
System Specification, Verification and Synthesis
(SSVS) – CS 4830/7485, Fall 2019

15: Formal Verification:
CTL Model Checking

Stavros Tripakis

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 1 / 36

Solving the general model-checking problem

We know how to model check LTL and CTL formulas of the form

Gψ or AGψ

where ψ is a propositional formula: we do this by reachability analysis.

But how can we model-check arbitrary LTL and CTL formulas?

We first look at CTL. Then at LTL.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 2 / 36

CTL Model-Checking

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 3 / 36

Recall: the model-checking problem for CTL

Given:

the implementation: a transition system (Kripke structure)
M = (AP, S, S0, L,R)

the specification: a CTL formula φ

check where M satisfies φ:

M
?

|= φ

i.e., check whether for every initial state of M satisfies φ:

∀s ∈ S0 : s |= φ ?

We will assume that M is finite and has no deadlock states.
What if M has deadlocks? → Homework.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 4 / 36

Recall: the model-checking problem for CTL

Given:

the implementation: a transition system (Kripke structure)
M = (AP, S, S0, L,R)

the specification: a CTL formula φ

check where M satisfies φ:

M
?

|= φ

i.e., check whether for every initial state of M satisfies φ:

∀s ∈ S0 : s |= φ ?

We will assume that M is finite and has no deadlock states.
What if M has deadlocks? → Homework.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 4 / 36

CTL model-checking: basic idea

1 Compute [[φ]]: the set of all states satisfying φ.
(Note that [[φ]] may contain unreachable states. That’s OK.)

2 Check that S0 ⊆ [[φ]]: every initial state satisfies φ.

How can we implement this test symbolically?
E.g., if S0 and [[φ]] are implemented as BDDs BS0 and B[[φ]].
Check whether BS0 ⇒ B[[φ]] is valid, i.e., whether BS0 ∧ ¬B[[φ]] is

unsatisfiable. Amounts to checking that S0 ∩ [[φ]] = ∅.

We will compute [[φ]] recursively based on the syntax of φ:

1 Compute [[ψ]] for every subformula ψ of φ: bottom-up on the
syntax tree of φ.

2 Combine the results to obtain [[φ]].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 5 / 36

CTL model-checking: basic idea

1 Compute [[φ]]: the set of all states satisfying φ.
(Note that [[φ]] may contain unreachable states. That’s OK.)

2 Check that S0 ⊆ [[φ]]: every initial state satisfies φ.
How can we implement this test symbolically?
E.g., if S0 and [[φ]] are implemented as BDDs BS0 and B[[φ]].

Check whether BS0 ⇒ B[[φ]] is valid, i.e., whether BS0 ∧ ¬B[[φ]] is

unsatisfiable. Amounts to checking that S0 ∩ [[φ]] = ∅.

We will compute [[φ]] recursively based on the syntax of φ:

1 Compute [[ψ]] for every subformula ψ of φ: bottom-up on the
syntax tree of φ.

2 Combine the results to obtain [[φ]].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 5 / 36

CTL model-checking: basic idea

1 Compute [[φ]]: the set of all states satisfying φ.
(Note that [[φ]] may contain unreachable states. That’s OK.)

2 Check that S0 ⊆ [[φ]]: every initial state satisfies φ.
How can we implement this test symbolically?
E.g., if S0 and [[φ]] are implemented as BDDs BS0 and B[[φ]].
Check whether BS0 ⇒ B[[φ]] is valid, i.e., whether BS0 ∧ ¬B[[φ]] is

unsatisfiable. Amounts to checking that S0 ∩ [[φ]] = ∅.

We will compute [[φ]] recursively based on the syntax of φ:

1 Compute [[ψ]] for every subformula ψ of φ: bottom-up on the
syntax tree of φ.

2 Combine the results to obtain [[φ]].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 5 / 36

CTL model-checking: basic idea

1 Compute [[φ]]: the set of all states satisfying φ.
(Note that [[φ]] may contain unreachable states. That’s OK.)

2 Check that S0 ⊆ [[φ]]: every initial state satisfies φ.
How can we implement this test symbolically?
E.g., if S0 and [[φ]] are implemented as BDDs BS0 and B[[φ]].
Check whether BS0 ⇒ B[[φ]] is valid, i.e., whether BS0 ∧ ¬B[[φ]] is

unsatisfiable. Amounts to checking that S0 ∩ [[φ]] = ∅.

We will compute [[φ]] recursively based on the syntax of φ:

1 Compute [[ψ]] for every subformula ψ of φ: bottom-up on the
syntax tree of φ.

2 Combine the results to obtain [[φ]].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 5 / 36

Computing [[φ]]

Assume the transition system is (AP, S, S0, R, L).

