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Solving the general model-checking problem

We know how to model check LTL and CTL formulas of the form

Gψ or AGψ

where ψ is a propositional formula: we do this by reachability analysis.

But how can we model-check arbitrary LTL and CTL formulas?

We first look at CTL. Then at LTL.
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CTL Model-Checking
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Recall: the model-checking problem for CTL

Given:

the implementation: a transition system (Kripke structure)
M = (AP, S, S0, L,R)

the specification: a CTL formula φ

check where M satisfies φ:

M
?

|= φ

i.e., check whether for every initial state of M satisfies φ:

∀s ∈ S0 : s |= φ ?

We will assume that M is finite and has no deadlock states.
What if M has deadlocks? → Homework.
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CTL model-checking: basic idea

1 Compute [[φ]]: the set of all states satisfying φ.
(Note that [[φ]] may contain unreachable states. That’s OK.)

2 Check that S0 ⊆ [[φ]]: every initial state satisfies φ.

How can we implement this test symbolically?
E.g., if S0 and [[φ]] are implemented as BDDs BS0 and B[[φ]].
Check whether BS0 ⇒ B[[φ]] is valid, i.e., whether BS0 ∧ ¬B[[φ]] is

unsatisfiable. Amounts to checking that S0 ∩ [[φ]] = ∅.

We will compute [[φ]] recursively based on the syntax of φ:

1 Compute [[ψ]] for every subformula ψ of φ: bottom-up on the
syntax tree of φ.

2 Combine the results to obtain [[φ]].
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Computing [[φ]]

Assume the transition system is (AP, S, S0, R, L).

Compute [[φ]] recursively based on the syntax of φ:

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] =

[[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

Recall that:
pre(X) = {s ∈ S | ∃s′ ∈ X : s −→ s′}

that is, pre(X) is the set of 1-step predecessors of states in X.
We will see later how to compute pre(X) symbolically.
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Computing [[EFφ]]

How to compute [[EFφ]]?

EFφ ⇔ φ ∨EXφ ∨EXEXφ ∨ · · ·

therefore

[[EFφ]] = [[φ]] ∪ pre([[φ]]) ∪ pre(pre([[φ]])) ∪ · · ·

This is like the symbolic reachability algorithm, except we are going
backwards.
Will the iteration terminate? Why?
Because the state-space is finite.
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Fixpoints
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Fixpoints on monotonic functions on powersets

Let F : 2S → 2S be a function from sets of states to sets of states.

A fixpoint of F is a set of states X ⊆ S, such that

F (X) = X

Suppose F is monotonic, i.e.,

X1 ⊆ X2 ⇒ F (X1) ⊆ F (X2)

for any X1, X2.

Then F has a least fixpoint X∗, meaning that:

X∗ is a fixpoint of F : F (X∗) = X∗

X∗ is the least fixpoint of F : for any X, if F (X) = X then X∗ ⊆ X.

X∗ is often denoted lfpF or µF .
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Computing least fixpoints iteratively

X∗ can be computed by starting from the empty set and applying F
repeatedly:

∅ ⊆ F (∅) ⊆ F (F (∅)) ⊆ F 3(∅) ⊆ · · · ⊆ Fn(∅) ⊆ · · ·

(When) does this iteration terminate?

It terminates when Fn+1(∅) = Fn(∅).

When S is finite, this is bound to happen.
In fact, Fn+1(∅) = Fn(∅) for some n ≤ |S|.
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Theorem

Let S be a finite set. Let n = |S|. Let F : 2S → 2S be a monotonic
function on the powerset of S (i.e., X1 ⊆ X2 ⇒ F (X1) ⊆ F (X2)). Then:

1 F has a least fixpoint X∗.

2 X∗ = Fn(∅).

Proof.

∅ ⊆ F (∅), since the emptyset is a subset of any other set. By monotonicity of F ,
F (∅) ⊆ F (F (∅)) = F 2(∅). Continuing the same way, we can prove by induction
that F i(∅) ⊆ F i+1(∅) for all i = 0, 1, 2, .... Since S is finite, for some i ≤ n, it
must be that F i(∅) = F i+1(∅). Therefore, for all i ≤ j ≤ n, it must be that
F j(∅) = F j+1(∅). Thus, it must also be that Fn(∅) = Fn+1(∅). Let
X∗ = Fn(∅). By construction, F (X∗) = Fn+1(∅) = Fn(∅) = X∗, i.e., X∗ is a
fixpoint of F .
We next show that X∗ is the least fixpoint of F . Suppose X is another fixpoint
of F , i.e., F (X) = X. ∅ ⊆ X, since the emptyset is a subset of any set. By
monotonicity of F , F (∅) ⊆ F (X), and since F (X) = X, F (∅) ⊆ X. Continuing
the same way, we can prove by induction that F i(∅) ⊆ X for all i = 0, 1, 2, ....
Thus, X∗ = Fn(∅) ⊆ X.
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CTL Model-Checking continued
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Computing [[EFφ]]

Recall:
EFφ ⇔ φ ∨EXφ ∨EXEXφ ∨ · · ·

therefore

[[EFφ]] = [[φ]] ∪ pre([[φ]]) ∪ pre(pre([[φ]])) ∪ · · ·

But also:

EFφ ⇔ φ ∨EXEFφ

therefore
[[EFφ]] = [[φ]] ∪ pre([[EFφ]])

This looks like a fixpoint equation! What is the function F?

