
System Specification, Verification and Synthesis
(SSVS) – CS 4830/7485, Fall 2019

17: Formal Verification:
LTL Model Checking

Stavros Tripakis

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 1 / 54

Recall: the model-checking problem for LTL

Given:

the implementation: a transition system (Kripke structure)
M = (AP, S, S0, L,R)

the specification: an LTL formula φ

check where M satisfies φ:

M
?

|= φ

i.e., check whether for every infinite trace generated by M satisfies φ.

We will assume that M is finite and has no deadlock states.
What if M has deadlocks? → Homework.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 2 / 54

Recall: the model-checking problem for LTL

Given:

the implementation: a transition system (Kripke structure)
M = (AP, S, S0, L,R)

the specification: an LTL formula φ

check where M satisfies φ:

M
?

|= φ

i.e., check whether for every infinite trace generated by M satisfies φ.

We will assume that M is finite and has no deadlock states.
What if M has deadlocks? → Homework.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 2 / 54

LTL Model-Checking: the Automata-Theoretic Approach

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 3 / 54

LTL model-checking: basic idea

To check whether M |= φ:

1 Construct an automaton A¬φ which accepts all infinite traces
satisfying ¬φ, i.e., violating φ.

I A¬φ is an ω-automaton, i.e., an automaton over infinite words.
I There are different kinds of ω-automata: Büchi automata, Rabin

automata, Street automata, parity automata, ...

2 Compute the product of M and A¬φ, denoted M ×A¬φ.
I M ×A¬φ is usually of the same type as A¬φ. For instance, if A¬φ is a

Büchi automaton, then so is M ×A¬φ.
I M ×A¬φ captures the intersection of the set of traces generated by
M , on one hand, and the set of traces accepted by A¬φ, on the other.

I Therefore, every trace accepted by M ×A¬φ contradicts M |= φ, since
it is a trace which can be generated by M , and at the same time
violates φ.

3 Check that M ×A¬φ is empty, i.e., accepts no trace.

This is called the automata theoretic approach.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 4 / 54

LTL model-checking: a language containment problem

M |= φ

can be also restated as

Traces(M) ⊆ Traces(φ)

where Traces(M) is the set of all traces generated by M , and where
Traces(φ) is the set of all traces satisfying φ.

But
Traces(M) ⊆ Traces(φ)

is equivalent to
Traces(M) ∩ Traces(φ) = ∅

which is in turn equivalent to

Traces(M) ∩ Traces(¬φ) = ∅
M ×A¬φ is built in such a way so that we have

Traces(M ×A¬φ) = Traces(M) ∩ Traces(¬φ)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 5 / 54

LTL model-checking: a language containment problem

M |= φ

can be also restated as

Traces(M) ⊆ Traces(φ)

where Traces(M) is the set of all traces generated by M , and where
Traces(φ) is the set of all traces satisfying φ.

But
Traces(M) ⊆ Traces(φ)

is equivalent to
Traces(M) ∩ Traces(φ) = ∅

which is in turn equivalent to

Traces(M) ∩ Traces(¬φ) = ∅
M ×A¬φ is built in such a way so that we have

Traces(M ×A¬φ) = Traces(M) ∩ Traces(¬φ)
Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 5 / 54

Recall: Monitors

One can think of the automata theoretic approach as verification using
monitors:

Design
(implementation)

Monitor: ¬φ
(negation of the specification)

The monitor is like a “watchdog”: it observes the outputs of Design,
and declares an error if ever Design does something wrong.

I This analogy is appropriate for safety properties where erroneous traces
are finite.

For liveness, erroneous traces are infinite: but since we know the
transition system M of Design, the system we are checking is a white
box ⇒ “off-line” verification has access to infinite traces.

The field of runtime verification (“on-line”) assumes that Design is
a black box: see https://www.runtime-verification.org/.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 6 / 54

https://www.runtime-verification.org/

Recall: Monitors

One can think of the automata theoretic approach as verification using
monitors:

Design
(implementation)

Monitor: ¬φ
(negation of the specification)

The monitor is like a “watchdog”: it observes the outputs of Design,
and declares an error if ever Design does something wrong.

I This analogy is appropriate for safety properties where erroneous traces
are finite.

For liveness, erroneous traces are infinite: but since we know the
transition system M of Design, the system we are checking is a white
box ⇒ “off-line” verification has access to infinite traces.

The field of runtime verification (“on-line”) assumes that Design is
a black box: see https://www.runtime-verification.org/.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 6 / 54

https://www.runtime-verification.org/

Verification of safety properties using safety monitors

Design Monitor

Using safety monitors, we reduce the model-checking problem for safety
properties to checking reachability of error states in the product

Design × Monitor.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 7 / 54

What about liveness properties?

Design Monitor

Monitors essentially try to find counter-examples = behaviors that
violate the property we are interested in.

What is a counter-example to a liveness property?
I An infinite behavior.

Infinite behaviors represented by ω-automata (here we use Büchi).

But how do we go from LTL into a Büchi automaton?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 8 / 54

TRANSLATING LTL TO BÜCHI AUTOMATA

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 9 / 54

From LTL to Büchi automata

Every LTL formula can be translated to an equivalent Büchi
automaton.

The resulting automaton is generally non-deterministic: this is
unavoidable. Why?

I Because the LTL formula FGb cannot be represented as a DBA, as we
saw.

A number of LTL-to-Büchi translation algorithms exist.

There are tools which implement such translations, e.g.,:
I Spin
I http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/

The bad news: the size of the resulting automaton is generally
exponential in the size of the formula.

This is unavoidable: there exist LTL formulas of size O(n2 · |AP|)
which require NBA of size O(2n).
Example:

∧
p∈AP

∧
0≤i<n(Xip↔ Xi+np)

Homework: explain why automaton of size O(2n) is necessary.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 10 / 54

http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/
http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/

From LTL to Büchi automata

Every LTL formula can be translated to an equivalent Büchi
automaton.

The resulting automaton is generally non-deterministic: this is
unavoidable. Why?

I Because the LTL formula FGb cannot be represented as a DBA, as we
saw.

A number of LTL-to-Büchi translation algorithms exist.

There are tools which implement such translations, e.g.,:
I Spin
I http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/

The bad news: the size of the resulting automaton is generally
exponential in the size of the formula.

This is unavoidable: there exist LTL formulas of size O(n2 · |AP|)
which require NBA of size O(2n).
Example:

∧
p∈AP

∧
0≤i<n(Xip↔ Xi+np)

Homework: explain why automaton of size O(2n) is necessary.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 10 / 54

http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/
http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/

From LTL to Büchi automata

Every LTL formula can be translated to an equivalent Büchi
automaton.

The resulting automaton is generally non-deterministic: this is
unavoidable. Why?

I Because the LTL formula FGb cannot be represented as a DBA, as we
saw.

A number of LTL-to-Büchi translation algorithms exist.

There are tools which implement such translations, e.g.,:
I Spin
I http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/

The bad news: the size of the resulting automaton is generally
exponential in the size of the formula.

This is unavoidable: there exist LTL formulas of size O(n2 · |AP|)
which require NBA of size O(2n).
Example:

∧
p∈AP

∧
0≤i<n(Xip↔ Xi+np)

Homework: explain why automaton of size O(2n) is necessary.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 10 / 54

http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/
http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/

From LTL to Büchi automata

The translation works in two steps:

1 From an LTL formula to a GNBA: Generalized Non-deterministic
Büchi Automaton.

2 From a GNBA to an NBA.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 11 / 54

GNBA

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 12 / 54

Generalized Non-Deterministic Büchi Automata (GNBA)

Büchi automata have a single set of accepting states F :

(Σ, S, S0,∆, F)

and the acceptance criterion is that (at least one state in) F is visited
infinitely often.

Generalized NBA: many sets of accepting states:

(Σ, S, S0,∆,F)

where
F = {F1, F2, ..., Fk}

is a set of sets of accepting states, i.e., Fi ⊆ S for i = 1, ..., k.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 13 / 54

GNBA: acceptance criteria

GNBA:
(Σ, S, S0,∆,F)

where
F = {F1, F2, ..., Fk}

is a set of sets of accepting states, i.e., Fi ⊆ S for every i.

GNBA acceptance condition: a word is accepted if there exists a run where
every Fi is visited infinitely often.

Note: F can be empty. What happens in that case?
Every word that has a run is accepted.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 14 / 54

GNBA: acceptance criteria

GNBA:
(Σ, S, S0,∆,F)

where
F = {F1, F2, ..., Fk}

is a set of sets of accepting states, i.e., Fi ⊆ S for every i.

GNBA acceptance condition: a word is accepted if there exists a run where
every Fi is visited infinitely often.

Note: F can be empty. What happens in that case?

Every word that has a run is accepted.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 14 / 54

GNBA: acceptance criteria

GNBA:
(Σ, S, S0,∆,F)

where
F = {F1, F2, ..., Fk}

is a set of sets of accepting states, i.e., Fi ⊆ S for every i.