Compute [[φ]] recursively based on the syntax of φ:

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] =

[[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

Recall that:
pre(X) = {s ∈ S | ∃s′ ∈ X : s −→ s′}

that is, pre(X) is the set of 1-step predecessors of states in X.
We will see later how to compute pre(X) symbolically.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 6 / 36

Computing [[φ]]

Assume the transition system is (AP, S, S0, R, L).

Compute [[φ]] recursively based on the syntax of φ:

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] =

[[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

Recall that:
pre(X) = {s ∈ S | ∃s′ ∈ X : s −→ s′}

that is, pre(X) is the set of 1-step predecessors of states in X.
We will see later how to compute pre(X) symbolically.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 6 / 36

Computing [[φ]]

Assume the transition system is (AP, S, S0, R, L).

Compute [[φ]] recursively based on the syntax of φ:

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

Recall that:
pre(X) = {s ∈ S | ∃s′ ∈ X : s −→ s′}

that is, pre(X) is the set of 1-step predecessors of states in X.
We will see later how to compute pre(X) symbolically.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 6 / 36

Computing [[φ]]

Assume the transition system is (AP, S, S0, R, L).

Compute [[φ]] recursively based on the syntax of φ:

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] =

pre([[φ1]])

Recall that:
pre(X) = {s ∈ S | ∃s′ ∈ X : s −→ s′}

that is, pre(X) is the set of 1-step predecessors of states in X.
We will see later how to compute pre(X) symbolically.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 6 / 36

Computing [[φ]]

Assume the transition system is (AP, S, S0, R, L).

Compute [[φ]] recursively based on the syntax of φ:

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

Recall that:
pre(X) = {s ∈ S | ∃s′ ∈ X : s −→ s′}

that is, pre(X) is the set of 1-step predecessors of states in X.

We will see later how to compute pre(X) symbolically.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 6 / 36

Computing [[φ]]

Assume the transition system is (AP, S, S0, R, L).

Compute [[φ]] recursively based on the syntax of φ:

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

Recall that:
pre(X) = {s ∈ S | ∃s′ ∈ X : s −→ s′}

that is, pre(X) is the set of 1-step predecessors of states in X.
We will see later how to compute pre(X) symbolically.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 6 / 36

Computing [[EFφ]]

How to compute [[EFφ]]?

EFφ ⇔ φ ∨EXφ ∨EXEXφ ∨ · · ·

therefore

[[EFφ]] = [[φ]] ∪ pre([[φ]]) ∪ pre(pre([[φ]])) ∪ · · ·

This is like the symbolic reachability algorithm, except we are going
backwards.
Will the iteration terminate? Why?
Because the state-space is finite.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 7 / 36

Computing [[EFφ]]

How to compute [[EFφ]]?

EFφ ⇔ φ ∨EXφ ∨EXEXφ ∨ · · ·

therefore

[[EFφ]] = [[φ]] ∪ pre([[φ]]) ∪ pre(pre([[φ]])) ∪ · · ·

This is like the symbolic reachability algorithm, except we are going
backwards.
Will the iteration terminate? Why?
Because the state-space is finite.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 7 / 36

Computing [[EFφ]]

How to compute [[EFφ]]?

EFφ ⇔ φ ∨EXφ ∨EXEXφ ∨ · · ·

therefore

[[EFφ]] = [[φ]] ∪ pre([[φ]]) ∪ pre(pre([[φ]])) ∪ · · ·

This is like the symbolic reachability algorithm, except we are going
backwards.
Will the iteration terminate? Why?
Because the state-space is finite.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 7 / 36

Computing [[EFφ]]

How to compute [[EFφ]]?

EFφ ⇔ φ ∨EXφ ∨EXEXφ ∨ · · ·

therefore

[[EFφ]] = [[φ]] ∪ pre([[φ]]) ∪ pre(pre([[φ]])) ∪ · · ·

This is like the symbolic reachability algorithm, except we are going
backwards.
Will the iteration terminate? Why?

Because the state-space is finite.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 7 / 36

Computing [[EFφ]]

How to compute [[EFφ]]?

EFφ ⇔ φ ∨EXφ ∨EXEXφ ∨ · · ·

therefore

[[EFφ]] = [[φ]] ∪ pre([[φ]]) ∪ pre(pre([[φ]])) ∪ · · ·

This is like the symbolic reachability algorithm, except we are going
backwards.
Will the iteration terminate? Why?
Because the state-space is finite.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 7 / 36

Fixpoints

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 8 / 36

Fixpoints on monotonic functions on powersets

Let F : 2S → 2S be a function from sets of states to sets of states.

