︷︷ ︸
model

|= p ∨ q︸ ︷︷ ︸
formula

What are the “solutions” (models) of predicate logic formulas?

???︸︷︷︸
model

|= ∀x : P (x)→ ∃y : Q(x, y)︸ ︷︷ ︸
formula

Cannot give meaning to the formula without first giving meaning to P,Q
and also specifying where x, y range over.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 34 / 57

FOL – Semantics

In propositional logic, a “solution” (model) of a formula was simply an
assignment of truth values to the propositional variables. E.g.,

(p := 1, q := 0)︸ ︷︷ ︸
model

|= p ∨ q︸ ︷︷ ︸
formula

What are the “solutions” (models) of predicate logic formulas?

???︸︷︷︸
model

|= ∀x : P (x)→ ∃y : Q(x, y)︸ ︷︷ ︸
formula

Cannot give meaning to the formula without first giving meaning to P,Q
and also specifying where x, y range over.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 34 / 57

FOL – Semantics

Let P and F be the sets of predicate and function symbols (for simplicity
F also includes the constants).

A model M for the pair (P,F) consists of the following:

A non-empty set U , the universe of concrete values.

For each 0-arity symbol c ∈ F , a concrete value cM ∈ U .

For each f ∈ F with arity n, a function fM : Un → U .

For each P ∈ P with arity n, a set PM ⊆ Un.

Note:

c, f, P are just symbols (syntactic objects).

cM, fM, PM are semantical objects (values, functions, sets).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 35 / 57

FOL – Semantics

Let P and F be the sets of predicate and function symbols (for simplicity
F also includes the constants).

A model M for the pair (P,F) consists of the following:

A non-empty set U , the universe of concrete values.

For each 0-arity symbol c ∈ F , a concrete value cM ∈ U .

For each f ∈ F with arity n, a function fM : Un → U .

For each P ∈ P with arity n, a set PM ⊆ Un.

Note:

c, f, P are just symbols (syntactic objects).

cM, fM, PM are semantical objects (values, functions, sets).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 35 / 57

FOL – Semantics

Example:

∀x : P (x)→ ∃y : Q(x, y)

Let M be such that

U = N: the set of naturals.

PM = {0, 2, ...}: the set of even naturals.

QM = {(0, 1), (1, 2), (2, 3), ...}: the set of pairs (n, n+ 1), for n ∈ N.

Then the statement above is true.

Of course, it could have been written “more clearly” (for a human):

∀x : Even(x)→ ∃y : y = x+ 1

... but a computer (or a person who does not speak English) is equally clueless as
to what P or Even means ...

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 36 / 57

FOL – Semantics

Example:

∀x : P (x)→ ∃y : Q(x, y)

Let M be such that

U = N: the set of naturals.

PM = {0, 2, ...}: the set of even naturals.

QM = {(0, 1), (1, 2), (2, 3), ...}: the set of pairs (n, n+ 1), for n ∈ N.

Then the statement above is true.

Of course, it could have been written “more clearly” (for a human):

∀x : Even(x)→ ∃y : y = x+ 1

... but a computer (or a person who does not speak English) is equally clueless as
to what P or Even means ...

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 36 / 57

FOL – Semantics

Example:

∀x : P (x)→ ∃y : Q(x, y)

Let M′ be another model such that

U = N: the set of naturals.

PM′ = {0, 2, ...}: the set of even naturals.

QM′ = {(1, 0), (3, 1), (5, 2), ...}: the set of pairs (2n+ 1, n), for
n ∈ N.

Then the statement above is false.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 37 / 57

FOL – Semantics

What is the meaning of ∀x : x > y ?

Undefined if we know nothing about the value of y.

We need one more thing: environments (or “look-up tables” for variables).

Environment:
l : VariableSymbols→ U

assigns a concrete value to every variable symbol.

Notation:
l[x; a]

is a new environment l′ such that l′(x) = a and l′(y) = l(y) for any other
variable y.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 38 / 57

FOL – Semantics

What is the meaning of ∀x : x > y ?

Undefined if we know nothing about the value of y.

We need one more thing: environments (or “look-up tables” for variables).

Environment:
l : VariableSymbols→ U

assigns a concrete value to every variable symbol.

