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WHAT WE COVERED
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Systems, Specifications, Verification, Synthesis

@ Systems: formal system modeling
» State machines, transition systems, automata
@ Specifications: formal requirements
» Temporal logics, automata
@ Verification: check whether the system satisfies the spec
» We saw model-checking
» Explicit-state (enumerative) and symbolic methods

@ Synthesis: automatic generation of systems from specs
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WHAT WE DID NOT COVER
(very partial list)
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Abstraction

e Big topic.
@ Trace inclusion, simulation, bisimulation: relations between
transition systems. E.g., see Chapter 7 of [Baier and Katoen, 2008].
» Can help reduce the size (number of states / transitions of a transition
system).
» While preserving some of its properties [Loiseaux et al., 1995].
» Sometimes infinite-state systems become finite, e.g., timed automata!
See Chapter 9 of [Baier and Katoen, 2008]
and [Alur and Dill, 1994, Tripakis and Yovine, 2001].
o Predicate abstraction: e.g., abstract integer variable n with three
predicates: n < 0, n =0, n > 0 (three abstract states).
See [Dams and Grumberg, 2018, Jhala et al., 2018]
and [Graf and Saidi, 1997].

o Abstract interpretation: a mathematical theory of abstractions,
compositions of abstractions, computations of abstractions using
fixpoints, etc [Cousot and Cousot, 1977].
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Abstraction

@ Big problem: how do we come up with the right abstractions? One
idea is Counter-Example Guided Abstraction Refinement
(CEGAR): start with a coarse abstraction and refine to more fine-grain
abstractions as necessary, based on spurious counter-examples.

@ Abstraction is key in software verification [Ball et al., 2011]. This is
a whole area by itself, with annual tool competitions (e.g.,
https://sv-comp.sosy-lab.org/), etc.

@ Many interesting topics in software verification: invariant
generation, termination analysis, interpolation [McMillan, 2018],
dealing with memory and memory allocation (e.g., separation
logic [O'Hearn, 2019]), weak memory models [Atig et al., 2010], ...
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Refinement

@ As a relation, the counter-part to abstraction: if A abstracts B then
B refines A, and vice versa.
o Stepwise program refinement: a top-down program design

methodology: from more abstract programs, to more concrete
programs, to finally code (implementations).

» While preserving properties along the way.
» And also preserving compositionality.

@ Some

references: [Floyd, 1967, Hoare, 1969, Dijkstra, 1972, Wirth, 1971,
Back and Wright, 1998, Tripakis, 2016, Dragomir et al., 2018]
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Other not covered topics

Probabilistic Model Checking [Baier et al., 2018]
Hybrid Systems [Doyen et al., 2018]

Process Algebras [Cleaveland et al., 2018]

Model Checking Security Protocols [Basin et al., 2018]

Conformance Testing and combinations of model-checking and
testing [Broy et al., 2005, Godefroid and Sen, 2018]

Static Program Analysis [Nielson et al., 1999]
Debugging [Zeller, 2005]

Software engineering

Theorem proving
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PHILOSOPHY
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Corrupting young minds

N/
L\

Socrates
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Language

@ And logic, and reason.
@ Definitions matter.

@ Human language typically very poor to express complex concepts.
» C.f. Plato's dialogues.

@ A lesson we mostly forget these days, with catastrophic consequences.
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Systems

@ Everything is a system.

@ Beautifully complex, even when small: c.f., Collatz.
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Democracy

@ Political systems are systems.

@ Anarchy, Monarchy, Oligarchy, Democracy.

o Like all systems, they satisfy some properties, and violate other
properties.

@ For example, none of anarchy, monarchy, nor oligarchy, can guarantee
human rights.

@ Can democracy guarantee human rights?
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Freedom and human rights

@ What exactly does freedom mean?
@ Which are our rights, exactly?
o The law.

@ The justice system.
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Predictions

About the future.
Science.
Intelligence.
About the past.

Simulation and verification.
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Causality

We ask Why ... ? questions all the time.

Correlation vs. causation is still an unsolved problem in science.
Many questions beginning with Why are ill-defined.

Why am I angry?

Why does my stomach hurt?

Why did Nokia fail?

Why did Greece go bankrupt?

What caused the financial crisis in 20XX?

Why is this state machine in state X ?
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Nature vs nurture

@ Another famous question that has been bothering mankind for
centuries.

» Famous professors still publish best-sellers on it.

@ Yet from a system-theoretic point of view the question makes little
sense.

@ When a state machine exhibits a certain behavior, is that due to the
structure of the state machine, or due to the inputs that the machine
has been given?
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Time

What is time?
Isn't it just the change of state?
Is it possible to “travel back in time"?

Does it mean “roll back your state” (like “undo”)?

Or roll back the state of the universe, while maintaining your state
(age, memories, etc.) unchanged?
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Don't forget to answer the course evaluation survey!
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