GNBA acceptance condition: a word is accepted if there exists a run where
every Fi is visited infinitely often.

Note: F can be empty. What happens in that case?
Every word that has a run is accepted.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 14 / 54

GNBA: example

In the following, F = {{q1}, {q2}}.
194 Regular Properties

q0q1 q2

true

crit2

truecrit1

true

Figure 4.19: GNBA for “infinitely often processes 1 and 2 are in their critical section”.

Lω(G) the atomic propositions crit1 and crit2 occur infinitely often as elements of the sets
Ai ∈ 2AP. Thus, σ ∈ Plive .

”⊇”: Let σ = A0A1 A2 . . . ∈ Plive . Since both propositions crit1 and crit2 occur infinitely
often in the symbols Ai, the GNBA G can behave for the input word σ as follows. G remains
in state q0 until the first input symbol Ai with crit1 ∈ Ai appears. The automaton then
moves to state q1. From there, G consumes the next input symbol Ai+1 and returns to q0.
It then waits in q0 until a symbol Aj with crit2 ∈ Aj occurs, in which case the automaton
moves to state q2 for the symbol Aj and returns to q0 on the next symbol Aj+1. Now the
whole procedure restarts, i.e., G stays in q0 while reading the symbols Aj+1, . . . ,A	−1 and
moves to q1 as soon as the current input symbol A	 contains crit1. And so on. In this
way, G generates an accepting run of the form

qk10 q1 q
k2
0 q2 q

k3
0 q1 q

k4
0 q2 q

k5
0 . . .

for the input word σ. These considerations show that Plive ⊆ Lω(G).

Remark 4.54. No Acceptance Set

The set F of acceptance sets of a GNBA may be empty. If F = ∅ then σ ∈ Lω(G) if
and only if there exists an infinite run for σ in G. We like to stress the difference with
NBA with an empty set of accepting states. For an NBA A = (Q,Σ, δ,Q0,∅) there are no
accepting runs. Therefore, the language Lω(A) is empty. Contrary to that, every infinite
run of a GNBA G = (Q,Σ, δ,Q0,∅) is accepting.

In fact, every GNBA G is equivalent to a GNBA G′ having at least one acceptance set.
This is due to the fact that the state space Q can always be added to the set F of the
acceptance sets without affecting the accepted language of the GNBA. Formally, for GNBA
G = (Q,Σ, δ,Q0,F) let GNBA G′ = (Q,Σ, δ,Q0,F ∪ {Q}). Then it easily follows that:
Lω(G) = Lω(G′).

q1 must be visited infinitely often, but q2 must also be visited infinitely
often ⇒ “every process gets access to its critical section infinitely often”.

Picture taken from [Baier and Katoen, 2008].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 15 / 54

From GNBA to NBA

Every GNBA Ag can be translated to an equivalent NBA A (i.e., accepting
the same language).

The translation is polynomial: if n is the number of states of Ag, and k is
the number of acceptance sets in F , then the number of states of A is
n · k.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 16 / 54

From GNBA to NBA

Basic idea of the translation: use a modulo-k counter i ∈ {1, ..., k} which
keeps track of which set Fi we visited last and makes sure sets are visited
in the order F1, F2, ..., Fk.

Automata on Infinite Words 195

Remark 4.55. Nonblocking GNBA

As for NBAs, each GNBA G can be replaced with an equivalent GNBA G′, in which all
possible behaviors for a given infinite input word yield an infinite run. Such a GNBA
G′ can be constructed by inserting a nonaccept trapping state, as we did for NBA in the
remark on page 187.

Obviously, every NBA can be understood as a GNBA with exactly one acceptance set.
Conversely, every GNBA can be transformed into an equivalent NBA:

Theorem 4.56. From GNBA to NBA

For each GNBA G there exists an NBA A with Lω(G) = Lω(A) and |A| = O(|G| · |F|)
where F denotes the set of acceptance sets in G.

Proof: Let G = (Q,Σ, δ,Q0,F) be a GNBA. According to the remark on page 194, we may
assume without loss of generality that F �= ∅. Let F = {F1, . . . , Fk} where k � 1. The
basic idea of the construction of A is to create k copies of G such that the acceptance set Fi
of the ith copy is connected to the corresponding states of the (i+1)th copy. The accepting

F1

Q0

F2

Fk

...

Figure 4.20: Idea for transforming a GNBA into an NBA.

condition forA consists of the requirement that an accepting state of the first copy is visited
infinitely often. This ensures that all other accepting sets Fi of the k copies are visited
infinitely often too, see Figure 4.20 on page 195. Formally, let A = (Q′,Σ, δ′, Q′

0, F
′)

where:

Q′ = Q× { 1, . . . , k },

Q′
0 = Q0 × { 1 } = { 〈q0, 1〉 | q0 ∈ Q0 }, and

F ′ = F1 × { 1 } = { 〈qF , 1〉 | qF ∈ F1 }.

Picture taken from [Baier and Katoen, 2008].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 17 / 54

GNBA to NBA translation: example

For the GNBA shown earlier, this is the resulting NBA:
Automata on Infinite Words 197

〈q0, 1〉〈q1, 1〉 〈q2, 1〉

true

crit2

true

crit1

〈q1, 2〉 〈q0, 2〉 〈q2, 2〉

true
true

crit1

true crit2

true

Figure 4.21: Example for the transformation of a GNBA into an equivalent NBA.

NBA representations (see Lemma 4.33 on page 179). We now use GNBAs to show that
ω-regular languages are closed under intersection too.

Lemma 4.59. Intersection of GNBA

For GNBA G1 and G2 (both over the alphabet Σ), there exists a GNBA G with

Lω(G) = Lω(G1) ∩ Lω(G2) and |G| = O(|G1| · |G2|).

Proof: Let G1 = (Q1,Σ, δ1, Q0,1,F1) and G2 = (Q2,Σ, δ2, Q0,2,F2) where without loss of
generality Q1∩Q2 = ∅. Let G be the GNBA that results from G1 and G2 by a synchronous
product construction (as for NFA) and “lifts” the acceptance sets F ∈ F1∪F2 to acceptance
sets in G. Formally,

G = G1 ⊗ G2 = (Q1 ×Q2,Σ, δ,Q0,1 ×Q0,2,F)

where the transition relation δ is defined by the rule

q1
A−−→1 q

′
1 ∧ q2 A−−→2 q

′
2

(q1, q2)
A−−→ (q′1, q

′
2)

.

The acceptance condition in G is given by

F = {F1 ×Q2 | F1 ∈ F1} ∪ {Q1 × F2 | F2 ∈ F2}.

Picture taken from [Baier and Katoen, 2008].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 18 / 54

TRANSLATING LTL TO GNBA

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 19 / 54

Translating an LTL formula φ to a GNBA A

Basic idea:

States of A are sets of LTL formulas (subformulas of φ or their
negation).

E.g., for pU q, a state of A could be the set

{pU q, p,¬q}

Meaning of a state s = {φ1, φ2, ..., φk}: every trace starting at s
must satisfy each φi.

If some φi is not satisfied already at some state s (i.e., at the first
step) then s makes a “promise” for the future ⇒ use GNBA
acceptance criteria to avoid postponing these promises forever.

Transitions also make sure that promises are correctly carried over to
the next step.

For simplicity, we assume that φ only contains atomic propositions, ∧, ¬, X and U . This is
without loss of generality since we know that other operators can be derived from the above.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 20 / 54

Translating an LTL formula φ to a GNBA A

Basic idea:

States of A are sets of LTL formulas (subformulas of φ or their
negation).

E.g., for pU q, a state of A could be the set

{pU q, p,¬q}

Meaning of a state s = {φ1, φ2, ..., φk}: every trace starting at s
must satisfy each φi.

If some φi is not satisfied already at some state s (i.e., at the first
step) then s makes a “promise” for the future ⇒ use GNBA
acceptance criteria to avoid postponing these promises forever.

Transitions also make sure that promises are correctly carried over to
the next step.

For simplicity, we assume that φ only contains atomic propositions, ∧, ¬, X and U . This is
without loss of generality since we know that other operators can be derived from the above.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 20 / 54

The closure of an LTL formula φ

clo(φ) = {the set of all subformulas of φ and their negations}
If ¬ψ is a subformula of φ we add ¬ψ and ψ (instead of ¬¬ψ) to clo(φ).

Examples:

clo(pU q) = {pU q,¬(pU q), p,¬p, q,¬q}
clo(pUXq) = {pUXq,¬(pUXq), p,¬p,Xq,¬Xq, q,¬q}

clo(pU¬Xq) = {pU¬Xq,¬(pU¬Xq), p,¬p,Xq,¬Xq, q,¬q}

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 21 / 54

The closure of an LTL formula φ

clo(φ) = {the set of all subformulas of φ and their negations}
If ¬ψ is a subformula of φ we add ¬ψ and ψ (instead of ¬¬ψ) to clo(φ).