Notation:
l[x; a]

is a new environment l′ such that l′(x) = a and l′(y) = l(y) for any other
variable y.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 38 / 57

FOL – Semantics

What is the meaning of ∀x : x > y ?

Undefined if we know nothing about the value of y.

We need one more thing: environments (or “look-up tables” for variables).

Environment:
l : VariableSymbols→ U

assigns a concrete value to every variable symbol.

Notation:
l[x; a]

is a new environment l′ such that l′(x) = a and l′(y) = l(y) for any other
variable y.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 38 / 57

FOL – Semantics: Giving concrete values to terms

Once we have M and l, every term evaluates to a concrete value in U .

Example:

M: U = N, ”0” = 0, ”1” = 1, ..., + = addition function, ...
l: x; 2, y ; 1

term t value Ml(t)

x+ 1 3
x · y 2

...

For a term t, we denote this value by Ml(t).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 39 / 57

FOL – Semantics: Giving concrete values to terms

Once we have M and l, every term evaluates to a concrete value in U .

Example:

M: U = N, ”0” = 0, ”1” = 1, ..., + = addition function, ...
l: x; 2, y ; 1

term t value Ml(t)

x+ 1 3
x · y 2

...

For a term t, we denote this value by Ml(t).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 39 / 57

FOL – Semantics

Finally we can define the satisfaction relation for first-order predicate logic
(M: model, l: environment, φ: formula):

M, l |= φ

M, l |= P (t1, ..., tn) iff

(
Ml(t1), ...,Ml(tn)

)
∈ PM

M, l |= φ1 ∧ φ2 iff M, l |= φ1 and M, l |= φ2
M, l |= ¬φ iff M, l 6|= φ
M, l |= ∀x : φ iff for all a ∈ U :M, l[x; a] |= φ holds
M, l |= ∃x : φ iff for some a ∈ U :M, l[x; a] |= φ holds

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 40 / 57

FOL – Semantics

Finally we can define the satisfaction relation for first-order predicate logic
(M: model, l: environment, φ: formula):

M, l |= φ

M, l |= P (t1, ..., tn) iff
(
Ml(t1), ...,Ml(tn)

)
∈ PM

M, l |= φ1 ∧ φ2 iff M, l |= φ1 and M, l |= φ2
M, l |= ¬φ iff M, l 6|= φ
M, l |= ∀x : φ iff for all a ∈ U :M, l[x; a] |= φ holds
M, l |= ∃x : φ iff for some a ∈ U :M, l[x; a] |= φ holds

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 40 / 57

FOL – Semantics: Satisfiability, Validity

A FOL formula φ is satisfiable if there exist M, l such that M, l |= φ
holds.

A formula φ is valid (a tautology) if for all M, l, it holds M, l |= φ.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 41 / 57

Satisfiability, Validity

Examples:

1 ∀x : P (x)→ P (x)

Valid.

2 x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

Satisfiable.

Example model: U = N, x 7→ 0, y 7→ 1, f() 7→ 0, 6= is the “not equal to”
relation on N: 6= 7→ {(0, 1), (0, 2), ..., (1, 0), (1, 2), ...}.

3 x+ 2 = y ∧ f(read(write(A, x, 3), y − 2)) 6= f(y − x+ 1)

Satisfiable with a non-standard interpretation of +,− or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of
arithmetic and arrays). Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 42 / 57

Satisfiability, Validity

Examples:

1 ∀x : P (x)→ P (x)

Valid.

2 x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

Satisfiable.

Example model: U = N, x 7→ 0, y 7→ 1, f() 7→ 0, 6= is the “not equal to”
relation on N: 6= 7→ {(0, 1), (0, 2), ..., (1, 0), (1, 2), ...}.

3 x+ 2 = y ∧ f(read(write(A, x, 3), y − 2)) 6= f(y − x+ 1)

Satisfiable with a non-standard interpretation of +,− or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of
arithmetic and arrays). Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 42 / 57

Satisfiability, Validity

Examples:

1 ∀x : P (x)→ P (x)

Valid.

2 x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

Satisfiable.

Example model: U = N, x 7→ 0, y 7→ 1, f() 7→ 0, 6= is the “not equal to”
relation on N: 6= 7→ {(0, 1), (0, 2), ..., (1, 0), (1, 2), ...}.