F (X) = [[φ]] ∪ pre(X)

Is F monotonic? Yes: follows from the fact that pre is monotonic.
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Computing [[EFφ]]

F (X) = [[φ]] ∪ pre(X)

To compute the least fixpoint of F , we need to compute the sequence:

X0 = ∅
X1 = F (X0) = [[φ]] ∪ pre(∅)

= [[φ]] Why?
X2 = F (X1) = [[φ]] ∪ pre([[φ]])
X3 = F (X2) = [[φ]] ∪ pre([[φ]] ∪ pre([[φ]]))

= [[φ]] ∪ pre([[φ]]) ∪ pre(pre([[φ]])) Why?
...

so that

[[EFφ]] = [[φ]] ∪ pre([[φ]]) ∪ pre(pre([[φ]])) ∪ · · · = lfpF

Lambda notation for the fixpoint: lfpX.[[φ]] ∪ pre(X)
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Computing [[φ]] (continued)

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

5 [[EFφ1]] = lfpX.[[φ1]] ∪ pre(X)

6 [[E(φ1Uφ2)]] = ???
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Computing [[E(φ1Uφ2)]]

E(φ1Uφ2) ⇔ φ2 ∨ (φ1 ∧EXE(φ1Uφ2))

therefore
[[E(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ pre(X))

Iterative computation:

X0 = ∅
X1 = F (X0) = [[φ2]] ∪ ([[φ1]] ∩ pre(∅))

= [[φ2]]
X2 = F (X1) = [[φ2]] ∪ ([[φ1]] ∩ pre([[φ2]]))
...
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Computing [[E(φ1Uφ2)]]: example

Homework: model-check E(pU q).
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Computing [[φ]] (continued)

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

5 [[EFφ1]] = lfpX.[[φ1]] ∪ pre(X)

6 [[E(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ pre(X))

7 [[AXφ1]] = ???
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Computing [[φ]] (continued)
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Computing [[φ]] (continued)

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

5 [[EFφ1]] = lfpX.[[φ1]] ∪ pre(X)

6 [[E(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ pre(X))

7 [[AXφ1]] = [[¬EX¬φ1]] = pre([[φ1]])

8 [[AGφ1]] = [[¬EF¬φ1]] = lfpX.[[φ1]] ∪ pre(X)

Is there a more direct way to compute [[AXφ1]] and [[AGφ1]]?
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Computing [[φ]] (continued)
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2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

5 [[EFφ1]] = lfpX.[[φ1]] ∪ pre(X)

6 [[E(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ pre(X))

7 [[AXφ1]] = [[¬EX¬φ1]] = pre([[φ1]])

8 [[AGφ1]] = [[¬EF¬φ1]] = lfpX.[[φ1]] ∪ pre(X)

Is there a more direct way to compute [[AXφ1]] and [[AGφ1]]?
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Computing [[AGφ]]

AGφ ⇔ φ ∧AXAGφ

therefore (?)

[[AGφ]] = lfpX.[[φ]] ∩ pre(X)

What is the least fixpoint here?

Iterative computation:

X0 = ∅
X1 = F (X0) = [[φ]] ∩ pre(∅)

= [[φ]] ∩ pre(S)

= [[φ]] ∩ S Why?
= [[φ]] ∩ ∅
= ∅

Oops. What has gone wrong?
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Computing [[AGφ]]

AGφ ⇔ φ ∧AXAGφ

tells us that [[AGφ]] is a fixpoint of the function

F (X) = [[φ]] ∩ pre(X)

but it does not tell us which one.

F may have more than one fixpoints: e.g., S or ∅.

In this case the least fixpoint is ∅.
What we want instead is the greatest fixpoint.
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Greatest Fixpoints
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Greatest fixpoints

Let F : 2S → 2S be a monotonic function from sets of states to sets of
states.

Then F has a greatest fixpoint X∗:

X∗ is a fixpoint of F : F (X∗) = X∗

X∗ is the greatest fixpoint of F : for any X, if F (X) = X then
X∗ ⊇ X.