Examples:

clo(pU q) = {pU q,¬(pU q), p,¬p, q,¬q}

clo(pUXq) = {pUXq,¬(pUXq), p,¬p,Xq,¬Xq, q,¬q}
clo(pU¬Xq) = {pU¬Xq,¬(pU¬Xq), p,¬p,Xq,¬Xq, q,¬q}

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 21 / 54

The closure of an LTL formula φ

clo(φ) = {the set of all subformulas of φ and their negations}
If ¬ψ is a subformula of φ we add ¬ψ and ψ (instead of ¬¬ψ) to clo(φ).

Examples:

clo(pU q) = {pU q,¬(pU q), p,¬p, q,¬q}
clo(pUXq) =

{pUXq,¬(pUXq), p,¬p,Xq,¬Xq, q,¬q}
clo(pU¬Xq) = {pU¬Xq,¬(pU¬Xq), p,¬p,Xq,¬Xq, q,¬q}

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 21 / 54

The closure of an LTL formula φ

clo(φ) = {the set of all subformulas of φ and their negations}
If ¬ψ is a subformula of φ we add ¬ψ and ψ (instead of ¬¬ψ) to clo(φ).

Examples:

clo(pU q) = {pU q,¬(pU q), p,¬p, q,¬q}
clo(pUXq) = {pUXq,¬(pUXq), p,¬p,Xq,¬Xq, q,¬q}

clo(pU¬Xq) = {pU¬Xq,¬(pU¬Xq), p,¬p,Xq,¬Xq, q,¬q}

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 21 / 54

The closure of an LTL formula φ

clo(φ) = {the set of all subformulas of φ and their negations}
If ¬ψ is a subformula of φ we add ¬ψ and ψ (instead of ¬¬ψ) to clo(φ).

Examples:

clo(pU q) = {pU q,¬(pU q), p,¬p, q,¬q}
clo(pUXq) = {pUXq,¬(pUXq), p,¬p,Xq,¬Xq, q,¬q}

clo(pU¬Xq) =

{pU¬Xq,¬(pU¬Xq), p,¬p,Xq,¬Xq, q,¬q}

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 21 / 54

The closure of an LTL formula φ

clo(φ) = {the set of all subformulas of φ and their negations}
If ¬ψ is a subformula of φ we add ¬ψ and ψ (instead of ¬¬ψ) to clo(φ).

Examples:

clo(pU q) = {pU q,¬(pU q), p,¬p, q,¬q}
clo(pUXq) = {pUXq,¬(pUXq), p,¬p,Xq,¬Xq, q,¬q}

clo(pU¬Xq) = {pU¬Xq,¬(pU¬Xq), p,¬p,Xq,¬Xq, q,¬q}

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 21 / 54

Legal subsets of clo(φ)

The states of the NBA will be subsets of clo(φ).

But not all subsets of clo(φ) are legal for this purpose.

For example, consider

clo(pU q) = {pU q,¬(pU q), p,¬p, q,¬q}

The subset

B1 = {pU q, p,¬p}

is illegal, because it contains both p and ¬p. Since the meaning is that we
promise to satisfy all formulas in B1, and we cannot satisfy both p and ¬p,
B1 is illegal.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 22 / 54

Legal subsets of clo(φ)

For example, consider

clo(pU q) = {pU q,¬(pU q), p,¬p, q,¬q}

Similarly, the subset

B2 = {pU q,¬p,¬q}

is illegal. Why?

Because in order to satisfy pU q, either q must hold now, or p must hold
now (and continuously until q holds in the future). Since neither p nor q
hold in B2, B2 is illegal.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 23 / 54

Legal subsets of clo(φ)

For example, consider

clo(pU q) = {pU q,¬(pU q), p,¬p, q,¬q}

Similarly, the subset

B2 = {pU q,¬p,¬q}

is illegal. Why?

Because in order to satisfy pU q, either q must hold now, or p must hold
now (and continuously until q holds in the future). Since neither p nor q
hold in B2, B2 is illegal.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 23 / 54

Recursive equivalences for the until operator

We will make use of the following fundamental equivalences for the until
operator:

pU q ⇔ q ∨ (p ∧X(pU q))

¬(pU q) ⇔ ¬q ∧ (¬p ∨X¬(pU q))

both when defining legal subsets of clo(φ) and also when defining the
transitions of the resulting NBA.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 24 / 54

Legal subsets of clo(φ)

A subset B ⊆ clo(φ) is legal if it satisfies the following conditions:

1 B is logically consistent, that is,

(a) For every non-negated subformula ψ ∈ clo(φ), if ψ ∈ B then ¬ψ 6∈ B.
(b) For every subformula ψ1 ∧ ψ2 ∈ clo(φ), ψ1 ∧ ψ2 ∈ B iff ψ1 ∈ B and

ψ2 ∈ B.

2 B is maximal, that is, for all ψ ∈ clo(φ), if ψ 6∈ B then ¬ψ ∈ B.
Together with condition 1(a), this means that for each subformula ψ
of φ, a state must promise to satisfy either ψ or its negation.

3 B is consistent with respect to until, that is,

(a) If ψ1 Uψ2 ∈ B then either ψ1 ∈ B or ψ2 ∈ B (or both).
(b) If ¬(ψ1 Uψ2) ∈ B then ¬ψ2 ∈ B.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 25 / 54

Legal subsets of clo(φ): more examples

Let φ = pU (¬p ∧ q).

Let B3 = {p, q, φ}. Is B3 legal?

No. It is consistent, but not
maximal, because it does not contain ¬(¬p ∧ q).

Let B4 = {p, q,¬p ∧ q, φ}. Is B4 legal? No. It is inconsistent,
because it contains ¬p ∧ q and thus should also contain ¬p.

Let B5 = {¬p, q,¬(¬p ∧ q), φ}. Is B5 legal? No. It is inconsistent,
because it does not contain ¬p ∧ q (it contains its negation) and
therefore should not contain both ¬p and q.

Let B6 = {¬p,¬q,¬(¬p ∧ q), φ}. Is B6 legal? No. It is inconsistent
w.r.t. until.

Examples taken from [Baier and Katoen, 2008].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 26 / 54

Legal subsets of clo(φ): more examples

Let φ = pU (¬p ∧ q).

Let B3 = {p, q, φ}. Is B3 legal? No. It is consistent, but not
maximal, because it does not contain ¬(¬p ∧ q).

Let B4 = {p, q,¬p ∧ q, φ}. Is B4 legal? No. It is inconsistent,
because it contains ¬p ∧ q and thus should also contain ¬p.

Let B5 = {¬p, q,¬(¬p ∧ q), φ}. Is B5 legal? No. It is inconsistent,
because it does not contain ¬p ∧ q (it contains its negation) and
therefore should not contain both ¬p and q.

Let B6 = {¬p,¬q,¬(¬p ∧ q), φ}. Is B6 legal? No. It is inconsistent
w.r.t. until.

Examples taken from [Baier and Katoen, 2008].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 26 / 54

Legal subsets of clo(φ): more examples

Let φ = pU (¬p ∧ q).

Let B3 = {p, q, φ}. Is B3 legal? No. It is consistent, but not
maximal, because it does not contain ¬(¬p ∧ q).

Let B4 = {p, q,¬p ∧ q, φ}. Is B4 legal?

No. It is inconsistent,
because it contains ¬p ∧ q and thus should also contain ¬p.

Let B5 = {¬p, q,¬(¬p ∧ q), φ}. Is B5 legal? No. It is inconsistent,
because it does not contain ¬p ∧ q (it contains its negation) and
therefore should not contain both ¬p and q.

Let B6 = {¬p,¬q,¬(¬p ∧ q), φ}. Is B6 legal? No. It is inconsistent
w.r.t. until.

Examples taken from [Baier and Katoen, 2008].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 26 / 54

Legal subsets of clo(φ): more examples

Let φ = pU (¬p ∧ q).

Let B3 = {p, q, φ}. Is B3 legal? No. It is consistent, but not
maximal, because it does not contain ¬(¬p ∧ q).

Let B4 = {p, q,¬p ∧ q, φ}. Is B4 legal? No. It is inconsistent,
because it contains ¬p ∧ q and thus should also contain ¬p.

Let B5 = {¬p, q,¬(¬p ∧ q), φ}. Is B5 legal? No. It is inconsistent,
because it does not contain ¬p ∧ q (it contains its negation) and
therefore should not contain both ¬p and q.

Let B6 = {¬p,¬q,¬(¬p ∧ q), φ}. Is B6 legal? No. It is inconsistent
w.r.t. until.

Examples taken from [Baier and Katoen, 2008].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 26 / 54

Legal subsets of clo(φ): more examples

Let φ = pU (¬p ∧ q).

Let B3 = {p, q, φ}. Is B3 legal? No. It is consistent, but not
maximal, because it does not contain ¬(¬p ∧ q).

Let B4 = {p, q,¬p ∧ q, φ}. Is B4 legal? No. It is inconsistent,
because it contains ¬p ∧ q and thus should also contain ¬p.