3 x+ 2 = y ∧ f(read(write(A, x, 3), y − 2)) 6= f(y − x+ 1)

Satisfiable with a non-standard interpretation of +,− or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of
arithmetic and arrays). Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 42 / 57

Satisfiability, Validity

Examples:

1 ∀x : P (x)→ P (x)

Valid.

2 x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

Satisfiable.

Example model: U = N, x 7→ 0, y 7→ 1, f() 7→ 0, 6= is the “not equal to”
relation on N: 6= 7→ {(0, 1), (0, 2), ..., (1, 0), (1, 2), ...}.

3 x+ 2 = y ∧ f(read(write(A, x, 3), y − 2)) 6= f(y − x+ 1)

Satisfiable with a non-standard interpretation of +,− or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of
arithmetic and arrays). Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 42 / 57

Satisfiability, Validity

Examples:

1 ∀x : P (x)→ P (x)

Valid.

2 x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

Satisfiable.

Example model: U = N, x 7→ 0, y 7→ 1, f() 7→ 0,

6= is the “not equal to”
relation on N: 6= 7→ {(0, 1), (0, 2), ..., (1, 0), (1, 2), ...}.

3 x+ 2 = y ∧ f(read(write(A, x, 3), y − 2)) 6= f(y − x+ 1)

Satisfiable with a non-standard interpretation of +,− or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of
arithmetic and arrays). Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 42 / 57

Satisfiability, Validity

Examples:

1 ∀x : P (x)→ P (x)

Valid.

2 x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

Satisfiable.

Example model: U = N, x 7→ 0, y 7→ 1, f() 7→ 0, 6= is the “not equal to”
relation on N: 6= 7→ {(0, 1), (0, 2), ..., (1, 0), (1, 2), ...}.

3 x+ 2 = y ∧ f(read(write(A, x, 3), y − 2)) 6= f(y − x+ 1)

Satisfiable with a non-standard interpretation of +,− or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of
arithmetic and arrays). Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 42 / 57

Satisfiability, Validity

Examples:

1 ∀x : P (x)→ P (x)

Valid.

2 x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

Satisfiable.

Example model: U = N, x 7→ 0, y 7→ 1, f() 7→ 0, 6= is the “not equal to”
relation on N: 6= 7→ {(0, 1), (0, 2), ..., (1, 0), (1, 2), ...}.

3 x+ 2 = y ∧ f(read(write(A, x, 3), y − 2)) 6= f(y − x+ 1)

Satisfiable with a non-standard interpretation of +,− or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of
arithmetic and arrays). Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 42 / 57

Satisfiability, Validity

Examples:

1 ∀x : P (x)→ P (x)

Valid.

2 x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

Satisfiable.

Example model: U = N, x 7→ 0, y 7→ 1, f() 7→ 0, 6= is the “not equal to”
relation on N: 6= 7→ {(0, 1), (0, 2), ..., (1, 0), (1, 2), ...}.

3 x+ 2 = y ∧ f(read(write(A, x, 3), y − 2)) 6= f(y − x+ 1)

Satisfiable with a non-standard interpretation of +,− or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of
arithmetic and arrays). Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 42 / 57

Satisfiability, Validity

Examples:

1 ∀x : P (x)→ P (x)

Valid.

2 x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

Satisfiable.

Example model: U = N, x 7→ 0, y 7→ 1, f() 7→ 0, 6= is the “not equal to”
relation on N: 6= 7→ {(0, 1), (0, 2), ..., (1, 0), (1, 2), ...}.