A fixpoint of F is a set of states X ⊆ S, such that

F (X) = X

Suppose F is monotonic, i.e.,

X1 ⊆ X2 ⇒ F (X1) ⊆ F (X2)

for any X1, X2.

Then F has a least fixpoint X∗, meaning that:

X∗ is a fixpoint of F : F (X∗) = X∗

X∗ is the least fixpoint of F : for any X, if F (X) = X then X∗ ⊆ X.

X∗ is often denoted lfpF or µF .

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 9 / 36

Fixpoints on monotonic functions on powersets

Let F : 2S → 2S be a function from sets of states to sets of states.

A fixpoint of F is a set of states X ⊆ S, such that

F (X) = X

Suppose F is monotonic, i.e.,

X1 ⊆ X2 ⇒ F (X1) ⊆ F (X2)

for any X1, X2.

Then F has a least fixpoint X∗, meaning that:

X∗ is a fixpoint of F : F (X∗) = X∗

X∗ is the least fixpoint of F : for any X, if F (X) = X then X∗ ⊆ X.

X∗ is often denoted lfpF or µF .

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 9 / 36

Fixpoints on monotonic functions on powersets

Let F : 2S → 2S be a function from sets of states to sets of states.

A fixpoint of F is a set of states X ⊆ S, such that

F (X) = X

Suppose F is monotonic, i.e.,

X1 ⊆ X2 ⇒ F (X1) ⊆ F (X2)

for any X1, X2.

Then F has a least fixpoint X∗, meaning that:

X∗ is a fixpoint of F : F (X∗) = X∗

X∗ is the least fixpoint of F : for any X, if F (X) = X then X∗ ⊆ X.

X∗ is often denoted lfpF or µF .

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 9 / 36

Fixpoints on monotonic functions on powersets

Let F : 2S → 2S be a function from sets of states to sets of states.

A fixpoint of F is a set of states X ⊆ S, such that

F (X) = X

Suppose F is monotonic, i.e.,

X1 ⊆ X2 ⇒ F (X1) ⊆ F (X2)

for any X1, X2.

Then F has a least fixpoint X∗, meaning that:

X∗ is a fixpoint of F : F (X∗) = X∗

X∗ is the least fixpoint of F : for any X, if F (X) = X then X∗ ⊆ X.

X∗ is often denoted lfpF or µF .

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 9 / 36

Computing least fixpoints iteratively

X∗ can be computed by starting from the empty set and applying F
repeatedly:

∅ ⊆ F (∅) ⊆ F (F (∅)) ⊆ F 3(∅) ⊆ · · · ⊆ Fn(∅) ⊆ · · ·

(When) does this iteration terminate?

It terminates when Fn+1(∅) = Fn(∅).

When S is finite, this is bound to happen.
In fact, Fn+1(∅) = Fn(∅) for some n ≤ |S|.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 10 / 36

Computing least fixpoints iteratively

X∗ can be computed by starting from the empty set and applying F
repeatedly:

∅ ⊆ F (∅) ⊆ F (F (∅)) ⊆ F 3(∅) ⊆ · · · ⊆ Fn(∅) ⊆ · · ·

(When) does this iteration terminate?

It terminates when Fn+1(∅) = Fn(∅).

When S is finite, this is bound to happen.
In fact, Fn+1(∅) = Fn(∅) for some n ≤ |S|.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 10 / 36

Theorem

Let S be a finite set. Let n = |S|. Let F : 2S → 2S be a monotonic
function on the powerset of S (i.e., X1 ⊆ X2 ⇒ F (X1) ⊆ F (X2)). Then:

1 F has a least fixpoint X∗.

2 X∗ = Fn(∅).

Proof.

∅ ⊆ F (∅), since the emptyset is a subset of any other set. By monotonicity of F ,
F (∅) ⊆ F (F (∅)) = F 2(∅). Continuing the same way, we can prove by induction
that F i(∅) ⊆ F i+1(∅) for all i = 0, 1, 2, Since S is finite, for some i ≤ n, it
must be that F i(∅) = F i+1(∅). Therefore, for all i ≤ j ≤ n, it must be that
F j(∅) = F j+1(∅). Thus, it must also be that Fn(∅) = Fn+1(∅). Let
X∗ = Fn(∅). By construction, F (X∗) = Fn+1(∅) = Fn(∅) = X∗, i.e., X∗ is a
fixpoint of F .
We next show that X∗ is the least fixpoint of F . Suppose X is another fixpoint
of F , i.e., F (X) = X. ∅ ⊆ X, since the emptyset is a subset of any set. By
monotonicity of F , F (∅) ⊆ F (X), and since F (X) = X, F (∅) ⊆ X. Continuing
the same way, we can prove by induction that F i(∅) ⊆ X for all i = 0, 1, 2,
Thus, X∗ = Fn(∅) ⊆ X.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 11 / 36

CTL Model-Checking continued

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 12 / 36

Computing [[EFφ]]

Recall:
EFφ ⇔ φ ∨EXφ ∨EXEXφ ∨ · · ·

therefore

[[EFφ]] = [[φ]] ∪ pre([[φ]]) ∪ pre(pre([[φ]])) ∪ · · ·

But also:

EFφ ⇔ φ ∨EXEFφ

therefore
[[EFφ]] = [[φ]] ∪ pre([[EFφ]])

This looks like a fixpoint equation! What is the function F?

