System Specification, Verification and Synthesis (SSVS) - CS 4830/7485, Fall 2019

14: Formal Verification: Binary Decision Diagrams (BDDs)

Stavros Tripakis

Northeastern University Khoury College of Computer Sciences

BDDs

Binary decision trees

Binary decision tree:

- A tree representing all possible variable assignments, and corresponding truth values of a boolean expression.
- For n variables, the tree has $1+2+2^{2}+\cdots+2^{n}=2^{n+1}-1$ nodes (including the leaves).

Let's draw the binary decision tree for

$$
\left(z_{1} \wedge z_{3}\right) \vee\left(z_{2} \wedge z_{3}\right)
$$

(assuming the order of variables z_{1}, z_{2}, z_{3}).

From binary decision trees to BDDs

Main idea: make the representation compact (i.e., smaller) by eliminating redundant nodes.

- If two subtrees (including leaves) T_{1} and T_{2} are identical then keep only T_{1}. All incoming links to T_{2} are redirected to T_{1}.
- If both the true-branch and the false-branch of a node v lead to the same node v^{\prime}, then node v is redundant: v can be removed, with its incoming links being redirected to v^{\prime}.

The result is a reduced ordered binary decision diagram (ROBDD). It is a DAG: directed acyclic graph. We often use BDD to mean ROBDD.

From binary decision trees to BDDs

Main idea: make the representation compact (i.e., smaller) by eliminating redundant nodes.

- If two subtrees (including leaves) T_{1} and T_{2} are identical then keep only T_{1}. All incoming links to T_{2} are redirected to T_{1}.
- If both the true-branch and the false-branch of a node v lead to the same node v^{\prime}, then node v is redundant: v can be removed, with its incoming links being redirected to v^{\prime}.

The result is a reduced ordered binary decision diagram (ROBDD).
It is a DAG: directed acyclic graph.
We often use BDD to mean ROBDD.
Let's try this on the following formulas:

$$
a+b, \quad \text { and } \quad\left(z_{1} \wedge z_{3}\right) \vee\left(z_{2} \wedge z_{3}\right)
$$

From binary decision trees to BDDs

Figure taken from [Baier and Katoen, 2008].

BDDs: a canonical representation of boolean functions

ROBDDs are a canonical representation of boolean functions.
This means that two boolean functions (or expressions) f_{1} and f_{2} are equivalent iff their corresponding ROBDDs (for the same variable ordering) are identical.

BDDs: a canonical representation of boolean functions

ROBDDs are a canonical representation of boolean functions.
This means that two boolean functions (or expressions) f_{1} and f_{2} are equivalent iff their corresponding ROBDDs (for the same variable ordering) are identical.

Is this an important property? What is an example where it is useful?

BDDs: a canonical representation of boolean functions

ROBDDs are a canonical representation of boolean functions.
This means that two boolean functions (or expressions) f_{1} and f_{2} are equivalent iff their corresponding ROBDDs (for the same variable ordering) are identical.

Is this an important property? What is an example where it is useful?
Recall the symbolic reachability algorithm stopping criterion:

$$
t m p \Leftrightarrow \text { Reachable }
$$

If B and B^{\prime} are the BDDs representing tmp and Reachable, respectively, then $t m p \Leftrightarrow$ Reachable holds iff B and B^{\prime} are identical.

The bad news: variable ordering matters greatly

- BDD size depends on variable ordering
- For the same boolean function, different variable orderings may result BDDs which are very different in size.
- For example, consider the function

$$
\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{2}\right) \vee\left(x_{3} \wedge y_{3}\right)
$$

and the two orderings:

$$
x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}
$$

and

$$
x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}
$$

The bad news: variable ordering matters greatly

- BDD size depends on variable ordering
- For the same boolean function, different variable orderings may result BDDs which are very different in size.
- For example, consider the function

$$
\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{2}\right) \vee\left(x_{3} \wedge y_{3}\right)
$$

and the two orderings:

$$
x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}
$$

and

$$
x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}
$$

- Some BDDs have exponential size no matter which ordering we pick.
- Deciding whether a given order is optimal is NP-hard.
- Land of heuristics ...

Operations on BDDs

We want to compute set-theoretic, or equivalently, logical, operations on BDDs:

- Check for emptiness / satisfiability.
- Check for universality / validity.
- Intersection / conjunction.
- Union / disjunction.
- Complementation / negation.

Operations on BDDs

We want to compute set-theoretic, or equivalently, logical, operations on BDDs:

- Check for emptiness / satisfiability.
- Check for universality / validity.
- Intersection / conjunction.
- Union / disjunction.
- Complementation / negation.