3 x+ 2 = y ∧ f(read(write(A, x, 3), y − 2)) 6= f(y − x+ 1)

Satisfiable with a non-standard interpretation of +,− or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of
arithmetic and arrays). Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 42 / 57

Normal forms for FOL

Negation normal form: “push” negation across quantifiers, and then
across boolean connectives as in propositional logic

¬∀x : F [x]⇔ ∃x : ¬F [x] and ¬∃x : F [x]⇔ ∀x : ¬F [x]

CNF and DNF:
I First put the formula in prenex normal form (PNF), where all

quantifiers appear at the beginning of the formula, e.g.,

(∀x : P (x))→ (∃y : R(y)) ; ∃x : ∃y : ¬P (x) ∨R(y)

I Then convert the “main body” subformula, which is quantifier-free, to
CNF or DNF using same methods as for propositional logic.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 43 / 57

Normal forms for FOL

Negation normal form: “push” negation across quantifiers, and then
across boolean connectives as in propositional logic

¬∀x : F [x]⇔ ∃x : ¬F [x] and ¬∃x : F [x]⇔ ∀x : ¬F [x]

CNF and DNF:
I First put the formula in prenex normal form (PNF), where all

quantifiers appear at the beginning of the formula, e.g.,

(∀x : P (x))→ (∃y : R(y)) ; ∃x : ∃y : ¬P (x) ∨R(y)

I Then convert the “main body” subformula, which is quantifier-free, to
CNF or DNF using same methods as for propositional logic.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 43 / 57

Prenex normal form

Procedure to convert a formula φ in PNF (prenex normal form)
[Bradley and Manna, 2007]:

1 Convert φ to NNF, to obtain φ1.

2 Rename quantified variables so that there are no such variables that
have the same name but are in different scopes, to obtain φ2.

3 Remove quantifiers from φ2 to obtain quantifier-free formula φ3.

4 Add all removed quantifiers at the head of φ3, to obtain φ4:

φ4 := Q1x1 : Q2x2 : · · ·Qnxn : φ3

so that if quantifier Qj is in the scope of Qi in φ1, then i < j.

Let’s run this on some examples:

(∀x : P (x))→ (∃y : R(y)), ∀x : ¬(∃y : P (x, y)∧ P (x, z))∨ ∃y : P (x, y)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 44 / 57

Prenex normal form

Procedure to convert a formula φ in PNF (prenex normal form)
[Bradley and Manna, 2007]:

1 Convert φ to NNF, to obtain φ1.

2 Rename quantified variables so that there are no such variables that
have the same name but are in different scopes, to obtain φ2.

3 Remove quantifiers from φ2 to obtain quantifier-free formula φ3.

4 Add all removed quantifiers at the head of φ3, to obtain φ4:

φ4 := Q1x1 : Q2x2 : · · ·Qnxn : φ3

so that if quantifier Qj is in the scope of Qi in φ1, then i < j.

Let’s run this on some examples:

(∀x : P (x))→ (∃y : R(y)), ∀x : ¬(∃y : P (x, y)∧ P (x, z))∨ ∃y : P (x, y)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 44 / 57

THEORIES

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 45 / 57

First-order theories

FOL is very general (and also undecidable)

In practice, we often use restricted subsets, where symbols have the
expected meaning, e.g.,

I Arithmetic formulas: ∀n : n+ 1 > n

We formalize this concept as a theory, e.g.,
I Theory of Peano arithmetic (addition, multiplication)
I Theory of Presburger arithmetic (addition, no multiplication)
I Theory of arrays
I Theory of uninterpreted functions with equality
I ...

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 46 / 57

First-order theories

A first-order theory is defined by

its signature: the set of constant, function, and predicate symbols
The signature defines the syntax of the theory.

its set of axioms: these are closed FOL formulas (no free variables)
which have symbols only from the theory’s signature.
The axioms define the meaning of the symbols, i.e., the semantics of
the theory!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 47 / 57

Example: Presburger arithmetic

Signature: ΣN = {0, 1,+,=}, where
I 0, 1 are constants
I + is a binary function
I = is a binary predicate

Axioms:
1 ∀x : x+ 0 = x (zero is the neutral element for addition)
2 ∀x : ¬(x+ 1 = 0) (no negative numbers)
3 ∀x, y : x+ 1 = y + 1→ x = y
4 F [0] ∧ (∀x : F [x]→ F [x+ 1])→ ∀x : F [x] (induction – this is in fact

an axiom schema, an infinite set of axioms, for any instance of F)
5 ∀x, y : x+ (y + 1) = (x+ y) + 1

Note: we write ∀x : x+ 0 = x for convenience. The legal syntax is
∀x : = (+(x, 0), x).