F (X) = [[φ]] ∪ pre(X)

Is F monotonic? Yes: follows from the fact that pre is monotonic.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 13 / 36

Computing [[EFφ]]

Recall:
EFφ ⇔ φ ∨EXφ ∨EXEXφ ∨ · · ·

therefore

[[EFφ]] = [[φ]] ∪ pre([[φ]]) ∪ pre(pre([[φ]])) ∪ · · ·

But also:

EFφ ⇔ φ ∨EXEFφ

therefore
[[EFφ]] = [[φ]] ∪ pre([[EFφ]])

This looks like a fixpoint equation! What is the function F?

F (X) = [[φ]] ∪ pre(X)

Is F monotonic? Yes: follows from the fact that pre is monotonic.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 13 / 36

Computing [[EFφ]]

Recall:
EFφ ⇔ φ ∨EXφ ∨EXEXφ ∨ · · ·

therefore

[[EFφ]] = [[φ]] ∪ pre([[φ]]) ∪ pre(pre([[φ]])) ∪ · · ·

But also:

EFφ ⇔ φ ∨EXEFφ

therefore
[[EFφ]] = [[φ]] ∪ pre([[EFφ]])

This looks like a fixpoint equation! What is the function F?

F (X) = [[φ]] ∪ pre(X)

Is F monotonic? Yes: follows from the fact that pre is monotonic.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 13 / 36

Computing [[EFφ]]

Recall:
EFφ ⇔ φ ∨EXφ ∨EXEXφ ∨ · · ·

therefore

[[EFφ]] = [[φ]] ∪ pre([[φ]]) ∪ pre(pre([[φ]])) ∪ · · ·

But also:

EFφ ⇔ φ ∨EXEFφ

therefore
[[EFφ]] = [[φ]] ∪ pre([[EFφ]])

This looks like a fixpoint equation! What is the function F?

F (X) = [[φ]] ∪ pre(X)

Is F monotonic?

Yes: follows from the fact that pre is monotonic.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 13 / 36

Computing [[EFφ]]

Recall:
EFφ ⇔ φ ∨EXφ ∨EXEXφ ∨ · · ·

therefore

[[EFφ]] = [[φ]] ∪ pre([[φ]]) ∪ pre(pre([[φ]])) ∪ · · ·

But also:

EFφ ⇔ φ ∨EXEFφ

therefore
[[EFφ]] = [[φ]] ∪ pre([[EFφ]])

This looks like a fixpoint equation! What is the function F?

F (X) = [[φ]] ∪ pre(X)

Is F monotonic? Yes: follows from the fact that pre is monotonic.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 13 / 36

Computing [[EFφ]]

F (X) = [[φ]] ∪ pre(X)

To compute the least fixpoint of F , we need to compute the sequence:

X0 = ∅
X1 = F (X0) = [[φ]] ∪ pre(∅)

= [[φ]] Why?
X2 = F (X1) = [[φ]] ∪ pre([[φ]])
X3 = F (X2) = [[φ]] ∪ pre([[φ]] ∪ pre([[φ]]))

= [[φ]] ∪ pre([[φ]]) ∪ pre(pre([[φ]])) Why?
...

so that

[[EFφ]] = [[φ]] ∪ pre([[φ]]) ∪ pre(pre([[φ]])) ∪ · · · = lfpF

Lambda notation for the fixpoint: lfpX.[[φ]] ∪ pre(X)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 14 / 36

Computing [[EFφ]]

F (X) = [[φ]] ∪ pre(X)

To compute the least fixpoint of F , we need to compute the sequence:

X0 = ∅
X1 = F (X0) = [[φ]] ∪ pre(∅)

= [[φ]] Why?
X2 = F (X1) = [[φ]] ∪ pre([[φ]])
X3 = F (X2) = [[φ]] ∪ pre([[φ]] ∪ pre([[φ]]))

= [[φ]] ∪ pre([[φ]]) ∪ pre(pre([[φ]])) Why?
...

so that

[[EFφ]] = [[φ]] ∪ pre([[φ]]) ∪ pre(pre([[φ]])) ∪ · · · = lfpF

Lambda notation for the fixpoint: lfpX.[[φ]] ∪ pre(X)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 14 / 36

Computing [[φ]] (continued)

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

5 [[EFφ1]] = lfpX.[[φ1]] ∪ pre(X)

6 [[E(φ1Uφ2)]] = ???