X∗ is often denoted gfpF or νF .

X∗ can be computed by starting from the set S and applying F repeatedly:

S ⊇ F (S) ⊇ F (F (S)) ⊇ F 3(S) ⊇ · · · ⊇ Fn(S) ⊇ · · ·

As with least fixpoints, for finite S the above terminates after at most
n = |S| steps.
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CTL Model-Checking continued
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Computing [[AGφ]]

[[AGφ]] = gfpX.[[φ]] ∩ pre(X)

Iterative computation:

X0 = S

X1 = F (X0) = [[φ]] ∩ pre(S)

= [[φ]] ∩ pre(∅)
= [[φ]] ∩ ∅
= [[φ]] ∩ S
= [[φ]]

X2 = F (X1) = [[φ]] ∩ pre([[φ]])
...
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The pre(·) operator

What does pre(X) really compute?

The set of all states which are not 1-step predecessors of X.

I.e., the set of all states which don’t have 1-step successors in X.

In other words, the set of all states whose 1-step successors are all in X.

In other words, since we assumed no deadlocks, the set of all states which
will inevitably move into X in 1-step.

We define:
inev(X) = pre(X)

inev(X) is often denoted p̃re(X).
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Computing [[φ]] (continued)

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

5 [[EFφ1]] = lfpX.[[φ1]] ∪ pre(X)

6 [[E(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ pre(X))

7 [[AXφ1]] = inev([[φ1]])

8 [[AGφ1]] = gfpX.[[φ1]] ∩ inev(X)
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More CTL model-checking examples

Homework:

Let’s model-check E(qUAGp).

What about E(pUAGq)?
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Computing [[φ]] (continued)
1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}

2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

5 [[EFφ1]] = lfpX.[[φ1]] ∪ pre(X)

6 [[E(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ pre(X))

7 [[AXφ1]] = inev([[φ1]])

8 [[AGφ1]] = gfpX.[[φ1]] ∩ inev(X)

9 [[EGφ1]] = ???
10 [[AFφ1]] = ???
11 [[A(φ1Uφ2)]] = ???
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Computing [[EGφ]]

EGφ ⇔ φ ∧EXEGφ

Fixpoint equation:
F (X) =

[[φ]] ∩ pre(X)

Least or greatest fixpoint?

[[EGφ]] = gfpX.[[φ]] ∩ pre(X)
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Computing [[AFφ]]

AFφ ⇔

φ ∨AXAFφ

Fixpoint equation:
F (X) = [[φ]] ∪ inev(X)

Least or greatest fixpoint?

[[AFφ]] = lfpX.[[φ]] ∪ inev(X)
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Computing [[AFφ]]
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Computing [[A(φ1Uφ2)]]

A(φ1Uφ2) ⇔

φ2 ∨ (φ1 ∧AXA(φ1Uφ2))

Fixpoint equation:

F (X) = [[φ2]] ∪ ([[φ1]] ∩ inev(X))

Least or greatest fixpoint? (This case is a bit trickier.)

[[A(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ inev(X))

Why not take the greatest fixpoint here? Homework.
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Computing [[φ]] – final version!

1 For atomic proposition p ∈ AP: [[p]] = {s ∈ S | p ∈ L(s)}
2 [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

3 [[¬φ1]] = [[φ1]] = S − [[φ1]]

4 [[EXφ1]] = pre([[φ1]])

5 [[AXφ1]] = inev([[φ1]])

6 [[EFφ1]] = lfpX.[[φ1]] ∪ pre(X)

7 [[AFφ1]] = lfpX.[[φ1]] ∪ inev(X)

8 [[EGφ1]] = gfpX.[[φ1]] ∩ pre(X)

9 [[AGφ1]] = gfpX.[[φ1]] ∩ inev(X)

10 [[E(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ pre(X))

11 [[A(φ1Uφ2)]] = lfpX.[[φ2]] ∪ ([[φ1]] ∩ inev(X))
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Symbolic CTL model-checking

The definitions of [[φ]] directly suggest symbolic implementations.

It suffices to be able to compute pre and inev symbolically.

Recall:

pre(X) = {s ∈ S | ∃s′ ∈ X : s −→ s′}

inev(X) = pre(X)

= {s ∈ S | ∀s′ ∈ S : s −→ s′ ⇒ s′ ∈ X}

How can we implement these operators symbolically?
Hint: recall succ.
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Symbolic CTL model-checking

Symbolic post :

succ(φ) =
(
∃x : φ(x) ∧ Trans(x, x′)

)
[x′ ; x]

Symbolic pre :

pred(φ) =

∃x′ : φ(x′) ∧ Trans(x, x′)

Symbolic inev :

syminev(φ) = ∀x′ : Trans(x, x′)→ φ(x′)
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