Presburger arithmetic is decidable! (i.e., it is decidable, given a formula, to
check whether it is satisfiable, or valid)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 48 / 57

Example: Presburger arithmetic

Signature: ΣN = {0, 1,+,=}, where
I 0, 1 are constants
I + is a binary function
I = is a binary predicate

Axioms:
1 ∀x : x+ 0 = x (zero is the neutral element for addition)
2 ∀x : ¬(x+ 1 = 0) (no negative numbers)
3 ∀x, y : x+ 1 = y + 1→ x = y
4 F [0] ∧ (∀x : F [x]→ F [x+ 1])→ ∀x : F [x] (induction – this is in fact

an axiom schema, an infinite set of axioms, for any instance of F)
5 ∀x, y : x+ (y + 1) = (x+ y) + 1

Note: we write ∀x : x+ 0 = x for convenience. The legal syntax is
∀x : = (+(x, 0), x).

Presburger arithmetic is decidable! (i.e., it is decidable, given a formula, to
check whether it is satisfiable, or valid)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 48 / 57

Example: Presburger arithmetic

Signature: ΣN = {0, 1,+,=}, where
I 0, 1 are constants
I + is a binary function
I = is a binary predicate

Axioms:
1 ∀x : x+ 0 = x (zero is the neutral element for addition)
2 ∀x : ¬(x+ 1 = 0) (no negative numbers)
3 ∀x, y : x+ 1 = y + 1→ x = y
4 F [0] ∧ (∀x : F [x]→ F [x+ 1])→ ∀x : F [x] (induction – this is in fact

an axiom schema, an infinite set of axioms, for any instance of F)
5 ∀x, y : x+ (y + 1) = (x+ y) + 1

Note: we write ∀x : x+ 0 = x for convenience. The legal syntax is
∀x : = (+(x, 0), x).

Presburger arithmetic is decidable! (i.e., it is decidable, given a formula, to
check whether it is satisfiable, or valid)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 48 / 57

Example: Peano arithmetic

Signature: ΣPA = {0, 1,+, ·,=}, where
I 0, 1 are constants
I +, · are binary functions
I = is a binary predicate

Axioms: the axioms of Presburger arithmetic, plus
6 ∀x : x · 0 = 0
7 ∀x, y : x · (y + 1) = (x · y) + x

Peano arithmetic is undecidable.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 49 / 57

Example: Peano arithmetic

Signature: ΣPA = {0, 1,+, ·,=}, where
I 0, 1 are constants
I +, · are binary functions
I = is a binary predicate

Axioms: the axioms of Presburger arithmetic, plus
6 ∀x : x · 0 = 0
7 ∀x, y : x · (y + 1) = (x · y) + x

Peano arithmetic is undecidable.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 49 / 57

PROOFS

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 50 / 57

Proofs

Suppose we want to prove that a given formula is valid.
How to do it?

We can use the brute-force method, but this only applies to
propositional logic formulas, and even there, is intractable.

We can try to reason in natural language, as in

(p ∧ p→ q)→ q is valid, because assuming both p and p→ q to be
true, since p is true, and p implies q by p→ q, we can conclude that q
must also be true.

Not very satisfactory ...

We can try a more systematic and rigorous method (which we can
also hope to automate, either fully or partially).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 51 / 57

Proof rules for propositional logic

Suppose we want to prove that propositional formula φ is valid.
Let’s try to reason by contradiction, and attempt to find an assignment a
such that a 6|= φ. If we succeed, then φ is invalid (not valid). If we reach a
contradiction, φ is valid.

We use the following proof rules (or deduction rules), based on the
syntax of φ:

For negation:

a 6|= ¬φ
a |= φ

neg1
a |= ¬φ
a 6|= φ

neg2

The way you read such a rule, e.g., neg1, is: if we assume a 6|= ¬φ, then
we can deduce a |= φ.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 52 / 57

Proof rules for propositional logic

Suppose we want to prove that propositional formula φ is valid.
Let’s try to reason by contradiction, and attempt to find an assignment a
such that a 6|= φ. If we succeed, then φ is invalid (not valid). If we reach a
contradiction, φ is valid.