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 15 / 36

Computing [[φ]] (continued)

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

5 [[EFφ1]] = lfpX.[[φ1]] ∪ pre(X)

6 [[E(φ1Uφ2)]] = ???

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 15 / 36

Computing [[E(φ1Uφ2)]]

E(φ1Uφ2) ⇔ φ2 ∨ (φ1 ∧EXE(φ1Uφ2))

therefore
[[E(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ pre(X))

Iterative computation:

X0 = ∅
X1 = F (X0) = [[φ2]] ∪ ([[φ1]] ∩ pre(∅))

= [[φ2]]
X2 = F (X1) = [[φ2]] ∪ ([[φ1]] ∩ pre([[φ2]]))
...

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 16 / 36

Computing [[E(φ1Uφ2)]]

E(φ1Uφ2) ⇔ φ2 ∨ (φ1 ∧EXE(φ1Uφ2))

therefore
[[E(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ pre(X))

Iterative computation:

X0 = ∅
X1 = F (X0) = [[φ2]] ∪ ([[φ1]] ∩ pre(∅))

= [[φ2]]
X2 = F (X1) = [[φ2]] ∪ ([[φ1]] ∩ pre([[φ2]]))
...

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 16 / 36

Computing [[E(φ1Uφ2)]]: example

Homework: model-check E(pU q).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 17 / 36

Computing [[φ]] (continued)

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

5 [[EFφ1]] = lfpX.[[φ1]] ∪ pre(X)

6 [[E(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ pre(X))

7 [[AXφ1]] = ???

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 18 / 36

Computing [[φ]] (continued)

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

5 [[EFφ1]] = lfpX.[[φ1]] ∪ pre(X)

6 [[E(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ pre(X))

7 [[AXφ1]] = [[¬EX¬φ1]] = [[EX¬φ1]] = pre([[¬φ1]]) = pre([[φ1]])

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 18 / 36

Computing [[φ]] (continued)

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

5 [[EFφ1]] = lfpX.[[φ1]] ∪ pre(X)

6 [[E(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ pre(X))

7 [[AXφ1]] = [[¬EX¬φ1]] = pre([[φ1]])

8 [[AGφ1]] = [[¬EF¬φ1]] = lfpX.[[φ1]] ∪ pre(X)

Is there a more direct way to compute [[AXφ1]] and [[AGφ1]]?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 19 / 36

Computing [[φ]] (continued)

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

5 [[EFφ1]] = lfpX.[[φ1]] ∪ pre(X)

6 [[E(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ pre(X))

7 [[AXφ1]] = [[¬EX¬φ1]] = pre([[φ1]])

8 [[AGφ1]] = [[¬EF¬φ1]] = lfpX.[[φ1]] ∪ pre(X)

Is there a more direct way to compute [[AXφ1]] and [[AGφ1]]?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 19 / 36

Computing [[AGφ]]

AGφ ⇔ φ ∧AXAGφ

therefore (?)

[[AGφ]] = lfpX.[[φ]] ∩ pre(X)

What is the least fixpoint here?

Iterative computation:

X0 = ∅
X1 = F (X0) = [[φ]] ∩ pre(∅)

= [[φ]] ∩ pre(S)

= [[φ]] ∩ S Why?
= [[φ]] ∩ ∅
= ∅

Oops. What has gone wrong?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 20 / 36

Computing [[AGφ]]

AGφ ⇔ φ ∧AXAGφ

therefore (?)

[[AGφ]] = lfpX.[[φ]] ∩ pre(X)

What is the least fixpoint here?

Iterative computation:

X0 = ∅
X1 = F (X0) = [[φ]] ∩ pre(∅)

= [[φ]] ∩ pre(S)

= [[φ]] ∩ S Why?
= [[φ]] ∩ ∅
= ∅

Oops. What has gone wrong?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 20 / 36

Computing [[AGφ]]

AGφ ⇔ φ ∧AXAGφ

therefore (?)

[[AGφ]] = lfpX.[[φ]] ∩ pre(X)

What is the least fixpoint here?

Iterative computation:

X0 = ∅
X1 = F (X0) = [[φ]] ∩ pre(∅)

= [[φ]] ∩ pre(S)

= [[φ]] ∩ S Why?
= [[φ]] ∩ ∅
= ∅

Oops. What has gone wrong?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 20 / 36

Computing [[AGφ]]

AGφ ⇔ φ ∧AXAGφ

tells us that [[AGφ]] is a fixpoint of the function

F (X) = [[φ]] ∩ pre(X)

but it does not tell us which one.