Which of these operations are easy to perform on ROBDDs?

Easy operations on BDDs

- Check for emptiness / satisfiability.
- Check whether the BDD is the leaf 0 . If yes \Rightarrow empty / unsat.
- Check for universality / validity.
- Check whether the BDD is the leaf 1. If yes \Rightarrow valid.
- Complementation / negation.
- Replace the leaf 0 with 1 , and 1 with 0 .

Easy operations on BDDs

- Check for emptiness / satisfiability.
- Check whether the BDD is the leaf 0 . If yes \Rightarrow empty / unsat.
- Check for universality / validity.
- Check whether the BDD is the leaf 1. If yes \Rightarrow valid.
- Complementation / negation.
- Replace the leaf 0 with 1 , and 1 with 0 .

We next look at conjunction and disjunction, which are not so trivial.

Shannon expansion

Let f be a boolean expression and let x be a boolean variable.
Recall that

$$
f[x \sim 0]
$$

is a new formula f^{\prime} obtained by replacing any occurrence of x in f by 0 .
Similarly for $f[x \sim 1]$.

Shannon expansion

Let f be a boolean expression and let x be a boolean variable.
Recall that

$$
f[x \sim 0]
$$

is a new formula f^{\prime} obtained by replacing any occurrence of x in f by 0 .
Similarly for $f[x \sim 1]$.
$f[x \sim 1]$ and $f[x \sim 0]$ are called the (positive and negative) cofactors of f, and are denoted f_{x} and $f_{\bar{x}}$.

Shannon expansion

Let f be a boolean expression and let x be a boolean variable.
Recall that

$$
f[x \sim 0]
$$

is a new formula f^{\prime} obtained by replacing any occurrence of x in f by 0 .
Similarly for $f[x \sim 1]$.
$f[x \sim 1]$ and $f[x \sim 0]$ are called the (positive and negative) cofactors of f, and are denoted f_{x} and $f_{\bar{x}}$.

Then

$$
f \Leftrightarrow \underbrace{\bar{x} \cdot f_{\bar{x}}+x \cdot f_{x}}_{\text {this is called the Shannon expansion of } f}
$$

(For brevity, we denote \wedge as • and \vee as + , and $\neg x$ as \bar{x}.)

Shannon expansion and BDDs

$$
f \quad \Leftrightarrow \quad x \cdot f_{x}+\bar{x} \cdot f_{\bar{x}}
$$

This is the essence of binary decision trees and BDDs: if f is the root, then

- f_{x} is the sub-tree rooted at the 1 -branch ("true"-branch) child of f
- $f_{\bar{x}}$ is the sub-tree rooted at the 0 -branch ("false"-branch) child of f

Recursive application of boolean operations based on Shannon expansion

Suppose \odot is some boolean operation (e.g., conjunction or disjunction).
Let f and g be two boolean expressions, and x be a boolean variable (usually f and g refer to x, but they don't have to).

Then

$$
f \odot g \quad \Leftrightarrow \quad \bar{x} \cdot\left(f_{\bar{x}} \odot g_{\bar{x}}\right)+x \cdot\left(f_{x} \odot g_{x}\right)
$$

Recursive application of boolean operations based on Shannon expansion

Suppose \odot is some boolean operation (e.g., conjunction or disjunction).
Let f and g be two boolean expressions, and x be a boolean variable (usually f and g refer to x, but they don't have to).

Then

$$
f \odot g \quad \Leftrightarrow \quad \bar{x} \cdot\left(f_{\bar{x}} \odot g_{\bar{x}}\right)+x \cdot\left(f_{x} \odot g_{x}\right)
$$

For instance, if \odot is conjunction:

$$
f \cdot g \quad \Leftrightarrow \quad \bar{x} \cdot f_{\bar{x}} \cdot g_{\bar{x}}+x \cdot f_{x} \cdot g_{x}
$$

Recursive application of boolean operations based on Shannon expansion

Suppose \odot is some boolean operation (e.g., conjunction or disjunction).
Let f and g be two boolean expressions, and x be a boolean variable (usually f and g refer to x, but they don't have to).

Then

$$
f \odot g \quad \Leftrightarrow \quad \bar{x} \cdot\left(f_{\bar{x}} \odot g_{\bar{x}}\right)+x \cdot\left(f_{x} \odot g_{x}\right)
$$

For instance, if \odot is conjunction:

$$
f \cdot g \quad \Leftrightarrow \quad \bar{x} \cdot f_{\bar{x}} \cdot g_{\bar{x}}+x \cdot f_{x} \cdot g_{x}
$$

This leads to the apply function.