Let B5 = {¬p, q,¬(¬p ∧ q), φ}. Is B5 legal?

No. It is inconsistent,
because it does not contain ¬p ∧ q (it contains its negation) and
therefore should not contain both ¬p and q.

Let B6 = {¬p,¬q,¬(¬p ∧ q), φ}. Is B6 legal? No. It is inconsistent
w.r.t. until.

Examples taken from [Baier and Katoen, 2008].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 26 / 54

Legal subsets of clo(φ): more examples

Let φ = pU (¬p ∧ q).

Let B3 = {p, q, φ}. Is B3 legal? No. It is consistent, but not
maximal, because it does not contain ¬(¬p ∧ q).

Let B4 = {p, q,¬p ∧ q, φ}. Is B4 legal? No. It is inconsistent,
because it contains ¬p ∧ q and thus should also contain ¬p.

Let B5 = {¬p, q,¬(¬p ∧ q), φ}. Is B5 legal? No. It is inconsistent,
because it does not contain ¬p ∧ q (it contains its negation) and
therefore should not contain both ¬p and q.

Let B6 = {¬p,¬q,¬(¬p ∧ q), φ}. Is B6 legal? No. It is inconsistent
w.r.t. until.

Examples taken from [Baier and Katoen, 2008].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 26 / 54

Legal subsets of clo(φ): more examples

Let φ = pU (¬p ∧ q).

Let B3 = {p, q, φ}. Is B3 legal? No. It is consistent, but not
maximal, because it does not contain ¬(¬p ∧ q).

Let B4 = {p, q,¬p ∧ q, φ}. Is B4 legal? No. It is inconsistent,
because it contains ¬p ∧ q and thus should also contain ¬p.

Let B5 = {¬p, q,¬(¬p ∧ q), φ}. Is B5 legal? No. It is inconsistent,
because it does not contain ¬p ∧ q (it contains its negation) and
therefore should not contain both ¬p and q.

Let B6 = {¬p,¬q,¬(¬p ∧ q), φ}. Is B6 legal?

No. It is inconsistent
w.r.t. until.

Examples taken from [Baier and Katoen, 2008].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 26 / 54

Legal subsets of clo(φ): more examples

Let φ = pU (¬p ∧ q).

Let B3 = {p, q, φ}. Is B3 legal? No. It is consistent, but not
maximal, because it does not contain ¬(¬p ∧ q).

Let B4 = {p, q,¬p ∧ q, φ}. Is B4 legal? No. It is inconsistent,
because it contains ¬p ∧ q and thus should also contain ¬p.

Let B5 = {¬p, q,¬(¬p ∧ q), φ}. Is B5 legal? No. It is inconsistent,
because it does not contain ¬p ∧ q (it contains its negation) and
therefore should not contain both ¬p and q.

Let B6 = {¬p,¬q,¬(¬p ∧ q), φ}. Is B6 legal? No. It is inconsistent
w.r.t. until.

Examples taken from [Baier and Katoen, 2008].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 26 / 54

Legal subsets of clo(φ): more examples

Let φ = pU (¬p ∧ q).

The following subsets of clo(φ) are legal:

B7 = {p, q,¬(¬p ∧ q), φ}
B8 = {p, q,¬(¬p ∧ q),¬φ}
B9 = {p,¬q,¬(¬p ∧ q), φ}
B10 = {p,¬q,¬(¬p ∧ q),¬φ}
B11 = {¬p,¬q,¬(¬p ∧ q),¬φ}
B12 = {¬p, q,¬p ∧ q, φ}

Examples taken from [Baier and Katoen, 2008].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 27 / 54

The LTL to GNBA construction

Let φ be an LTL formula over set of atomic propositions AP.
We construct from φ a generalized Büchi automaton A = (AP, S, S0, L,∆,F)
with labeling on the states:

L : S → 2AP

A is constructed as follows:

The set of states S is the set of all legal subsets of clo(φ).

The set of initial states S0 is the set of all states that contain φ.

Initially, we promise to satisfy φ.

For B ∈ S, we define
L(B) = B ∩ AP

The atomic propositions holding in a state B are those which are included in
the set B.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 28 / 54

The LTL to GNBA construction (continued)

From LTL formula φ we construct a generalized Büchi automaton
A = (AP, S, S0, L,∆,F).

∆ contains a transition B −→ B′ iff all the following conditions hold:
I if Xψ ∈ B then ψ ∈ B′

if we promise to satisfy Xψ now, then we must promise to satisfy ψ in
the next step

I if ¬Xψ ∈ B then ¬ψ ∈ B′

if we promise to satisfy ¬Xψ now, then we must promise to satisfy ¬ψ
in the next step

I if ψ1 Uψ2 ∈ B and ψ2 6∈ B then ψ1 Uψ2 ∈ B′

because ψ1 Uψ2 ⇔ ψ2 ∨ (ψ1 ∧X(ψ1 Uψ2))
I if ¬(ψ1 Uψ2) ∈ B and ψ1 ∈ B then ¬(ψ1 Uψ2) ∈ B′

because ¬(ψ1 Uψ2)⇔ ¬ψ2 ∧ (¬ψ1 ∨X¬(ψ1 Uψ2))

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 29 / 54

The LTL to GNBA construction (continued)
From LTL formula φ we construct a generalized Büchi automaton
A = (AP, S, S0, L,∆,F).

The GNBA acceptance condition is
F = {Fψ1 Uψ2 | ψ1Uψ2 ∈ clo(φ)} where

Fψ1 Uψ2 = {B ∈ S | ψ2 ∈ B or ¬(ψ1Uψ2) ∈ B}

For every until subformula, there is a separate acceptance set Fi in F .
What do we want to avoid?
We should not keep postponing our promise to satisfy ψ1Uψ2.

That is, we should not accept a run B0, B1, B2, · · · , such that after
some point i, each Bi contains ψ1Uψ2 but not ψ2.

Taking the negation of this, we get that infinitely many Bi’s must
contain either ¬(ψ1Uψ2) or ψ2.

Quiz: What if clo(φ) has no untils? Then F is empty: φ is safety, and
the GNBA accepts every word that has an infinite run.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 30 / 54

The LTL to GNBA construction (continued)
From LTL formula φ we construct a generalized Büchi automaton
A = (AP, S, S0, L,∆,F).

The GNBA acceptance condition is
F = {Fψ1 Uψ2 | ψ1Uψ2 ∈ clo(φ)} where

Fψ1 Uψ2 = {B ∈ S | ψ2 ∈ B or ¬(ψ1Uψ2) ∈ B}

For every until subformula, there is a separate acceptance set Fi in F .
What do we want to avoid?
We should not keep postponing our promise to satisfy ψ1Uψ2.

That is, we should not accept a run B0, B1, B2, · · · , such that after
some point i, each Bi contains ψ1Uψ2 but not ψ2.

Taking the negation of this, we get that infinitely many Bi’s must
contain either ¬(ψ1Uψ2) or ψ2.

Quiz: What if clo(φ) has no untils?

Then F is empty: φ is safety, and
the GNBA accepts every word that has an infinite run.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 30 / 54

The LTL to GNBA construction (continued)
From LTL formula φ we construct a generalized Büchi automaton
A = (AP, S, S0, L,∆,F).

The GNBA acceptance condition is
F = {Fψ1 Uψ2 | ψ1Uψ2 ∈ clo(φ)} where

Fψ1 Uψ2 = {B ∈ S | ψ2 ∈ B or ¬(ψ1Uψ2) ∈ B}

For every until subformula, there is a separate acceptance set Fi in F .
What do we want to avoid?
We should not keep postponing our promise to satisfy ψ1Uψ2.

That is, we should not accept a run B0, B1, B2, · · · , such that after
some point i, each Bi contains ψ1Uψ2 but not ψ2.

Taking the negation of this, we get that infinitely many Bi’s must
contain either ¬(ψ1Uψ2) or ψ2.

Quiz: What if clo(φ) has no untils? Then F is empty: φ is safety, and
the GNBA accepts every word that has an infinite run.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 30 / 54

The LTL to GNBA construction: examples

Let’s construct GNBA for the following LTL formulas:

Xa

and

aU b

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 31 / 54

The LTL to GNBA construction: the GNBA for Xa
282 Linear Temporal Logic

{ a,© a }
B1

{ a,¬© a }
B2

{¬a,© a }
B3

{¬a,¬© a }
B4

a

¬a

a

a

¬a

¬a

¬a

a

Figure 5.21: A generalised Büchi automaton for the LTL formula © a.

As B0 B1 B2 . . . satisfies constraint (ii), it follows that

Bj ∈ Fϕ1 Uϕ2 for infinitely many j � 0.

