
System Specification, Verification and Synthesis
(SSVS) – CS 4830/7485, Fall 2019

16: Formal Specification:
Automata

Stavros Tripakis

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 1 / 37



Outline

Automata-based specifications
I Finite automata: DFA and NFA
I Omega automata (ω-automata): Büchi automata

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 2 / 37



FINITE AUTOMATA
(meaning both finite-state and finite-word)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 3 / 37



Deterministic Finite Automata

A DFA is a tuple

(Σ, S, s0, δ, F )

Σ: finite set of symbols, letters (the alphabet)

S: finite set of states

s0 ∈ S: (unique) initial state

δ: transition function (usually total but could also be partial)

δ : S × Σ→ S

F ⊆ S: set of final/accepting states

A DFA can be seen as a special case of a Moore machine – how?
Σ is the set of input symbols I. The set of output symbols O is binary: a
state is either accepting or non-accepting.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 4 / 37



Deterministic Finite Automata

A DFA is a tuple

(Σ, S, s0, δ, F )

Σ: finite set of symbols, letters (the alphabet)

S: finite set of states

s0 ∈ S: (unique) initial state

δ: transition function (usually total but could also be partial)

δ : S × Σ→ S

F ⊆ S: set of final/accepting states

A DFA can be seen as a special case of a Moore machine – how?

Σ is the set of input symbols I. The set of output symbols O is binary: a
state is either accepting or non-accepting.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 4 / 37



Deterministic Finite Automata

A DFA is a tuple

(Σ, S, s0, δ, F )

Σ: finite set of symbols, letters (the alphabet)

S: finite set of states

s0 ∈ S: (unique) initial state

δ: transition function (usually total but could also be partial)

δ : S × Σ→ S

F ⊆ S: set of final/accepting states

A DFA can be seen as a special case of a Moore machine – how?
Σ is the set of input symbols I. The set of output symbols O is binary: a
state is either accepting or non-accepting.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 4 / 37



Example: DFA
Define the tuple (Σ, S, s0, δ, F ) for the automaton below:

s0 s1 s2

a

b c

a

The automaton above is incomplete: it’s missing several transitions!
We complete it by adding a non-accepting sink state:

s0 s1 s2

s

a, b, c

a

b

c

c

a, b

a

b, c

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 5 / 37



Example: DFA
Define the tuple (Σ, S, s0, δ, F ) for the automaton below:

s0 s1 s2

a

b c

a

The automaton above is incomplete: it’s missing several transitions!
We complete it by adding a non-accepting sink state:

s0 s1 s2

s

a, b, c

a

b

c

c

a, b

a

b, c

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 5 / 37



DFA: Informal Semantics

A DFA A = (Σ, S, s0, δ, F ) defines a language L(A) ⊆ Σ∗, i.e., a set
of finite words over Σ.

L(A) = { all words in Σ∗ accepted by A}

A word is accepted if the automaton ends up in an accepting state
after reading the word.

What’s the language defined by the automaton in the previous slide?

Answer: L(A) = {ε, a, aa, aaa, ..., bca, bcabca, ..., abca, aabca, ...}
Answer (using regular expression notation): L(A) = (a+ (bca))∗

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 6 / 37



DFA: Informal Semantics

A DFA A = (Σ, S, s0, δ, F ) defines a language L(A) ⊆ Σ∗, i.e., a set
of finite words over Σ.

L(A) = { all words in Σ∗ accepted by A}

A word is accepted if the automaton ends up in an accepting state
after reading the word.

What’s the language defined by the automaton in the previous slide?

Answer: L(A) = {ε, a, aa, aaa, ..., bca, bcabca, ..., abca, aabca, ...}
Answer (using regular expression notation): L(A) = (a+ (bca))∗

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 6 / 37



DFA: Formal Semantics

Let A = (Σ, S, s0, δ, F ).

Let ρ ∈ Σ∗, with ρ = a1a2 · · · an, for n ≥ 0. If n = 0 then ρ = ε, the
empty word.

