
System Specification, Verification and Synthesis
(SSVS) – CS 4830/7485, Fall 2019

18: Formal Verification:
Bounded Model Checking

Stavros Tripakis

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 1 / 10

FINITE-HORIZON REACHABILITY

(a.k.a. BOUNDED MODEL-CHECKING)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 2 / 10

Bounded reachability

Question:

Can a “bad” state be reached in up to n steps (transitions)?

i.e., given a transition system (P, S, S0, L,R) and a set of states Bad ⊆ S, does
there exist a path

s0 −→ s1 −→ · · · −→ sk

in the transition system such that s0 ∈ S0 and sk ∈ Bad , and k ≤ n.

Key idea:

Reduce the above question to a SAT (satisfiability) problem.

SAT problem NP-complete for propositional logic.

In practice, today’s SAT solvers can handle formulas with thousands of
variables (or more!): see [Malik and Zhang, 2009].

BMC (bounded model-checking) has emerged thanks to the advances in
SAT solver technology.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 3 / 10

Bounded reachability

Question:

Can a “bad” state be reached in up to n steps (transitions)?

i.e., given a transition system (P, S, S0, L,R) and a set of states Bad ⊆ S, does
there exist a path

s0 −→ s1 −→ · · · −→ sk

in the transition system such that s0 ∈ S0 and sk ∈ Bad , and k ≤ n.

Key idea:

Reduce the above question to a SAT (satisfiability) problem.

SAT problem NP-complete for propositional logic.

In practice, today’s SAT solvers can handle formulas with thousands of
variables (or more!): see [Malik and Zhang, 2009].

BMC (bounded model-checking) has emerged thanks to the advances in
SAT solver technology.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 3 / 10

Bounded reachability
Suppose I have predicates Init(~x), Trans(~x, ~x′), and Bad(~x).

How to use them for bounded reachability?

Bad state reachable in 0 steps iff

SAT
(

Init(~x) ∧ Bad(~x)

)

Bad state reachable in 1 step iff

SAT
(
Init(~x0) ∧ Trans(~x0, ~x1) ∧ Bad(~x1)

)
...

Bad state reachable in n steps iff

SAT
(
Init(~x0) ∧ Trans(~x0, ~x1) ∧ · · · ∧ Trans(~xn−1, ~xn) ∧ Bad(~xn)

)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 4 / 10

Bounded reachability
Suppose I have predicates Init(~x), Trans(~x, ~x′), and Bad(~x).

How to use them for bounded reachability?

Bad state reachable in 0 steps iff

SAT
(
Init(~x) ∧ Bad(~x)

)

Bad state reachable in 1 step iff

SAT
(
Init(~x0) ∧ Trans(~x0, ~x1) ∧ Bad(~x1)

)
...

Bad state reachable in n steps iff

SAT
(
Init(~x0) ∧ Trans(~x0, ~x1) ∧ · · · ∧ Trans(~xn−1, ~xn) ∧ Bad(~xn)

)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 4 / 10

Bounded reachability
Suppose I have predicates Init(~x), Trans(~x, ~x′), and Bad(~x).

How to use them for bounded reachability?

Bad state reachable in 0 steps iff

SAT
(
Init(~x) ∧ Bad(~x)

)
Bad state reachable in 1 step iff

SAT
(

Init(~x0) ∧ Trans(~x0, ~x1) ∧ Bad(~x1)

)

...

Bad state reachable in n steps iff

SAT
(
Init(~x0) ∧ Trans(~x0, ~x1) ∧ · · · ∧ Trans(~xn−1, ~xn) ∧ Bad(~xn)

)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 4 / 10

Bounded reachability
Suppose I have predicates Init(~x), Trans(~x, ~x′), and Bad(~x).

How to use them for bounded reachability?

Bad state reachable in 0 steps iff

SAT
(
Init(~x) ∧ Bad(~x)

)
Bad state reachable in 1 step iff

SAT
(
Init(~x0) ∧ Trans(~x0, ~x1) ∧ Bad(~x1)

)

...

Bad state reachable in n steps iff

SAT
(
Init(~x0) ∧ Trans(~x0, ~x1) ∧ · · · ∧ Trans(~xn−1, ~xn) ∧ Bad(~xn)

)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 4 / 10

Bounded reachability
Suppose I have predicates Init(~x), Trans(~x, ~x′), and Bad(~x).