On the other hand, we have

ϕ2 �∈ Bj and ϕ1 Uϕ2 ∈ Bj︸ ︷︷ ︸
iff Bj �∈Fϕ1 Uϕ2

for all j. Contradiction! Thus, ϕ2 ∈ Bj for some j � 0. Without loss of generality, assume
ϕ2 �∈ B0, . . . ,Bj−1, i.e., let j be the smallest index such that ϕ2 ∈ Bj . The induction
hypothesis for 0 � i < j yields

ϕ1 ∈ Bi and ϕ1 Uϕ2 ∈ Bi for all 0 � i < j.

From the induction hypothesis applied to ϕ1 and ϕ2 it follows that

Aj Aj+1 . . . |= ϕ2 and AiAi+1 . . . |= ϕ1 for 0 � i < j.

We conclude that A0 A1A2 . . . |= ϕ1 Uϕ2.

Example 5.38. Construction of a GNBA (Next Step)

Consider ϕ =© a. The GNBA Gϕ (see Figure 5.21) is obtained as indicated in the proof of
Theorem 5.37, . The states of the automaton are the elementary sets of formulae contained
in

closure(ϕ) = { a,© a,¬a,¬© a }.

Ignore the labels on the transitions (observe that they are identical to
the atomic propositions holding at a state).

How many accepting state sets does this automaton have?

None.
Not surprising, since Xa is a safety property.

Picture taken from [Baier and Katoen, 2008].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 32 / 54

The LTL to GNBA construction: the GNBA for Xa
282 Linear Temporal Logic

{ a,© a }
B1

{ a,¬© a }
B2

{¬a,© a }
B3

{¬a,¬© a }
B4

a

¬a

a

a

¬a

¬a

¬a

a

Figure 5.21: A generalised Büchi automaton for the LTL formula © a.

As B0 B1 B2 . . . satisfies constraint (ii), it follows that

Bj ∈ Fϕ1 Uϕ2 for infinitely many j � 0.

On the other hand, we have

ϕ2 �∈ Bj and ϕ1 Uϕ2 ∈ Bj︸ ︷︷ ︸
iff Bj �∈Fϕ1 Uϕ2

for all j. Contradiction! Thus, ϕ2 ∈ Bj for some j � 0. Without loss of generality, assume
ϕ2 �∈ B0, . . . ,Bj−1, i.e., let j be the smallest index such that ϕ2 ∈ Bj . The induction
hypothesis for 0 � i < j yields

ϕ1 ∈ Bi and ϕ1 Uϕ2 ∈ Bi for all 0 � i < j.

From the induction hypothesis applied to ϕ1 and ϕ2 it follows that

Aj Aj+1 . . . |= ϕ2 and AiAi+1 . . . |= ϕ1 for 0 � i < j.

We conclude that A0 A1A2 . . . |= ϕ1 Uϕ2.

Example 5.38. Construction of a GNBA (Next Step)

Consider ϕ =© a. The GNBA Gϕ (see Figure 5.21) is obtained as indicated in the proof of
Theorem 5.37, . The states of the automaton are the elementary sets of formulae contained
in

closure(ϕ) = { a,© a,¬a,¬© a }.

Ignore the labels on the transitions (observe that they are identical to
the atomic propositions holding at a state).

How many accepting state sets does this automaton have? None.
Not surprising, since Xa is a safety property.

Picture taken from [Baier and Katoen, 2008].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 32 / 54

The LTL to GNBA construction: the GNBA for aU b
(actually an NBA, since there is only one until in the formula)

Automata-Based LTL Model Checking 285

{ a, b, aU b }
B1

{¬a,¬b,¬(aU b) }
B4

{ a,¬b,¬(aU b) }
B5

{¬a, b, aU b }
B2

{ a,¬b, aU b }
B3

Figure 5.22: A generalised Büchi automaton for aU b.

Theorem 5.41. Constructing an NBA for an LTL Formula

For any LTL formula ϕ (over AP) there exists an NBA Aϕ with Words(ϕ) = Lω(Aϕ)
which can be constructed in time and space 2O(|ϕ|).

Proof: From Theorem 5.37 (page 278), it follows that a GNBA Gϕ can be constructed
which has at most 2|ϕ| states. As the number of accepting states in Gϕ equals the number
of until-subformulas in ϕ, GNBA Gϕ has at most |ϕ| accepting states. Transforming the
GNBA into an equivalent NBA (as described in the proof of Theorem 4.56, page 195),
yields an NBA with at most |ϕ| copies of the state space of Gϕ. Thus, the number of states
in the NBA is at most 2|ϕ|·|ϕ| = 2|ϕ|+log |ϕ| states. This yields the claim.

There are various algorithms in the literature for associating an automaton for infinite
words to an LTL formula. The presented algorithm is one of the conceptually simplest al-
gorithms, but often yields unnecessarily large GNBAs. For example, for the LTL formulae
© a and aU b, an NBA with two states suffices. (It is left to the reader to provide these
NBAs.) Several optimizations are possible to improve the size of the resulting GNBA,
but the exponential blowup cannot be avoided. This is formally stated in the following
theorem:

Picture taken from [Baier and Katoen, 2008].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 33 / 54

BACK TO LTL MODEL-CHECKING

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 34 / 54

Recall: automata-theoretic LTL model-checking

To check whether M |= φ:

1 Construct an automaton A¬φ which accepts all infinite traces
satisfying ¬φ, i.e., violating φ.

2 Compute the product of M and A¬φ, denoted M ×A¬φ.

3 Check that M ×A¬φ is empty, i.e., accepts no trace.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 35 / 54

Computing the product M × A
AP: a set of atomic propositions.

M = (AP, S, S0, L,R): a transition system over AP.

A = (AP, SA, SA0 , L
A,∆, F): a Büchi automaton with labeling on

states. LA(s) is generally a guard (a subset of AP can also be seen as
a guard).

The product M ×A is a Büchi automaton:

M ×A = (AP, S′, S′0, L
′,∆′, F ′)

such that

S′ = {(s1, s2) ∈ S × SA | L(s1) satisfies LA(s2)}
S′0 = S′ ∩ S0 × SA0
L′(s1, s2) = L(s1)

∆′ = {((s1, s2), (s′1, s′2)) ∈ S′ × S′ | (s1, s′1) ∈ R ∧ (s2, s
′
2) ∈ ∆}

F ′ = S′ ∩ S × F

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 36 / 54

Computing the product M × A
AP: a set of atomic propositions.

M = (AP, S, S0, L,R): a transition system over AP.

A = (AP, SA, SA0 , L
A,∆, F): a Büchi automaton with labeling on

states. LA(s) is generally a guard (a subset of AP can also be seen as
a guard).

The product M ×A is a Büchi automaton:

M ×A = (AP, S′, S′0, L
′,∆′, F ′)

such that

S′ = {(s1, s2) ∈ S × SA | L(s1) satisfies LA(s2)}
S′0 = S′ ∩ S0 × SA0
L′(s1, s2) = L(s1)

∆′ = {((s1, s2), (s′1, s′2)) ∈ S′ × S′ | (s1, s′1) ∈ R ∧ (s2, s
′
2) ∈ ∆}

F ′ = S′ ∩ S × F
Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 36 / 54

Computing the product M × A: example
Let’s compute the product of

with

true

p ∧ ¬q ¬q

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 37 / 54

Recall: automata-theoretic LTL model-checking

To check whether M |= φ:

1 Construct an automaton A¬φ which accepts all infinite traces
satisfying ¬φ, i.e., violating φ.

2 Compute the product of M and A¬φ, denoted M ×A¬φ.

3 Check that M ×A¬φ is empty, i.e., accepts no trace.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 38 / 54

CHECKING BÜCHI AUTOMATA EMPTINESS

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 39 / 54

Checking Büchi automata emptiness

The Büchi automaton emptiness problem:

Given: a finite-state Büchi automaton A.

Check: does A accept any trace?

This is equivalent to checking whether A has at least one accepting run.
Why?

Accepting run = infinite run which visits the set of accepting states F
infinitely often ⇒ since F is finite, there must exist at least one accepting
state s ∈ F which is visited infinitely often.

But the set of states is finite, so what is an infinite run, really?

Viewing A as a finite directed graph (nodes = states, edges = transitions):

infinite run = a lasso = a finite stem followed by a cycle

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 40 / 54

Checking Büchi automata emptiness

⇒ The Büchi automaton emptiness problem becomes:

Given:
I a finite directed graph A with set of nodes S,
I a set of initial nodes S0 ⊆ S,
I and a set of accepting nodes F ⊆ S.

Find: whether A has a path

s0 −→ s1 −→ · · · −→ sr −→ sr+1 −→ · · · −→ sr+k

such that
I sr+k = sr, i.e., sr −→ sr+1 −→ · · · −→ sr+k forms a cycle with root

node sr; (this is the cycle of the lasso; the segment
s0 −→ s1 −→ · · · −→ sr is its tail)

I s0 ∈ S0, i.e., the lasso starts in some initial state
I sr+i ∈ F for some i ∈ {0, ..., k}, i.e., the cycle visits at least one

accepting node: we call it an accepting cycle.

⇒ The problem becomes one of finding accepting cycles in graphs.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 41 / 54

Basic algorithms for finding cycles in graphs

How do we find cycles in graphs?