Define the function δ∗ : S × Σ∗ → S as follows:

δ∗(s, ε) = s and δ∗(s, a · ρ) = δ∗(δ(s, a), ρ)

A word ρ ∈ Σ∗ is accepted by A if δ∗(s0, ρ) ∈ F .
Otherwise ρ is rejected by A.

The language of A (or the language accepted or recognized by A) is
defined as:

L(A) = {ρ ∈ Σ∗ | δ∗(s0, ρ) ∈ F}

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 7 / 37



Non-Deterministic Finite Automata

An NFA is a tuple
(Σ, S, S0,∆, F )

Σ: alphabet

S: finite set of states

S0 ⊆ S: set of initial states

∆: transition relation
∆ ⊆ S × Σ× S

or
∆ ⊆ S × Σ ∪ {ε} × S

where ε is the “empty” symbol, or “silent” or “unobservable” or
“internal” action.

F ⊆ S: set of final/accepting states

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 8 / 37



NFA Semantics

A run of a NFA (Σ, S, S0,∆, F ) is a finite sequence of states and transitions:

s0
a1−→ s1

a2−→ s2
a3−→ · · · sn

such that

s0 ∈ S0

∀i : (si, ai+1, si+1) ∈ ∆

The run is accepting if it ends in an accepting state: sn ∈ F .

The word generated by this run is the corresponding sequence of labels:

a1a2a3 · · · an

A word is accepted if there exists a run generating it.

The language of the automaton is the set of all accepted words.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 9 / 37



Example

These two automata accept the same language:

s0NFA: s1

0,1

1
DFA: q0 q1

0 1

1

0

Which language?

All finite strings over Σ = {0, 1} that end with 1:

L = {1, 01, 11, 001, 011, ...}

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 10 / 37



Example

These two automata accept the same language:

s0NFA: s1

0,1

1
DFA: q0 q1

0 1

1

0

Which language?

All finite strings over Σ = {0, 1} that end with 1:

L = {1, 01, 11, 001, 011, ...}

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 10 / 37



Determinization of Finite Automata

Theorem ([Hopcroft and Ullman, 1990])

Every NFA can be transformed into an equivalent DFA, i.e., a DFA that
accepts the same language.

The proof uses the famous powerset construction, a very useful
construction for several CS applications.

The languages accepted by NFA or DFA are called regular.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 11 / 37



Finite Automata and Safety Properties

We can use finite automata (DFA or NFA) to capture the negation
of safety properties.

The bad prefixes of a safety property are finite words.

Assuming the set of bad prefixes is regular, it can be captured as a
finite automaton.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 12 / 37



Verification using safety monitors1

Design Monitor

Design is the transition system we want to check (implementation).

Monitor captures ¬φ, the negation of the specification.

When φ is safety, the Monitor can simply be an NFA or DFA which
accepts the bad prefixes of φ.

The accepting states of that NFA/DFA are error states. The
Monitor acts like a “watchdog”: it observes the outputs of Design,
and moves to an error state if ever Design does something wrong.

Once the Monitor enters the error state, it cannot leave. Once a
safety property is violated, there is no recovery.

1This is related to the so-called automata-theoretic verification approach, which we
will formalize later.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 13 / 37



Example: safety monitor
What would a Monitor for G(p→ Xq) look like?

error

true

p q

What is the alphabet (set of input symbols) that this monitor reads?

2AP. Assume in this case AP = {p, q}.
A guard like p actually means {pq, pq}.
Monitor synchronizes with Design at every step.

Specifically: Design × Monitor moves from product state (s,m) to
(s′,m′) as follows:

1 Monitor chooses a transition m
g−→ m′ whose guard g is satisfied by

L(s) (the propositions holding at s).
2 Design picks a move s −→ s′.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 14 / 37



Example: safety monitor
What would a Monitor for G(p→ Xq) look like?

error

true

p q

What is the alphabet (set of input symbols) that this monitor reads?