How to use them for bounded reachability?

Bad state reachable in 0 steps iff

SAT
(
Init(~x) ∧ Bad(~x)

)
Bad state reachable in 1 step iff

SAT
(
Init(~x0) ∧ Trans(~x0, ~x1) ∧ Bad(~x1)

)
...

Bad state reachable in n steps iff

SAT
(

Init(~x0) ∧ Trans(~x0, ~x1) ∧ · · · ∧ Trans(~xn−1, ~xn) ∧ Bad(~xn)

)
Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 4 / 10

Bounded reachability
Suppose I have predicates Init(~x), Trans(~x, ~x′), and Bad(~x).

How to use them for bounded reachability?

Bad state reachable in 0 steps iff

SAT
(
Init(~x) ∧ Bad(~x)

)
Bad state reachable in 1 step iff

SAT
(
Init(~x0) ∧ Trans(~x0, ~x1) ∧ Bad(~x1)

)
...

Bad state reachable in n steps iff

SAT
(
Init(~x0) ∧ Trans(~x0, ~x1) ∧ · · · ∧ Trans(~xn−1, ~xn) ∧ Bad(~xn)

)
Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 4 / 10

Bounded reachability algorithm – outer loop

1: for all k = 0, 1, ..., n do
2: φ := Init(~x0) ∧ Trans(~x0, ~x1) ∧ · · · ∧ Trans(~xk−1, ~xk) ∧ Bad(~xk);
3: if SAT(φ) then
4: print “Bad state reachable in k steps”;
5: output solution as counter-example;
6: end if
7: end for
8: print “Bad state unreachable up to n steps”;

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 5 / 10

Bounded reachability: soundness and completeness
1: for all k = 0, 1, ..., n do
2: φ := Init(~x0) ∧ Trans(~x0, ~x1) ∧ · · · ∧ Trans(~xk−1, ~xk) ∧ Bad(~xk);
3: if SAT(φ) then
4: print “Bad state reachable in k steps”;
5: output solution as counter-example;
6: end if
7: end for
8: print “Bad state unreachable up to n steps”;

BMC algorithm is sound in the following sense:

if algorithm reports “reachable” then indeed a bad state is reachable

if algorithm reports “unreachable up to n steps” then there is no path of
length ≤ n that reaches a bad state.

Can we make BMC complete?

It should report unreachable iff there are no reachable bad states (w.r.t. any
bound).

Is this even possible in general? For finite-state systems? Yes!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 6 / 10

Bounded reachability: soundness and completeness
1: for all k = 0, 1, ..., n do
2: φ := Init(~x0) ∧ Trans(~x0, ~x1) ∧ · · · ∧ Trans(~xk−1, ~xk) ∧ Bad(~xk);
3: if SAT(φ) then
4: print “Bad state reachable in k steps”;
5: output solution as counter-example;
6: end if
7: end for
8: print “Bad state unreachable up to n steps”;

BMC algorithm is sound in the following sense:

if algorithm reports “reachable” then indeed a bad state is reachable

if algorithm reports “unreachable up to n steps” then there is no path of
length ≤ n that reaches a bad state.

Can we make BMC complete?

It should report unreachable iff there are no reachable bad states (w.r.t. any
bound).

Is this even possible in general?

For finite-state systems? Yes!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 6 / 10

Bounded reachability: soundness and completeness
1: for all k = 0, 1, ..., n do
2: φ := Init(~x0) ∧ Trans(~x0, ~x1) ∧ · · · ∧ Trans(~xk−1, ~xk) ∧ Bad(~xk);
3: if SAT(φ) then
4: print “Bad state reachable in k steps”;
5: output solution as counter-example;
6: end if
7: end for
8: print “Bad state unreachable up to n steps”;

BMC algorithm is sound in the following sense:

if algorithm reports “reachable” then indeed a bad state is reachable

if algorithm reports “unreachable up to n steps” then there is no path of
length ≤ n that reaches a bad state.

Can we make BMC complete?

It should report unreachable iff there are no reachable bad states (w.r.t. any
bound).

Is this even possible in general? For finite-state systems?