Algorithms that find Strongly-Connected Components (e.g.,
Tarjan’s).

We will not look at Tarjan’s algorithm, as there is a simpler algorithm that
works for our purpose.

But it’s useful to recall a few things about SCCs.

Complexity of Tarjan’s SCC algorithm:

O(n+m), where n = #nodes, m = #edges.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 42 / 54

Basic algorithms for finding cycles in graphs

How do we find cycles in graphs?

Algorithms that find Strongly-Connected Components (e.g.,
Tarjan’s).

We will not look at Tarjan’s algorithm, as there is a simpler algorithm that
works for our purpose.

But it’s useful to recall a few things about SCCs.

Complexity of Tarjan’s SCC algorithm:

O(n+m), where n = #nodes, m = #edges.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 42 / 54

Strongly-connected components

In a directed graph G = (V,→), a strongly-connected component
(SCC) is a subset of nodes C ⊆ V , such that every node in C is reachable
from every other node in C.

C is called maximal if we cannot add more nodes to C and still preserve
its SCC property, i.e., @C ′ ⊃ C such that C ′ is also a SCC.

Find the (maximal) SCCs in the above graph.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 43 / 54

The acyclic graph of maximal SCCs

The set of all maximal SCCs of a graph defines a new graph, where nodes
are maximal SCCs, C1, C2, ..., Cm.

In the new graph (of maximal SCCs) an edge Ci → Cj exists iff Ci 6= Cj
and there is a node in v ∈ Ci and a node u ∈ Cj such that v → u in the
original graph.

The graph of maximal SCCs is by definition acyclic: why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 44 / 54

The acyclic graph of maximal SCCs

A SCC C is called terminal if there is no C ′ such that C → C ′ in the
acyclic graph of maximal SCCs.

Otherwise C is called transient.

Terminal SCCs:

{a, d} and {i}.

Transient SCCs: {b, c, f}, {e}, and {g, h}.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 45 / 54

The acyclic graph of maximal SCCs

A SCC C is called terminal if there is no C ′ such that C → C ′ in the
acyclic graph of maximal SCCs.

Otherwise C is called transient.

Terminal SCCs: {a, d} and {i}.

Transient SCCs: {b, c, f}, {e}, and {g, h}.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 45 / 54

Parenthesis: probabilistic models
Weather model:

sunny cloudy rainy

.5 .5
.4

.5

.3

.2

.6

Gambling model:

0 1 2 3 4

1 1

1− p

p

1− p

p

1− p

p

Learning model:

N L

α 1

1− α

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 46 / 54

Using SCC algorithm for checking emptiness

How can we use an SCC algorithm to check emptiness of a Büchi
automaton?

1 Find all (usually maximal, but they don’t have to be) SCCs in the
graph.

2 All these are reachable from some initial state (the SCC algorithm
guarantees that).

3 If some SCC contains an accepting node ⇒ automaton is non-empty.

4 And vice versa, so:
automaton is non-empty ⇔ some SCC contains an accepting node.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 47 / 54

Using SCC algorithm for checking emptiness

How can we use an SCC algorithm to check emptiness of a Büchi
automaton?

1 Find all (usually maximal, but they don’t have to be) SCCs in the
graph.

2 All these are reachable from some initial state (the SCC algorithm
guarantees that).

3 If some SCC contains an accepting node ⇒ automaton is non-empty.

4 And vice versa, so:
automaton is non-empty ⇔ some SCC contains an accepting node.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 47 / 54

Basic algorithms for finding cycles in graphs

Other algorithms except SCC for finding cycles in graphs?

Tarjan’s SCC algorithm.

What about DFS? (depth-first search)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 48 / 54

Using DFS to find cycles in a graph
Recall DFS:

Maintain a set of visited nodes V .

Starting with initial nodes, explore all successors of a node v.

For each successor v′, if v′ 6∈ V then recurse from v′; otherwise do
nothing (v′ already visited).

In practice, instead of recursion, DFS is implemented using a stack:
I when v′ 6∈ V , v′ is pushed to the stack and the search continues from
v′;

I when all successors of a node u are explored, u is popped from the
stack and the search backtracks.

What happens when we find a node v′ ∈ V such that v′ is also somewhere
in the stack?

⇒ We found a cycle! The cycle has v′ as its root.

Can we check whether the cycle is accepting? Yes: check whether some
node in the stack that follows (i.e., is pushed after) v′ is accepting.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 49 / 54

Using DFS to find cycles in a graph
Recall DFS:

Maintain a set of visited nodes V .

Starting with initial nodes, explore all successors of a node v.

For each successor v′, if v′ 6∈ V then recurse from v′; otherwise do
nothing (v′ already visited).

In practice, instead of recursion, DFS is implemented using a stack:
I when v′ 6∈ V , v′ is pushed to the stack and the search continues from
v′;

I when all successors of a node u are explored, u is popped from the
stack and the search backtracks.

What happens when we find a node v′ ∈ V such that v′ is also somewhere
in the stack?
⇒ We found a cycle! The cycle has v′ as its root.

Can we check whether the cycle is accepting? Yes: check whether some
node in the stack that follows (i.e., is pushed after) v′ is accepting.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 49 / 54

Using DFS to find cycles in a graph
Recall DFS:

Maintain a set of visited nodes V .

Starting with initial nodes, explore all successors of a node v.

For each successor v′, if v′ 6∈ V then recurse from v′; otherwise do
nothing (v′ already visited).

In practice, instead of recursion, DFS is implemented using a stack:
I when v′ 6∈ V , v′ is pushed to the stack and the search continues from
v′;

I when all successors of a node u are explored, u is popped from the
stack and the search backtracks.

What happens when we find a node v′ ∈ V such that v′ is also somewhere
in the stack?
⇒ We found a cycle! The cycle has v′ as its root.

Can we check whether the cycle is accepting?

Yes: check whether some
node in the stack that follows (i.e., is pushed after) v′ is accepting.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 49 / 54

Using DFS to find cycles in a graph
Recall DFS:

Maintain a set of visited nodes V .

Starting with initial nodes, explore all successors of a node v.

For each successor v′, if v′ 6∈ V then recurse from v′; otherwise do
nothing (v′ already visited).

In practice, instead of recursion, DFS is implemented using a stack:
I when v′ 6∈ V , v′ is pushed to the stack and the search continues from
v′;

I when all successors of a node u are explored, u is popped from the
stack and the search backtracks.

What happens when we find a node v′ ∈ V such that v′ is also somewhere
in the stack?
⇒ We found a cycle! The cycle has v′ as its root.

Can we check whether the cycle is accepting? Yes: check whether some
node in the stack that follows (i.e., is pushed after) v′ is accepting.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 49 / 54

Using DFS to find cycles in a graph
⇒ If we find a cycle during DFS, we can check whether it is accepting.

If it is, we’re done: Büchi automaton is not empty.

But does this method find all cycles?
No! Consider the following graph:

0 1

2 3

What happens in this case? 0, 1, and 2 are visited in that order. The cycle
0, 1, 2, 0 is found, but it’s not accepting. 2 is popped and the search backtracks
to 1. 3 is explored. 2 is a successor of 3, but it’s already visited. Accepting cycle
0, 1, 3, 2, 0 is missed.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 50 / 54

Using DFS to find cycles in a graph
⇒ If we find a cycle during DFS, we can check whether it is accepting.

If it is, we’re done: Büchi automaton is not empty.

But does this method find all cycles?

No! Consider the following graph:

0 1

2 3

What happens in this case? 0, 1, and 2 are visited in that order. The cycle
0, 1, 2, 0 is found, but it’s not accepting. 2 is popped and the search backtracks
to 1. 3 is explored. 2 is a successor of 3, but it’s already visited. Accepting cycle
0, 1, 3, 2, 0 is missed.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 50 / 54

Using DFS to find cycles in a graph
⇒ If we find a cycle during DFS, we can check whether it is accepting.

If it is, we’re done: Büchi automaton is not empty.

But does this method find all cycles?
No! Consider the following graph:

0 1

2 3

What happens in this case?

0, 1, and 2 are visited in that order. The cycle
0, 1, 2, 0 is found, but it’s not accepting. 2 is popped and the search backtracks
to 1. 3 is explored. 2 is a successor of 3, but it’s already visited. Accepting cycle
0, 1, 3, 2, 0 is missed.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 50 / 54

Using DFS to find cycles in a graph
⇒ If we find a cycle during DFS, we can check whether it is accepting.

If it is, we’re done: Büchi automaton is not empty.

But does this method find all cycles?
No! Consider the following graph:

0 1

2 3

What happens in this case? 0, 1, and 2 are visited in that order. The cycle
0, 1, 2, 0 is found, but it’s not accepting. 2 is popped and the search backtracks
to 1. 3 is explored. 2 is a successor of 3, but it’s already visited. Accepting cycle
0, 1, 3, 2, 0 is missed.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 50 / 54

Using DFS to find cycles in a graph

DFS with a set of visited states is sound (when it finds an accepting cycle,
it’s a true accepting cycle), but incomplete (it may miss cycles).