The apply function

- Takes as input:
- A boolean operation \odot (e.g., conjunction or disjunction).
- Two BDDs B_{f} and B_{g} (with the same variable ordering) representing two boolean functions f and g.
- Computes as output:
- A BDD B representing $f \odot g$:

$$
B=\operatorname{apply}\left(\odot, B_{f}, B_{g}\right) \quad \text { such that } \quad B \Leftrightarrow B_{f \odot g}
$$

The apply function

- Takes as input:
- A boolean operation \odot (e.g., conjunction or disjunction).
- Two BDDs B_{f} and B_{g} (with the same variable ordering) representing two boolean functions f and g.
- Computes as output:
- A BDD B representing $f \odot g$:

$$
B=\operatorname{apply}\left(\odot, B_{f}, B_{g}\right) \quad \text { such that } \quad B \Leftrightarrow B_{f \odot g}
$$

- Operates recursively based on Shannon expansion.
- Resulting BDD may not be reduced, so needs to be generally reduced afterwards.

The apply function

We are computing apply $\left(\odot, B_{f}, B_{g}\right)$. Let v_{f} and v_{g} be the root nodes of B_{f} and B_{g} respectively.

There are the following cases to consider:
(1) Both v_{f} and v_{g} are leaves (i.e., 0 or 1). Then, apply returns the leaf BDD with truth value $v_{f} \odot v_{g}$.
(2) Both v_{f} and v_{g} are internal x-nodes, i.e., corresponding to variable x. Then, let B_{f}^{x}, B_{g}^{x} be the positive sub-BDDs (i.e., positive cofactors, i.e., BDDs rooted at the true-branch children) of v_{f} and v_{g}, respectively; and similarly with $B_{f}^{\bar{x}}, B_{g}^{\bar{x}}$. Then:
(1) Recursively compute BDD $B_{x}:=\operatorname{apply}\left(\odot, B_{f}^{x}, B_{g}^{x}\right)$.
(2) Recursively compute BDD $B_{\bar{x}}:=\operatorname{apply}\left(\odot, B_{f}^{\bar{x}}, B_{g}^{\bar{x}}\right)$.
(3) Create and return a new BDD with root x and B_{x} as positive sub-BDD and $B_{\bar{x}}$ as negative sub-BDD.

The justification for this comes directly from

$$
f \odot g \quad \Leftrightarrow \quad \bar{x} \cdot\left(f_{\bar{x}} \odot g_{\bar{x}}\right)+x \cdot\left(f_{x} \odot g_{x}\right)
$$

The apply function (continued)

(3) v_{f} is an internal x-node, but v_{g} is either a leaf (0 or 1) or an internal y-node, with $y>x$, i.e., variable y is after x in the ordering (y is lower in the tree). Then we know, since B_{f} and B_{g} must follow the same variable ordering, that B_{g} is independent from x at this point in the tree. So we proceed as follows:
(1) Recursively compute BDD $B_{x}:=\operatorname{apply}\left(\odot, B_{f}^{x}, B_{g}\right)$.
(2) Recursively compute BDD $B_{\bar{x}}:=\operatorname{apply}\left(\odot, B_{f}^{\bar{x}}, B_{g}\right)$.
(3) Create and return a new BDD with root x and B_{x} as positive sub-BDD and $B_{\bar{x}}$ as negative sub-BDD.

The apply function (continued)

(3) v_{f} is an internal x-node, but v_{g} is either a leaf (0 or 1) or an internal y-node, with $y>x$, i.e., variable y is after x in the ordering (y is lower in the tree). Then we know, since B_{f} and B_{g} must follow the same variable ordering, that B_{g} is independent from x at this point in the tree. So we proceed as follows:
(1) Recursively compute BDD $B_{x}:=\operatorname{apply}\left(\odot, B_{f}^{x}, B_{g}\right)$.
(2) Recursively compute $\mathrm{BDD} B_{\bar{x}}:=\operatorname{apply}\left(\odot, B_{f}^{\bar{x}}, B_{g}\right)$.
(3) Create and return a new BDD with root x and B_{x} as positive sub-BDD and $B_{\bar{x}}$ as negative sub-BDD.
Do you see room for optimization here?