Yes!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 6 / 10

Bounded reachability: soundness and completeness
1: for all k = 0, 1, ..., n do
2: φ := Init(~x0) ∧ Trans(~x0, ~x1) ∧ · · · ∧ Trans(~xk−1, ~xk) ∧ Bad(~xk);
3: if SAT(φ) then
4: print “Bad state reachable in k steps”;
5: output solution as counter-example;
6: end if
7: end for
8: print “Bad state unreachable up to n steps”;

BMC algorithm is sound in the following sense:

if algorithm reports “reachable” then indeed a bad state is reachable

if algorithm reports “unreachable up to n steps” then there is no path of
length ≤ n that reaches a bad state.

Can we make BMC complete?

It should report unreachable iff there are no reachable bad states (w.r.t. any
bound).

Is this even possible in general? For finite-state systems? Yes!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 6 / 10

Complete BMC: “brute-force” threshold

1: for all k = 0, 1, ..., n do
2: φ := Init(~x0) ∧ Trans(~x0, ~x1) ∧ · · · ∧ Trans(~xk−1, ~xk) ∧ Bad(~xk);
3: if SAT(φ) then
4: print “Bad state reachable in k steps”;
5: output solution as counter-example;
6: end if
7: end for
8: print “Bad state unreachable up to n steps”;

A finite-state transition system is essentially a finite graph.

How can we turn BMC into a complete method for finite-state systems?

If we know |S| (the number of all possible states) then we can set n := |S|.
Because no acyclic path can have length greater than |S|, and we only
care about acyclic paths.

But: with 100 boolean variables, |S| = 2100, so this isn’t practical ...
(formulas become too big).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 7 / 10

Complete BMC: “brute-force” threshold

1: for all k = 0, 1, ..., n do
2: φ := Init(~x0) ∧ Trans(~x0, ~x1) ∧ · · · ∧ Trans(~xk−1, ~xk) ∧ Bad(~xk);
3: if SAT(φ) then
4: print “Bad state reachable in k steps”;
5: output solution as counter-example;
6: end if
7: end for
8: print “Bad state unreachable up to n steps”;

A finite-state transition system is essentially a finite graph.

How can we turn BMC into a complete method for finite-state systems?

If we know |S| (the number of all possible states) then we can set n := |S|.
Because no acyclic path can have length greater than |S|, and we only
care about acyclic paths.

But: with 100 boolean variables, |S| = 2100, so this isn’t practical ...
(formulas become too big).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 7 / 10

Complete BMC: a better threshold

Reachability diameter: number of steps that it takes to reach any
reachable state.

d := min{i | ∀s ∈ Reach : ∃ path s0, s1, ..., sj : j ≤ i ∧ s0 ∈ S0 ∧ sj = s}

where Reach is the set of reachable states.

d is generally a much better threshold than |S|. Why?
d ≤ |Reach| ≤ |S|.

Problem: we don’t know |Reach|, therefore how to compute d?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 8 / 10

Complete BMC: a better threshold

Reachability diameter: number of steps that it takes to reach any
reachable state.

d := min{i | ∀s ∈ Reach : ∃ path s0, s1, ..., sj : j ≤ i ∧ s0 ∈ S0 ∧ sj = s}

where Reach is the set of reachable states.

d is generally a much better threshold than |S|. Why?

d ≤ |Reach| ≤ |S|.

Problem: we don’t know |Reach|, therefore how to compute d?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 8 / 10

Complete BMC: a better threshold

Reachability diameter: number of steps that it takes to reach any
reachable state.

d := min{i | ∀s ∈ Reach : ∃ path s0, s1, ..., sj : j ≤ i ∧ s0 ∈ S0 ∧ sj = s}

where Reach is the set of reachable states.

d is generally a much better threshold than |S|. Why?
d ≤ |Reach| ≤ |S|.

Problem: we don’t know |Reach|, therefore how to compute d?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 8 / 10

Complete BMC: a better threshold

Reachability diameter: number of steps that it takes to reach any
reachable state.

d := min{i | ∀s ∈ Reach : ∃ path s0, s1, ..., sj : j ≤ i ∧ s0 ∈ S0 ∧ sj = s}

where Reach is the set of reachable states.

d is generally a much better threshold than |S|. Why?
d ≤ |Reach| ≤ |S|.