Can DFS be made complete?

Yes:

do not keep a set of visited nodes: only keep a stack

do not explore nodes already in the stack

Does this algorithm terminate?
Yes: it terminates after exploring all elementary cycles (cycles where only
their root is visited twice).

Problem: the number of such cycles is exponential in the worst case!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 51 / 54

Using DFS to find cycles in a graph

DFS with a set of visited states is sound (when it finds an accepting cycle,
it’s a true accepting cycle), but incomplete (it may miss cycles).

Can DFS be made complete?
Yes:

do not keep a set of visited nodes: only keep a stack

do not explore nodes already in the stack

Does this algorithm terminate?

Yes: it terminates after exploring all elementary cycles (cycles where only
their root is visited twice).

Problem: the number of such cycles is exponential in the worst case!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 51 / 54

Using DFS to find cycles in a graph

DFS with a set of visited states is sound (when it finds an accepting cycle,
it’s a true accepting cycle), but incomplete (it may miss cycles).

Can DFS be made complete?
Yes:

do not keep a set of visited nodes: only keep a stack

do not explore nodes already in the stack

Does this algorithm terminate?
Yes: it terminates after exploring all elementary cycles (cycles where only
their root is visited twice).

Problem: the number of such cycles is exponential in the worst case!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 51 / 54

Double DFS (also called nested DFS)
A clever algorithm: double DFS [Courcoubetis et al., 1992].
A modification of standard DFS:

Keep two sets of visited nodes, V1 and V2.

V1 is used as usual, for a standard outer DFS.

Each time an accepting node v is visited, spawn a second (inner)
DFS starting from v and using V2 as the set of visited nodes.

Important: spawn the inner DFS only after all successors of v have
been explored in the outer DFS.1

Important: V2 is not reset between successive inner DFS runs ⇒
complexity is not quadratic, but linear: each state visited at most
twice (once in the outer DFS, and once in the inner DFS).

Sound and complete!

Details in [Baier and Katoen, 2008, Courcoubetis et al., 1992]
1This guarantees that if v′ is a successor of v, and both v, v′ are accepting, then the

inner DFS will be called first starting at v′, and then starting at v. This property is
crucial for the completeness of the algorithm.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 52 / 54

Double DFS: example

0 1 2

34

Let S1, S2 be the two stacks of the outer and inner DFSs, respectively. Initially
V1 = V2 = ∅ and both stacks are empty. Algorithm steps:

Push 0 on S1. V1 = {0}. Push 1 on S1. V1 = {0, 1}. Push 2 on S1.
V1 = {0, 1, 2}. Push 4 on S1. V1 = {0, 1, 2, 4}. Cycle 1, 2, 4, 1 found by outer
DFS, but not accepting. All successors of 4 already in V1. Pop 4 from S1. Push 3
on S1. V1 = {0, 1, 2, 4, 3}. All successors of 3 already in V1. Pop 3 from S1. Call
inner DFS starting from 3. Push 3 on S2. V2 = {3}. Push 4 on S2. V2 = {3, 4}.
Push 1 on S2. V2 = {3, 4, 1}. Push 2 on S2. V2 = {3, 4, 1, 2}. Cycle 4, 1, 2, 4
found by inner DFS, but not accepting. All successors of 4 already in V2. Pop 4
from S2. Accepting cycle 3, 4, 1, 2, 3 found by inner DFS.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 53 / 54

Double DFS: example

0 1 2

34

Let S1, S2 be the two stacks of the outer and inner DFSs, respectively. Initially
V1 = V2 = ∅ and both stacks are empty. Algorithm steps:
Push 0 on S1. V1 = {0}.

Push 1 on S1. V1 = {0, 1}. Push 2 on S1.
V1 = {0, 1, 2}. Push 4 on S1. V1 = {0, 1, 2, 4}. Cycle 1, 2, 4, 1 found by outer
DFS, but not accepting. All successors of 4 already in V1. Pop 4 from S1. Push 3
on S1. V1 = {0, 1, 2, 4, 3}. All successors of 3 already in V1. Pop 3 from S1. Call
inner DFS starting from 3. Push 3 on S2. V2 = {3}. Push 4 on S2. V2 = {3, 4}.
Push 1 on S2. V2 = {3, 4, 1}. Push 2 on S2. V2 = {3, 4, 1, 2}. Cycle 4, 1, 2, 4
found by inner DFS, but not accepting. All successors of 4 already in V2. Pop 4
from S2. Accepting cycle 3, 4, 1, 2, 3 found by inner DFS.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 53 / 54

Double DFS: example

0 1 2

34

Let S1, S2 be the two stacks of the outer and inner DFSs, respectively. Initially
V1 = V2 = ∅ and both stacks are empty. Algorithm steps:
Push 0 on S1. V1 = {0}. Push 1 on S1. V1 = {0, 1}.

Push 2 on S1.
V1 = {0, 1, 2}. Push 4 on S1. V1 = {0, 1, 2, 4}. Cycle 1, 2, 4, 1 found by outer
DFS, but not accepting. All successors of 4 already in V1. Pop 4 from S1. Push 3
on S1. V1 = {0, 1, 2, 4, 3}. All successors of 3 already in V1. Pop 3 from S1. Call
inner DFS starting from 3. Push 3 on S2. V2 = {3}. Push 4 on S2. V2 = {3, 4}.
Push 1 on S2. V2 = {3, 4, 1}. Push 2 on S2. V2 = {3, 4, 1, 2}. Cycle 4, 1, 2, 4
found by inner DFS, but not accepting. All successors of 4 already in V2. Pop 4
from S2. Accepting cycle 3, 4, 1, 2, 3 found by inner DFS.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 53 / 54

Double DFS: example

0 1 2

34

Let S1, S2 be the two stacks of the outer and inner DFSs, respectively. Initially
V1 = V2 = ∅ and both stacks are empty. Algorithm steps:
Push 0 on S1. V1 = {0}. Push 1 on S1. V1 = {0, 1}. Push 2 on S1.
V1 = {0, 1, 2}.

Push 4 on S1. V1 = {0, 1, 2, 4}. Cycle 1, 2, 4, 1 found by outer
DFS, but not accepting. All successors of 4 already in V1. Pop 4 from S1. Push 3
on S1. V1 = {0, 1, 2, 4, 3}. All successors of 3 already in V1. Pop 3 from S1. Call
inner DFS starting from 3. Push 3 on S2. V2 = {3}. Push 4 on S2. V2 = {3, 4}.
Push 1 on S2. V2 = {3, 4, 1}. Push 2 on S2. V2 = {3, 4, 1, 2}. Cycle 4, 1, 2, 4
found by inner DFS, but not accepting. All successors of 4 already in V2. Pop 4
from S2. Accepting cycle 3, 4, 1, 2, 3 found by inner DFS.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 53 / 54

Double DFS: example

0 1 2

34

Let S1, S2 be the two stacks of the outer and inner DFSs, respectively. Initially
V1 = V2 = ∅ and both stacks are empty. Algorithm steps:
Push 0 on S1. V1 = {0}. Push 1 on S1. V1 = {0, 1}. Push 2 on S1.
V1 = {0, 1, 2}. Push 4 on S1. V1 = {0, 1, 2, 4}.

Cycle 1, 2, 4, 1 found by outer
DFS, but not accepting. All successors of 4 already in V1. Pop 4 from S1. Push 3
on S1. V1 = {0, 1, 2, 4, 3}. All successors of 3 already in V1. Pop 3 from S1. Call
inner DFS starting from 3. Push 3 on S2. V2 = {3}. Push 4 on S2. V2 = {3, 4}.
Push 1 on S2. V2 = {3, 4, 1}. Push 2 on S2. V2 = {3, 4, 1, 2}. Cycle 4, 1, 2, 4
found by inner DFS, but not accepting. All successors of 4 already in V2. Pop 4
from S2. Accepting cycle 3, 4, 1, 2, 3 found by inner DFS.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 53 / 54

Double DFS: example

0 1 2

34

Let S1, S2 be the two stacks of the outer and inner DFSs, respectively. Initially
V1 = V2 = ∅ and both stacks are empty. Algorithm steps:
Push 0 on S1. V1 = {0}. Push 1 on S1. V1 = {0, 1}. Push 2 on S1.
V1 = {0, 1, 2}. Push 4 on S1. V1 = {0, 1, 2, 4}. Cycle 1, 2, 4, 1 found by outer
DFS, but not accepting. All successors of 4 already in V1. Pop 4 from S1.