F may have more than one fixpoints: e.g., S or ∅.

In this case the least fixpoint is ∅.
What we want instead is the greatest fixpoint.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 21 / 36

Computing [[AGφ]]

AGφ ⇔ φ ∧AXAGφ

tells us that [[AGφ]] is a fixpoint of the function

F (X) = [[φ]] ∩ pre(X)

but it does not tell us which one.

F may have more than one fixpoints: e.g., S or ∅.

In this case the least fixpoint is ∅.
What we want instead is the greatest fixpoint.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 21 / 36

Greatest Fixpoints

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 22 / 36

Greatest fixpoints

Let F : 2S → 2S be a monotonic function from sets of states to sets of
states.

Then F has a greatest fixpoint X∗:

X∗ is a fixpoint of F : F (X∗) = X∗

X∗ is the greatest fixpoint of F : for any X, if F (X) = X then
X∗ ⊇ X.

X∗ is often denoted gfpF or νF .

X∗ can be computed by starting from the set S and applying F repeatedly:

S ⊇ F (S) ⊇ F (F (S)) ⊇ F 3(S) ⊇ · · · ⊇ Fn(S) ⊇ · · ·

As with least fixpoints, for finite S the above terminates after at most
n = |S| steps.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 23 / 36

Greatest fixpoints

Let F : 2S → 2S be a monotonic function from sets of states to sets of
states.

Then F has a greatest fixpoint X∗:

X∗ is a fixpoint of F : F (X∗) = X∗

X∗ is the greatest fixpoint of F : for any X, if F (X) = X then
X∗ ⊇ X.

X∗ is often denoted gfpF or νF .

X∗ can be computed by starting from the set S and applying F repeatedly:

S ⊇ F (S) ⊇ F (F (S)) ⊇ F 3(S) ⊇ · · · ⊇ Fn(S) ⊇ · · ·

As with least fixpoints, for finite S the above terminates after at most
n = |S| steps.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 23 / 36

Greatest fixpoints

Let F : 2S → 2S be a monotonic function from sets of states to sets of
states.

Then F has a greatest fixpoint X∗:

X∗ is a fixpoint of F : F (X∗) = X∗

X∗ is the greatest fixpoint of F : for any X, if F (X) = X then
X∗ ⊇ X.

X∗ is often denoted gfpF or νF .

X∗ can be computed by starting from the set S and applying F repeatedly:

S ⊇ F (S) ⊇ F (F (S)) ⊇ F 3(S) ⊇ · · · ⊇ Fn(S) ⊇ · · ·

As with least fixpoints, for finite S the above terminates after at most
n = |S| steps.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 23 / 36

CTL Model-Checking continued

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 24 / 36

Computing [[AGφ]]

[[AGφ]] = gfpX.[[φ]] ∩ pre(X)

Iterative computation:

X0 = S

X1 = F (X0) = [[φ]] ∩ pre(S)

= [[φ]] ∩ pre(∅)
= [[φ]] ∩ ∅
= [[φ]] ∩ S
= [[φ]]

X2 = F (X1) = [[φ]] ∩ pre([[φ]])
...

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 25 / 36

The pre(·) operator

What does pre(X) really compute?

The set of all states which are not 1-step predecessors of X.

I.e., the set of all states which don’t have 1-step successors in X.

In other words, the set of all states whose 1-step successors are all in X.

In other words, since we assumed no deadlocks, the set of all states which
will inevitably move into X in 1-step.

We define:
inev(X) = pre(X)

inev(X) is often denoted p̃re(X).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 26 / 36

The pre(·) operator

What does pre(X) really compute?

The set of all states which are not 1-step predecessors of X.

I.e., the set of all states which don’t have 1-step successors in X.

In other words, the set of all states whose 1-step successors are all in X.

In other words, since we assumed no deadlocks, the set of all states which
will inevitably move into X in 1-step.

We define:
inev(X) = pre(X)

inev(X) is often denoted p̃re(X).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 26 / 36

The pre(·) operator

What does pre(X) really compute?

The set of all states which are not 1-step predecessors of X.

I.e., the set of all states which don’t have 1-step successors in X.

In other words, the set of all states whose 1-step successors are all in X.

In other words, since we assumed no deadlocks, the set of all states which
will inevitably move into X in 1-step.

We define:
inev(X) = pre(X)

inev(X) is often denoted p̃re(X).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 26 / 36

The pre(·) operator

What does pre(X) really compute?

The set of all states which are not 1-step predecessors of X.

I.e., the set of all states which don’t have 1-step successors in X.

In other words, the set of all states whose 1-step successors are all in X.