Problem: we don’t know |Reach|, therefore how to compute d?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 8 / 10

Complete BMC: the Completeness Threshold
Recurrence diameter : length of the longest cycle-free path.

r := max{i | ∃ path s0, s1, ..., si : s0 ∈ S0 ∧ ∀0 ≤ j < k ≤ i : sj 6= sk}

Claim: d ≤ r. Why?
Because in the definition of d only acyclic paths matter.

⇒ using r instead of d is safe. Why?
Because r is an upper bound for d, so we are being conservative.

Can we compute r? How?

Use a SAT solver!

r := max{i | SAT
(
Init(~x0) ∧ Trans(~x0, ~x1) ∧ · · · ∧ Trans(~xi−1, ~xi)

∧
i−1∧
j=0

i∧
k=j+1

~xj 6= ~xk

)
}

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 9 / 10

Complete BMC: the Completeness Threshold
Recurrence diameter : length of the longest cycle-free path.

r := max{i | ∃ path s0, s1, ..., si : s0 ∈ S0 ∧ ∀0 ≤ j < k ≤ i : sj 6= sk}

Claim: d ≤ r. Why?

Because in the definition of d only acyclic paths matter.

⇒ using r instead of d is safe. Why?
Because r is an upper bound for d, so we are being conservative.

Can we compute r? How?

Use a SAT solver!

r := max{i | SAT
(
Init(~x0) ∧ Trans(~x0, ~x1) ∧ · · · ∧ Trans(~xi−1, ~xi)

∧
i−1∧
j=0

i∧
k=j+1

~xj 6= ~xk

)
}

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 9 / 10

Complete BMC: the Completeness Threshold
Recurrence diameter : length of the longest cycle-free path.

r := max{i | ∃ path s0, s1, ..., si : s0 ∈ S0 ∧ ∀0 ≤ j < k ≤ i : sj 6= sk}

Claim: d ≤ r. Why?
Because in the definition of d only acyclic paths matter.

⇒ using r instead of d is safe. Why?

Because r is an upper bound for d, so we are being conservative.

Can we compute r? How?

Use a SAT solver!

r := max{i | SAT
(
Init(~x0) ∧ Trans(~x0, ~x1) ∧ · · · ∧ Trans(~xi−1, ~xi)

∧
i−1∧
j=0

i∧
k=j+1

~xj 6= ~xk

)
}

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 9 / 10

Complete BMC: the Completeness Threshold
Recurrence diameter : length of the longest cycle-free path.

r := max{i | ∃ path s0, s1, ..., si : s0 ∈ S0 ∧ ∀0 ≤ j < k ≤ i : sj 6= sk}

Claim: d ≤ r. Why?
Because in the definition of d only acyclic paths matter.

⇒ using r instead of d is safe. Why?
Because r is an upper bound for d, so we are being conservative.

Can we compute r? How?

Use a SAT solver!

r := max{i | SAT
(
Init(~x0) ∧ Trans(~x0, ~x1) ∧ · · · ∧ Trans(~xi−1, ~xi)

∧
i−1∧
j=0

i∧
k=j+1

~xj 6= ~xk

)
}

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 9 / 10

Complete BMC: the Completeness Threshold
Recurrence diameter : length of the longest cycle-free path.

r := max{i | ∃ path s0, s1, ..., si : s0 ∈ S0 ∧ ∀0 ≤ j < k ≤ i : sj 6= sk}

Claim: d ≤ r. Why?
Because in the definition of d only acyclic paths matter.

⇒ using r instead of d is safe. Why?
Because r is an upper bound for d, so we are being conservative.

Can we compute r? How?

Use a SAT solver!

r := max{i | SAT
(
Init(~x0) ∧ Trans(~x0, ~x1) ∧ · · · ∧ Trans(~xi−1, ~xi)

∧
i−1∧
j=0

i∧
k=j+1

~xj 6= ~xk

)
}

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 9 / 10

Bibliography

Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., and Zhu, Y. (2003).

Bounded model checking.
Advances in Computers, 58:117–148.

Latvala, T., Biere, A., Heljanko, K., and Junttila, T. (2004).

Simple Bounded LTL Model Checking.
In Formal Methods in Computer-Aided Design, volume 3312 of LNCS, pages 186–200. Springer.

Malik, S. and Zhang, L. (2009).

Boolean satisfiability: From theoretical hardness to practical success.
Communications of the ACM, 52(8):76–82.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Bounded Model Checking 10 / 10

	Bounded Model Checking