2AP. Assume in this case AP = {p, q}.
A guard like p actually means {pq, pq}.
Monitor synchronizes with Design at every step.

Specifically: Design × Monitor moves from product state (s,m) to
(s′,m′) as follows:

1 Monitor chooses a transition m
g−→ m′ whose guard g is satisfied by

L(s) (the propositions holding at s).
2 Design picks a move s −→ s′.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 14 / 37



Example: safety monitor
What would a Monitor for G(p→ Xq) look like?

error

true

p q

What is the alphabet (set of input symbols) that this monitor reads?

2AP. Assume in this case AP = {p, q}.
A guard like p actually means {pq, pq}.
Monitor synchronizes with Design at every step.

Specifically: Design × Monitor moves from product state (s,m) to
(s′,m′) as follows:

1 Monitor chooses a transition m
g−→ m′ whose guard g is satisfied by

L(s) (the propositions holding at s).
2 Design picks a move s −→ s′.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 14 / 37



Safety monitor with guards on the states

We could also put the guards on the states, instead of the transitions:

true p q error

q OK

Again, Monitor synchronizes with Design at every step, but here the
synchronization rules are slightly different:

Let L(s) ⊆ AP be the labeling of a state s of Design, and gm ⊆ 2AP

be the guard of a state m of Monitor.

Then a product state (s,m) is legal iff L(s) satisfies gm.

During composition, only legal product states are generated.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 15 / 37



Safety monitor with guards on the states

true p q error

q OK

Is this really the correct Monitor for G(p→ Xq)?

What if a p happens right at the first step?
Above Monitor misses that case.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 16 / 37



Safety monitor with guards on the states

true p q error

q OK

Is this really the correct Monitor for G(p→ Xq)?
What if a p happens right at the first step?
Above Monitor misses that case.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 16 / 37



Safety monitor with guards on the states (corrected)

Monitor for G(p→ Xq) with labels on states:

true

p q error

q OK

Corrected by making p also an initial state.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 17 / 37



Safety monitors can be non-deterministic

Monitor for G(p→ Xq):

error

true

p q

This monitor is non-deterministic: every run must avoid the error state.

This is OK, because we can explore all reachable states of the product
Design × Monitor, and check that the error state is unreachable.

Here we can see an example of the advantage of non-determinism in
specification.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 18 / 37



Safety monitors can be non-deterministic

Monitor for G(p→ Xq):

error

true

p q

This monitor is non-deterministic: every run must avoid the error state.

This is OK, because we can explore all reachable states of the product
Design × Monitor, and check that the error state is unreachable.

Here we can see an example of the advantage of non-determinism in
specification.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 18 / 37



ω-AUTOMATA

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 19 / 37



Non-Deterministic Büchi Automata (NBA)

NBA syntax = NFA syntax = (Σ, S, S0,∆, F ).

But the interpretation is different (same syntax, different semantics):

An NFA accepts finite words, that is, elements of Σ∗.

An NBA accepts infinite words, that is, elements of Σω.
An element of Σω is an infinite sequence

a1a2a3 · · ·

of letters in Σ, i.e., where for every i, ai ∈ Σ.

NBA acceptance condition: an infinite word is accepted if there exists an
infinite run generating this word such that the run visits an accepting state
(i.e., a state in F ) infinitely often.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 20 / 37



Non-Deterministic Büchi Automata (NBA)

NBA syntax = NFA syntax = (Σ, S, S0,∆, F ).

But the interpretation is different (same syntax, different semantics):

An NFA accepts finite words, that is, elements of Σ∗.

An NBA accepts infinite words, that is, elements of Σω.
An element of Σω is an infinite sequence

a1a2a3 · · ·

of letters in Σ, i.e., where for every i, ai ∈ Σ.