In other words, since we assumed no deadlocks, the set of all states which
will inevitably move into X in 1-step.

We define:
inev(X) = pre(X)

inev(X) is often denoted p̃re(X).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 26 / 36

The pre(·) operator

What does pre(X) really compute?

The set of all states which are not 1-step predecessors of X.

I.e., the set of all states which don’t have 1-step successors in X.

In other words, the set of all states whose 1-step successors are all in X.

In other words, since we assumed no deadlocks, the set of all states which
will inevitably move into X in 1-step.

We define:
inev(X) = pre(X)

inev(X) is often denoted p̃re(X).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 26 / 36

Computing [[φ]] (continued)

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

5 [[EFφ1]] = lfpX.[[φ1]] ∪ pre(X)

6 [[E(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ pre(X))

7 [[AXφ1]] = inev([[φ1]])

8 [[AGφ1]] = gfpX.[[φ1]] ∩ inev(X)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 27 / 36

More CTL model-checking examples

Homework:

Let’s model-check E(qUAGp).

What about E(pUAGq)?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 28 / 36

Computing [[φ]] (continued)
1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

5 [[EFφ1]] = lfpX.[[φ1]] ∪ pre(X)

6 [[E(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ pre(X))

7 [[AXφ1]] = inev([[φ1]])

8 [[AGφ1]] = gfpX.[[φ1]] ∩ inev(X)

9 [[EGφ1]] = ???
10 [[AFφ1]] = ???
11 [[A(φ1Uφ2)]] = ???

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 29 / 36

Computing [[EGφ]]

EGφ ⇔ φ ∧EXEGφ

Fixpoint equation:
F (X) =

[[φ]] ∩ pre(X)

Least or greatest fixpoint?

[[EGφ]] = gfpX.[[φ]] ∩ pre(X)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 30 / 36

Computing [[EGφ]]

EGφ ⇔ φ ∧EXEGφ

Fixpoint equation:
F (X) = [[φ]] ∩ pre(X)

Least or greatest fixpoint?

[[EGφ]] = gfpX.[[φ]] ∩ pre(X)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 30 / 36

Computing [[EGφ]]

EGφ ⇔ φ ∧EXEGφ

Fixpoint equation:
F (X) = [[φ]] ∩ pre(X)

Least or greatest fixpoint?

[[EGφ]] = gfpX.[[φ]] ∩ pre(X)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 30 / 36

Computing [[AFφ]]

AFφ ⇔

φ ∨AXAFφ

Fixpoint equation:
F (X) = [[φ]] ∪ inev(X)

Least or greatest fixpoint?

[[AFφ]] = lfpX.[[φ]] ∪ inev(X)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 31 / 36

Computing [[AFφ]]

AFφ ⇔ φ ∨AXAFφ

Fixpoint equation:
F (X) =

[[φ]] ∪ inev(X)

Least or greatest fixpoint?

[[AFφ]] = lfpX.[[φ]] ∪ inev(X)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 31 / 36

Computing [[AFφ]]

AFφ ⇔ φ ∨AXAFφ

Fixpoint equation:
F (X) = [[φ]] ∪ inev(X)

Least or greatest fixpoint?

[[AFφ]] = lfpX.[[φ]] ∪ inev(X)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 31 / 36

Computing [[AFφ]]

AFφ ⇔ φ ∨AXAFφ

Fixpoint equation:
F (X) = [[φ]] ∪ inev(X)

Least or greatest fixpoint?

[[AFφ]] = lfpX.[[φ]] ∪ inev(X)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 31 / 36

Computing [[A(φ1Uφ2)]]

A(φ1Uφ2) ⇔

φ2 ∨ (φ1 ∧AXA(φ1Uφ2))

Fixpoint equation:

F (X) = [[φ2]] ∪ ([[φ1]] ∩ inev(X))

Least or greatest fixpoint? (This case is a bit trickier.)

[[A(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ inev(X))

Why not take the greatest fixpoint here? Homework.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 32 / 36

Computing [[A(φ1Uφ2)]]

A(φ1Uφ2) ⇔ φ2 ∨ (φ1 ∧AXA(φ1Uφ2))

Fixpoint equation:

F (X) =

[[φ2]] ∪ ([[φ1]] ∩ inev(X))

Least or greatest fixpoint? (This case is a bit trickier.)

[[A(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ inev(X))

Why not take the greatest fixpoint here? Homework.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 32 / 36

Computing [[A(φ1Uφ2)]]

A(φ1Uφ2) ⇔ φ2 ∨ (φ1 ∧AXA(φ1Uφ2))

Fixpoint equation:

F (X) = [[φ2]] ∪ ([[φ1]] ∩ inev(X))

Least or greatest fixpoint? (This case is a bit trickier.)