Push 3
on S1. V1 = {0, 1, 2, 4, 3}. All successors of 3 already in V1. Pop 3 from S1. Call
inner DFS starting from 3. Push 3 on S2. V2 = {3}. Push 4 on S2. V2 = {3, 4}.
Push 1 on S2. V2 = {3, 4, 1}. Push 2 on S2. V2 = {3, 4, 1, 2}. Cycle 4, 1, 2, 4
found by inner DFS, but not accepting. All successors of 4 already in V2. Pop 4
from S2. Accepting cycle 3, 4, 1, 2, 3 found by inner DFS.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 53 / 54

Double DFS: example

0 1 2

34

Let S1, S2 be the two stacks of the outer and inner DFSs, respectively. Initially
V1 = V2 = ∅ and both stacks are empty. Algorithm steps:
Push 0 on S1. V1 = {0}. Push 1 on S1. V1 = {0, 1}. Push 2 on S1.
V1 = {0, 1, 2}. Push 4 on S1. V1 = {0, 1, 2, 4}. Cycle 1, 2, 4, 1 found by outer
DFS, but not accepting. All successors of 4 already in V1. Pop 4 from S1. Push 3
on S1. V1 = {0, 1, 2, 4, 3}.

All successors of 3 already in V1. Pop 3 from S1. Call
inner DFS starting from 3. Push 3 on S2. V2 = {3}. Push 4 on S2. V2 = {3, 4}.
Push 1 on S2. V2 = {3, 4, 1}. Push 2 on S2. V2 = {3, 4, 1, 2}. Cycle 4, 1, 2, 4
found by inner DFS, but not accepting. All successors of 4 already in V2. Pop 4
from S2. Accepting cycle 3, 4, 1, 2, 3 found by inner DFS.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 53 / 54

Double DFS: example

0 1 2

34

Let S1, S2 be the two stacks of the outer and inner DFSs, respectively. Initially
V1 = V2 = ∅ and both stacks are empty. Algorithm steps:
Push 0 on S1. V1 = {0}. Push 1 on S1. V1 = {0, 1}. Push 2 on S1.
V1 = {0, 1, 2}. Push 4 on S1. V1 = {0, 1, 2, 4}. Cycle 1, 2, 4, 1 found by outer
DFS, but not accepting. All successors of 4 already in V1. Pop 4 from S1. Push 3
on S1. V1 = {0, 1, 2, 4, 3}. All successors of 3 already in V1. Pop 3 from S1. Call
inner DFS starting from 3. Push 3 on S2. V2 = {3}.

Push 4 on S2. V2 = {3, 4}.
Push 1 on S2. V2 = {3, 4, 1}. Push 2 on S2. V2 = {3, 4, 1, 2}. Cycle 4, 1, 2, 4
found by inner DFS, but not accepting. All successors of 4 already in V2. Pop 4
from S2. Accepting cycle 3, 4, 1, 2, 3 found by inner DFS.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 53 / 54

Double DFS: example

0 1 2

34

Let S1, S2 be the two stacks of the outer and inner DFSs, respectively. Initially
V1 = V2 = ∅ and both stacks are empty. Algorithm steps:
Push 0 on S1. V1 = {0}. Push 1 on S1. V1 = {0, 1}. Push 2 on S1.
V1 = {0, 1, 2}. Push 4 on S1. V1 = {0, 1, 2, 4}. Cycle 1, 2, 4, 1 found by outer
DFS, but not accepting. All successors of 4 already in V1. Pop 4 from S1. Push 3
on S1. V1 = {0, 1, 2, 4, 3}. All successors of 3 already in V1. Pop 3 from S1. Call
inner DFS starting from 3. Push 3 on S2. V2 = {3}. Push 4 on S2. V2 = {3, 4}.

Push 1 on S2. V2 = {3, 4, 1}. Push 2 on S2. V2 = {3, 4, 1, 2}. Cycle 4, 1, 2, 4
found by inner DFS, but not accepting. All successors of 4 already in V2. Pop 4
from S2. Accepting cycle 3, 4, 1, 2, 3 found by inner DFS.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 53 / 54

Double DFS: example

0 1 2

34

Let S1, S2 be the two stacks of the outer and inner DFSs, respectively. Initially
V1 = V2 = ∅ and both stacks are empty. Algorithm steps:
Push 0 on S1. V1 = {0}. Push 1 on S1. V1 = {0, 1}. Push 2 on S1.
V1 = {0, 1, 2}. Push 4 on S1. V1 = {0, 1, 2, 4}. Cycle 1, 2, 4, 1 found by outer
DFS, but not accepting. All successors of 4 already in V1. Pop 4 from S1. Push 3
on S1. V1 = {0, 1, 2, 4, 3}. All successors of 3 already in V1. Pop 3 from S1. Call
inner DFS starting from 3. Push 3 on S2. V2 = {3}. Push 4 on S2. V2 = {3, 4}.
Push 1 on S2. V2 = {3, 4, 1}.

Push 2 on S2. V2 = {3, 4, 1, 2}. Cycle 4, 1, 2, 4
found by inner DFS, but not accepting. All successors of 4 already in V2. Pop 4
from S2. Accepting cycle 3, 4, 1, 2, 3 found by inner DFS.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 53 / 54

Double DFS: example

0 1 2

34

Let S1, S2 be the two stacks of the outer and inner DFSs, respectively. Initially
V1 = V2 = ∅ and both stacks are empty. Algorithm steps:
Push 0 on S1. V1 = {0}. Push 1 on S1. V1 = {0, 1}. Push 2 on S1.
V1 = {0, 1, 2}. Push 4 on S1. V1 = {0, 1, 2, 4}. Cycle 1, 2, 4, 1 found by outer
DFS, but not accepting. All successors of 4 already in V1. Pop 4 from S1. Push 3
on S1. V1 = {0, 1, 2, 4, 3}. All successors of 3 already in V1. Pop 3 from S1. Call
inner DFS starting from 3. Push 3 on S2. V2 = {3}. Push 4 on S2. V2 = {3, 4}.
Push 1 on S2. V2 = {3, 4, 1}. Push 2 on S2. V2 = {3, 4, 1, 2}.

Cycle 4, 1, 2, 4
found by inner DFS, but not accepting. All successors of 4 already in V2. Pop 4
from S2. Accepting cycle 3, 4, 1, 2, 3 found by inner DFS.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 53 / 54

Double DFS: example

0 1 2

34

Let S1, S2 be the two stacks of the outer and inner DFSs, respectively. Initially
V1 = V2 = ∅ and both stacks are empty. Algorithm steps:
Push 0 on S1. V1 = {0}. Push 1 on S1. V1 = {0, 1}. Push 2 on S1.
V1 = {0, 1, 2}. Push 4 on S1. V1 = {0, 1, 2, 4}. Cycle 1, 2, 4, 1 found by outer
DFS, but not accepting. All successors of 4 already in V1. Pop 4 from S1. Push 3
on S1. V1 = {0, 1, 2, 4, 3}. All successors of 3 already in V1. Pop 3 from S1. Call
inner DFS starting from 3. Push 3 on S2. V2 = {3}. Push 4 on S2. V2 = {3, 4}.
Push 1 on S2. V2 = {3, 4, 1}. Push 2 on S2. V2 = {3, 4, 1, 2}. Cycle 4, 1, 2, 4
found by inner DFS, but not accepting. All successors of 4 already in V2. Pop 4
from S2.

Accepting cycle 3, 4, 1, 2, 3 found by inner DFS.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 53 / 54

Double DFS: example

0 1 2

34

Let S1, S2 be the two stacks of the outer and inner DFSs, respectively. Initially
V1 = V2 = ∅ and both stacks are empty. Algorithm steps:
Push 0 on S1. V1 = {0}. Push 1 on S1. V1 = {0, 1}. Push 2 on S1.
V1 = {0, 1, 2}. Push 4 on S1. V1 = {0, 1, 2, 4}. Cycle 1, 2, 4, 1 found by outer
DFS, but not accepting. All successors of 4 already in V1. Pop 4 from S1. Push 3
on S1. V1 = {0, 1, 2, 4, 3}. All successors of 3 already in V1. Pop 3 from S1. Call
inner DFS starting from 3. Push 3 on S2. V2 = {3}. Push 4 on S2. V2 = {3, 4}.
Push 1 on S2. V2 = {3, 4, 1}. Push 2 on S2. V2 = {3, 4, 1, 2}. Cycle 4, 1, 2, 4
found by inner DFS, but not accepting. All successors of 4 already in V2. Pop 4
from S2. Accepting cycle 3, 4, 1, 2, 3 found by inner DFS.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 53 / 54

Bibliography

Baier, C. and Katoen, J.-P. (2008).

Principles of Model Checking.
MIT Press.

Clarke, E., Grumberg, O., and Peled, D. (2000).

Model Checking.
MIT Press.

Courcoubetis, C., Vardi, M., Wolper, P., and Yannakakis, M. (1992).

Memory efficient algorithms for the verification of temporal properties.
Formal Methods in System Design, 1:275–288.

Huth, M. and Ryan, M. (2004).

Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 LTL Model Checking 54 / 54

	Introduction
	LTL model-checking: the automata-theoretic approach
	Translation of LTL to Büchi Automata
	GNBA
	Translation of LTL to GNBA