NBA acceptance condition: an infinite word is accepted if there exists an
infinite run generating this word such that the run visits an accepting state
(i.e., a state in F ) infinitely often.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 20 / 37



Büchi automaton: example

s0 s1

a b

b

a

Which words does this Büchi automaton accept?

All infinite words where a appears infinitely often.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 21 / 37



Büchi automaton: example

s0 s1

a b

b

a

Which words does this Büchi automaton accept?

All infinite words where a appears infinitely often.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 21 / 37



Deterministic and complete Büchi automata

A Deterministic Büchi Automaton (DBA) is an NBA where every
infinite word generates at most one run (it could also deadlock, i.e.,
generate zero runs).

A sufficient condition for determinism is that the transition relation ∆
is a function (it could be a partial function).

Is this condition also necessary?
No: there could be unreachable states with non-deterministic
outgoing transitions.

A (deterministic or non-deterministic) Büchi automaton is complete if
every infinite word generates at least one run.

A sufficient condition for completeness is
∀s ∈ S : ∀a ∈ Σ : ∃s′ ∈ S : (s, s′) ∈ ∆, i.e., every state has at least
one successor for every input letter.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 22 / 37



Deterministic and complete Büchi automata

A Deterministic Büchi Automaton (DBA) is an NBA where every
infinite word generates at most one run (it could also deadlock, i.e.,
generate zero runs).

A sufficient condition for determinism is that the transition relation ∆
is a function (it could be a partial function).
Is this condition also necessary?

No: there could be unreachable states with non-deterministic
outgoing transitions.

A (deterministic or non-deterministic) Büchi automaton is complete if
every infinite word generates at least one run.

A sufficient condition for completeness is
∀s ∈ S : ∀a ∈ Σ : ∃s′ ∈ S : (s, s′) ∈ ∆, i.e., every state has at least
one successor for every input letter.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 22 / 37



Deterministic and complete Büchi automata

A Deterministic Büchi Automaton (DBA) is an NBA where every
infinite word generates at most one run (it could also deadlock, i.e.,
generate zero runs).

A sufficient condition for determinism is that the transition relation ∆
is a function (it could be a partial function).
Is this condition also necessary?
No: there could be unreachable states with non-deterministic
outgoing transitions.

A (deterministic or non-deterministic) Büchi automaton is complete if
every infinite word generates at least one run.

A sufficient condition for completeness is
∀s ∈ S : ∀a ∈ Σ : ∃s′ ∈ S : (s, s′) ∈ ∆, i.e., every state has at least
one successor for every input letter.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 22 / 37



Deterministic and complete Büchi automata

A Deterministic Büchi Automaton (DBA) is an NBA where every
infinite word generates at most one run (it could also deadlock, i.e.,
generate zero runs).

A sufficient condition for determinism is that the transition relation ∆
is a function (it could be a partial function).
Is this condition also necessary?
No: there could be unreachable states with non-deterministic
outgoing transitions.

A (deterministic or non-deterministic) Büchi automaton is complete if
every infinite word generates at least one run.

A sufficient condition for completeness is
∀s ∈ S : ∀a ∈ Σ : ∃s′ ∈ S : (s, s′) ∈ ∆, i.e., every state has at least
one successor for every input letter.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 22 / 37



Deterministic and complete Büchi automata

Is this automaton deterministic?

s0 s1

a b

b

a

Yes.

Is it complete? Yes, assuming Σ = {a, b}.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 23 / 37



Deterministic and complete Büchi automata

Is this automaton deterministic?

s0 s1

a b

b

a

Yes.

Is it complete?

Yes, assuming Σ = {a, b}.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 23 / 37



Deterministic and complete Büchi automata

Is this automaton deterministic?

s0 s1

a b

b

a

Yes.

Is it complete? Yes, assuming Σ = {a, b}.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 23 / 37



Parenthesis: Syntax vs Semantics

This could be a DFA or a DBA: no way to tell just by looking at the
diagram!

q0 q1

0 1

1

0

Same syntax, different semantics!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 24 / 37



Non-Deterministic vs. Deterministic Büchi Automata

s0 s1

a, b b

b

Which words does this Büchi automaton accept?