[[A(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ inev(X))

Why not take the greatest fixpoint here? Homework.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 32 / 36

Computing [[A(φ1Uφ2)]]

A(φ1Uφ2) ⇔ φ2 ∨ (φ1 ∧AXA(φ1Uφ2))

Fixpoint equation:

F (X) = [[φ2]] ∪ ([[φ1]] ∩ inev(X))

Least or greatest fixpoint? (This case is a bit trickier.)

[[A(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ inev(X))

Why not take the greatest fixpoint here? Homework.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 32 / 36

Computing [[A(φ1Uφ2)]]

A(φ1Uφ2) ⇔ φ2 ∨ (φ1 ∧AXA(φ1Uφ2))

Fixpoint equation:

F (X) = [[φ2]] ∪ ([[φ1]] ∩ inev(X))

Least or greatest fixpoint? (This case is a bit trickier.)

[[A(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ inev(X))

Why not take the greatest fixpoint here? Homework.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 32 / 36

Computing [[φ]] – final version!

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}
2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

5 [[AXφ1]] = inev([[φ1]])

6 [[EFφ1]] = lfpX.[[φ1]] ∪ pre(X)

7 [[AFφ1]] = lfpX.[[φ1]] ∪ inev(X)

8 [[EGφ1]] = gfpX.[[φ1]] ∩ pre(X)

9 [[AGφ1]] = gfpX.[[φ1]] ∩ inev(X)

10 [[E(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ pre(X))

11 [[A(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ inev(X))

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 33 / 36

Symbolic CTL model-checking

The definitions of [[φ]] directly suggest symbolic implementations.

It suffices to be able to compute pre and inev symbolically.

Recall:

pre(X) = {s ∈ S | ∃s′ ∈ X : s −→ s′}

inev(X) = pre(X)

= {s ∈ S | ∀s′ ∈ S : s −→ s′ ⇒ s′ ∈ X}

How can we implement these operators symbolically?
Hint: recall succ.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 34 / 36

Symbolic CTL model-checking

The definitions of [[φ]] directly suggest symbolic implementations.

It suffices to be able to compute pre and inev symbolically.

Recall:

pre(X) = {s ∈ S | ∃s′ ∈ X : s −→ s′}

inev(X) = pre(X)

= {s ∈ S | ∀s′ ∈ S : s −→ s′ ⇒ s′ ∈ X}

How can we implement these operators symbolically?
Hint: recall succ.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 34 / 36

Symbolic CTL model-checking

The definitions of [[φ]] directly suggest symbolic implementations.

It suffices to be able to compute pre and inev symbolically.

Recall:

pre(X) = {s ∈ S | ∃s′ ∈ X : s −→ s′}

inev(X) = pre(X)

= {s ∈ S | ∀s′ ∈ S : s −→ s′ ⇒ s′ ∈ X}

How can we implement these operators symbolically?
Hint: recall succ.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 34 / 36

Symbolic CTL model-checking

Symbolic post :

succ(φ) =
(
∃x : φ(x) ∧ Trans(x, x′)

)
[x′ ; x]

Symbolic pre :

pred(φ) =

∃x′ : φ(x′) ∧ Trans(x, x′)

Symbolic inev :

syminev(φ) = ∀x′ : Trans(x, x′)→ φ(x′)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 35 / 36

Symbolic CTL model-checking

Symbolic post :

succ(φ) =
(
∃x : φ(x) ∧ Trans(x, x′)

)
[x′ ; x]

Symbolic pre :

pred(φ) = ∃x′ : φ(x′) ∧ Trans(x, x′)

Symbolic inev :

syminev(φ) =

∀x′ : Trans(x, x′)→ φ(x′)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 35 / 36

Symbolic CTL model-checking

Symbolic post :

succ(φ) =
(
∃x : φ(x) ∧ Trans(x, x′)

)
[x′ ; x]

Symbolic pre :

pred(φ) = ∃x′ : φ(x′) ∧ Trans(x, x′)

Symbolic inev :

syminev(φ) = ∀x′ : Trans(x, x′)→ φ(x′)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 35 / 36

Bibliography

Baier, C. and Katoen, J.-P. (2008).

Principles of Model Checking.
MIT Press.

Clarke, E., Grumberg, O., and Peled, D. (2000).

Model Checking.
MIT Press.

Davey, B. A. and Priestley, H. A. (2002).

Introduction to Lattices and Order.
Cambridge University Press, 2nd edition.

Huth, M. and Ryan, M. (2004).

Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 CTL Model Checking 36 / 36

	Introduction
	CTL model-checking
	Parenthesis: fixpoints
	CTL model-checking continued
	Greatest Fixpoints
	CTL model-checking continued