The apply function (continued)

(3) v_{f} is an internal x-node, but v_{g} is either a leaf (0 or 1) or an internal y-node, with $y>x$, i.e., variable y is after x in the ordering (y is lower in the tree). Then we know, since B_{f} and B_{g} must follow the same variable ordering, that B_{g} is independent from x at this point in the tree. So we proceed as follows:
(1) Recursively compute BDD $B_{x}:=\operatorname{apply}\left(\odot, B_{f}^{x}, B_{g}\right)$.
(2) Recursively compute BDD $B_{\bar{x}}:=\operatorname{apply}\left(\odot, B_{f}^{\bar{x}}, B_{g}\right)$.
(3) Create and return a new BDD with root x and B_{x} as positive sub-BDD and $B_{\bar{x}}$ as negative sub-BDD.
Do you see room for optimization here?
E.g., when \odot is + and v_{g} is 0 or 1 . If 0 , return v_{f}. If 1 , return 1 .

The apply function (continued)

(3) v_{f} is an internal x-node, but v_{g} is either a leaf (0 or 1) or an internal y-node, with $y>x$, i.e., variable y is after x in the ordering (y is lower in the tree). Then we know, since B_{f} and B_{g} must follow the same variable ordering, that B_{g} is independent from x at this point in the tree. So we proceed as follows:
(1) Recursively compute BDD $B_{x}:=\operatorname{apply}\left(\odot, B_{f}^{x}, B_{g}\right)$.
(2) Recursively compute $\mathrm{BDD} B_{\bar{x}}:=\operatorname{apply}\left(\odot, B_{f}^{\bar{x}}, B_{g}\right)$.
(3) Create and return a new BDD with root x and B_{x} as positive sub-BDD and $B_{\bar{x}}$ as negative sub-BDD.
Do you see room for optimization here?
E.g., when \odot is + and v_{g} is 0 or 1 . If 0 , return v_{f}. If 1 , return 1 .
(9) Symmetric to case 3 above, but with v_{g} being higher in the tree than v_{f} instead of lower.

The apply function: example

Let's try apply $(+)$ on the two BDDs below:

Figure taken from [Huth and Ryan, 2004].

Existential quantifier elimination

Recall that if x is a boolean variable then:

$$
\exists x: f \quad \Leftrightarrow \quad f[x \sim 0] \vee f[x \sim 1] \quad \Leftrightarrow \quad f_{\bar{x}} \vee f_{x}
$$

Let B_{f} be the BDD for f. How to compute the BDD for $\exists x: f$?
We know how to compute disjunction of BDDs already. It suffices to be able to compute substitutions like $f[x \sim 0]$.

Existential quantifier elimination

Recall that if x is a boolean variable then:

$$
\exists x: f \quad \Leftrightarrow \quad f[x \sim 0] \vee f[x \sim 1] \quad \Leftrightarrow \quad f_{\bar{x}} \vee f_{x}
$$

Let B_{f} be the BDD for f. How to compute the BDD for $\exists x: f$?
We know how to compute disjunction of BDDs already. It suffices to be able to compute substitutions like $f[x \sim 0]$.

This is simple:

- For every x-node v in B_{f}, eliminate v and redirect all incoming links to the 0 -child of v.
- (If we wanted $f[x \sim 1]$ instead, we would redirect them to the 1 -child of v.)
- We must then reduce the resulting BDD.

Putting it all together

Recall: Symbolic Reachability Analysis Algorithm
1: Reachable := Init;
2: terminate := false;
3: repeat
4: $\quad t m p:=$ Reachable $\vee \operatorname{succ}($ Reachable $)$;
5: \quad if $t m p \Leftrightarrow$ Reachable then
6: terminate $:=$ true;
7: else
8: \quad Reachable $:=t m p$;
9: end if
10: until terminate
11: return Reachable;
where

$$
\operatorname{succ}(\phi(\vec{x})):=\left(\exists \vec{x}: \phi(\vec{x}) \wedge \operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)\right)\left[\vec{x}^{\prime} \leadsto \vec{x}\right]
$$

We have all the ingredients to implement this algorithm using BDDs:

- Init, Reachable, tmp are each represented as a BDD on state variables \vec{x}.
- Trans is represented as another BDD on $\vec{x}, \vec{x}^{\prime}$.
- We know how to compute \wedge, \vee, \exists on BDDs.
- Renaming variables $\left[\vec{x}^{\prime} \sim \vec{x}\right]$ is straightforward also.
- We know how to check \Leftrightarrow on BDDs.

Bibliography

Baier, C. and Katoen, J.-P. (2008).
Principles of Model Checking.
MIT Press.
Bryant, R. (1986).
Graph-based algorithms for boolean function manipulation.
IEEE Trans. on Computers.
Clarke, E., Grumberg, O., and Peled, D. (2000).
Model Checking.
MIT Press.
Huth, M. and Ryan, M. (2004).
Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press.