All infinite words ending with an infinite sequence of b’s.

Omega-regular expression: (a+ b)∗ · bω

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 25 / 37



Non-Deterministic vs. Deterministic Büchi Automata

s0 s1

a, b b

b

Which words does this Büchi automaton accept?

All infinite words ending with an infinite sequence of b’s.

Omega-regular expression: (a+ b)∗ · bω

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 25 / 37



Non-Deterministic vs. Deterministic Büchi Automata

s0 s1

a, b b

b

This Büchi automaton is non-deterministic. Why?

Can we determinize it?
Let’s see what the standard subset construction gives:

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 26 / 37



Non-Deterministic vs. Deterministic Büchi Automata

s0 s1

a, b b

b

Theorem

There is no deterministic Büchi automaton which is equivalent to the
above (i.e., which accepts the same language).

Proof: on whiteboard.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 27 / 37



NBA vs. DBA

Let:

NBA denote the class of infinite-word languages accepted by
non-deterministic Büchi automata.
Therefore, NBA ⊆ 2Σω

.

DBA denote the class of infinite-word languages accepted by
deterministic Büchi automata.

The previous example shows that DBA is a strict subset of NBA:

DBA ⊂ NBA

In contrast, DFA and NFA accept the same class of (finite-word)
languages.

What about LTL? We’ll see that next.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 28 / 37



NBA vs. DBA

Let:

NBA denote the class of infinite-word languages accepted by
non-deterministic Büchi automata.
Therefore, NBA ⊆ 2Σω

.

DBA denote the class of infinite-word languages accepted by
deterministic Büchi automata.

The previous example shows that DBA is a strict subset of NBA:

DBA ⊂ NBA

In contrast, DFA and NFA accept the same class of (finite-word)
languages.

What about LTL? We’ll see that next.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 28 / 37



Other types of ω-automata2

Street automata

Rabin automata

Parity automata

...

These automata are not more powerful than non-deterministic Büchi
automata: they all recognize the class of ω-regular languages.

But contrary to NBA, the above automata can be determinized.

We will not look at these automata in this course. For more info, see
Automata-Theoretic Verification by Esparza, Kupferman, Vardi:
https://www.cs.rice.edu/~vardi/papers/hba11.pdf

2There’s also tree automata, alternating automata, alternating tree automata, etc.
We will not look at any of these.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 29 / 37

https://www.cs.rice.edu/~vardi/papers/hba11.pdf


LTL VS BUCHI AUTOMATA

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 30 / 37



LTL vs. DBA

Let Σ = {a, b}.

s0 s1

a b

b

a

Is there an LTL formula which “accepts” the same language as this DBA?
(We can define the language of an LTL formula as the set of infinite words

that satisfy the formula.)

Yes:
GFa

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 31 / 37



LTL vs. DBA

Let Σ = {a, b}.

s0 s1

a b

b

a

Is there an LTL formula which “accepts” the same language as this DBA?
(We can define the language of an LTL formula as the set of infinite words

that satisfy the formula.)

Yes:
GFa

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 31 / 37



LTL vs. DBA

s0 s1

a, b b

b

Is there an LTL formula which “accepts” the same language as this NBA?

Yes:
FGb

Let LTL and DBA be the class of properties expressible as LTL formulas
and DBA, respectively. This example shows that

LTL 6⊆ DBA

because as we have seen earlier, there is no DBA equivalent to the above
NBA.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 32 / 37



LTL vs. DBA

s0 s1

a, b b

b

Is there an LTL formula which “accepts” the same language as this NBA?

Yes:
FGb

Let LTL and DBA be the class of properties expressible as LTL formulas
and DBA, respectively. This example shows that

LTL 6⊆ DBA

because as we have seen earlier, there is no DBA equivalent to the above
NBA.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 32 / 37



LTL vs. DBA
Consider the following DBA:

s0 s1

a

a, b

Which language does this automaton accept?