We use the following proof rules (or deduction rules), based on the
syntax of φ:

For negation:

a 6|= ¬φ
a |= φ

neg1
a |= ¬φ
a 6|= φ

neg2

The way you read such a rule, e.g., neg1, is: if we assume a 6|= ¬φ, then
we can deduce a |= φ.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 52 / 57

Proof rules for propositional logic

For conjunction:

a 6|= φ1 ∧ φ2
a 6|= φ1 | a 6|= φ2

(proof generates 2 “or” branches)

and1

a |= φ1 ∧ φ2
a |= φ1
a |= φ2

(proof generates 2 deductions)

and2

Note: here we are going downwards; often proofs are written in the
opposite way, going upwards.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 53 / 57

Proof rules for propositional logic

For disjunction:

a 6|= φ1 ∨ φ2
a 6|= φ1
a 6|= φ2

or1 a |= φ1 ∨ φ2
a |= φ1 | a |= φ2

or2

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 54 / 57

Proof rules for propositional logic

For disjunction:

a 6|= φ1 ∨ φ2
a 6|= φ1
a 6|= φ2

or1 a |= φ1 ∨ φ2
a |= φ1 | a |= φ2

or2

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 54 / 57

Proof rules for propositional logic

For implication:

a 6|= φ1 → φ2

a |= φ1
a 6|= φ2

impl1 a |= φ1 → φ2

a 6|= φ1 | a |= φ2
impl2

For equivalence:

a 6|= φ1 ↔ φ2

a |= φ1 ∧ ¬φ2 | a |= ¬φ1 ∧ φ2
equiv1

a |= φ1 ↔ φ2

a |= φ1 ∧ φ2 | a 6|= φ1 ∨ φ2
equiv2

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 55 / 57

Proof rules for propositional logic

For implication:

a 6|= φ1 → φ2

a |= φ1
a 6|= φ2

impl1 a |= φ1 → φ2

a 6|= φ1 | a |= φ2
impl2

For equivalence:

a 6|= φ1 ↔ φ2

a |= φ1 ∧ ¬φ2 | a |= ¬φ1 ∧ φ2
equiv1

a |= φ1 ↔ φ2

a |= φ1 ∧ φ2 | a 6|= φ1 ∨ φ2
equiv2

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 55 / 57

Proof rules for propositional logic

For implication:

a 6|= φ1 → φ2

a |= φ1
a 6|= φ2

impl1 a |= φ1 → φ2

a 6|= φ1 | a |= φ2
impl2

For equivalence:

a 6|= φ1 ↔ φ2

a |= φ1 ∧ ¬φ2 | a |= ¬φ1 ∧ φ2
equiv1

a |= φ1 ↔ φ2

a |= φ1 ∧ φ2 | a 6|= φ1 ∨ φ2
equiv2

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 55 / 57

Proof rules for propositional logic

For implication:

a 6|= φ1 → φ2

a |= φ1
a 6|= φ2

impl1 a |= φ1 → φ2

a 6|= φ1 | a |= φ2
impl2

For equivalence:

a 6|= φ1 ↔ φ2

a |= φ1 ∧ ¬φ2 | a |= ¬φ1 ∧ φ2
equiv1

a |= φ1 ↔ φ2

a |= φ1 ∧ φ2 | a 6|= φ1 ∨ φ2
equiv2

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 55 / 57

Proof rules for propositional logic

When do we reach a contradiction?

Contradiction rule:
a 6|= φ
a |= φ

a |= ⊥ contra

Let’s try to prove this using our proof system:

(p→ q) ∧ (q → r)→ (p→ r)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 56 / 57

Proof rules for propositional logic

When do we reach a contradiction?

Contradiction rule:
a 6|= φ
a |= φ

a |= ⊥ contra

Let’s try to prove this using our proof system:

(p→ q) ∧ (q → r)→ (p→ r)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 56 / 57

Bibliography

Bradley, A. R. and Manna, Z. (2007).
The calculus of computation - decision procedures with applications to verification.
Springer.

Doxiadis, A., Papadimitriou, C., Papadatos, A., and Di Donna, A. (2009).
Logicomix: An Epic Search for Truth.
Bloomsbury USA.

Huth, M. and Ryan, M. (2004).
Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press.

Tourlakis, G. (2008).
Mathematical Logic.
Wiley.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Logic (DRAFT) 57 / 57