The set of all words where a appears (at least) in positions 1, 3, 5, ... (i.e.,
all odd positions).

Is there an equivalent LTL formula?
No [Wolper, 1983]

In particular, formula G(a→ XXa) doesn’t work. Why?

This example shows that

DBA 6⊆ LTL

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 33 / 37



LTL vs. DBA
Consider the following DBA:

s0 s1

a

a, b

Which language does this automaton accept?
The set of all words where a appears (at least) in positions 1, 3, 5, ... (i.e.,

all odd positions).

Is there an equivalent LTL formula?

No [Wolper, 1983]

In particular, formula G(a→ XXa) doesn’t work. Why?

This example shows that

DBA 6⊆ LTL

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 33 / 37



LTL vs. DBA
Consider the following DBA:

s0 s1

a

a, b

Which language does this automaton accept?
The set of all words where a appears (at least) in positions 1, 3, 5, ... (i.e.,

all odd positions).

Is there an equivalent LTL formula?
No [Wolper, 1983]

In particular, formula G(a→ XXa) doesn’t work. Why?

This example shows that

DBA 6⊆ LTL

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 33 / 37



LTL vs. DBA
Consider the following DBA:

s0 s1

a

a, b

Which language does this automaton accept?
The set of all words where a appears (at least) in positions 1, 3, 5, ... (i.e.,

all odd positions).

Is there an equivalent LTL formula?
No [Wolper, 1983]

In particular, formula G(a→ XXa) doesn’t work. Why?

This example shows that

DBA 6⊆ LTL
Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 33 / 37



LTL vs. NBA

What about LTL vs. NBA?

We will later provide a translation from LTL formulas to NBA, therefore
proving

LTL ⊂ NBA

The inclusion is strict because of the previous example (and the fact that
every DBA is a special case of an NBA).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 34 / 37



Summary: NBA vs. LTL vs. DBA

DBA

NBA

LTL

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 35 / 37



Parenthesis: LTL with quantifiers

Just like there is propositional logic (without quantifiers) and first-order
logic (with quantifiers over variables), there is also propositional LTL (the
one we’ve been studying) and LTL with quantifiers.

We call the latter QLTL.

QLTL is strictly more expressive than LTL.

For example, the property on slide 33 can be expressed in QLTL:

∃s : (G(s→ Xs)) ∧ (G(s→ Xs)) ∧ (G(s→ a))

Note: s here is a sequence of boolean values, so ∃s : · · · is read as “there
exists an infinite sequence s such that ...”.

We will not study QLTL further in this course.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 36 / 37



Parenthesis: LTL with quantifiers

Just like there is propositional logic (without quantifiers) and first-order
logic (with quantifiers over variables), there is also propositional LTL (the
one we’ve been studying) and LTL with quantifiers.

We call the latter QLTL.

QLTL is strictly more expressive than LTL.

For example, the property on slide 33 can be expressed in QLTL:

∃s : (G(s→ Xs)) ∧ (G(s→ Xs)) ∧ (G(s→ a))

Note: s here is a sequence of boolean values, so ∃s : · · · is read as “there
exists an infinite sequence s such that ...”.

We will not study QLTL further in this course.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 36 / 37



Bibliography

Baier, C. and Katoen, J.-P. (2008).
Principles of Model Checking.
MIT Press.

Clarke, E., Grumberg, O., and Peled, D. (2000).
Model Checking.
MIT Press.

Hopcroft, J. E. and Ullman, J. D. (1990).
Introduction To Automata Theory, Languages, And Computation.
Addison-Wesley.

Wolper, P. (1983).
Temporal logic can be more expressive.
Information and Control, 56(1-2):72 – 99.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Automata 37 / 37


	Finite automata
	-automata
	LTL vs Büchi Automata
	Bibliography

