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Binary decision trees

Binary decision tree:

A tree representing all possible variable assignments, and
corresponding truth values of a boolean expression.

For n variables, the tree has 1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1 nodes
(including the leaves).

Let’s draw the binary decision tree for

(z1 ∧ z3) ∨ (z2 ∧ z3)

(assuming the order of variables z1, z2, z3).
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From binary decision trees to BDDs

Main idea: make the representation compact (i.e., smaller) by eliminating
redundant nodes.

If two subtrees (including leaves) T1 and T2 are identical then keep
only T1. All incoming links to T2 are redirected to T1.

If both the true-branch and the false-branch of a node v lead to the
same node v′, then node v is redundant: v can be removed, with its
incoming links being redirected to v′.

The result is a reduced ordered binary decision diagram (ROBDD).
It is a DAG: directed acyclic graph.
We often use BDD to mean ROBDD.

Let’s try this on the following formulas:

a+ b, and (z1 ∧ z3) ∨ (z2 ∧ z3)
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From binary decision trees to BDDs

394 Computation Tree Logic

z1

z2 z2

z3 z3 z3 z3

1 0 1 0 1 0 0 0

z1

z2 z2

z3

1 0

z1

z2

z3

1 0

Figure 6.22: Binary decision diagrams for f = (z1 ∧ z3) ∨ (z2 ∧ z3).
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Figure taken from [Baier and Katoen, 2008].
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BDDs: a canonical representation of boolean functions

ROBDDs are a canonical representation of boolean functions.

This means that two boolean functions (or expressions) f1 and f2 are
equivalent iff their corresponding ROBDDs (for the same variable
ordering) are identical.

Is this an important property? What is an example where it is useful?

Recall the symbolic reachability algorithm stopping criterion:

tmp ⇔ Reachable

If B and B′ are the BDDs representing tmp and Reachable, respectively,
then tmp ⇔ Reachable holds iff B and B′ are identical.
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The bad news: variable ordering matters greatly

BDD size depends on variable ordering
I For the same boolean function, different variable orderings may result

BDDs which are very different in size.
I For example, consider the function

(x1 ∧ y1) ∨ (x2 ∧ y2) ∨ (x3 ∧ y3)

and the two orderings:

x1, y1, x2, y2, x3, y3

and
x1, x2, x3, y1, y2, y3

Some BDDs have exponential size no matter which ordering we pick.

Deciding whether a given order is optimal is NP-hard.

Land of heuristics ...
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Operations on BDDs

We want to compute set-theoretic, or equivalently, logical, operations on
BDDs:

Check for emptiness / satisfiability.

Check for universality / validity.

Intersection / conjunction.

Union / disjunction.

Complementation / negation.

Which of these operations are easy to perform on ROBDDs?
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Easy operations on BDDs

Check for emptiness / satisfiability.
I Check whether the BDD is the leaf 0. If yes ⇒ empty / unsat.

Check for universality / validity.
I Check whether the BDD is the leaf 1. If yes ⇒ valid.

Complementation / negation.
I Replace the leaf 0 with 1, and 1 with 0.

We next look at conjunction and disjunction, which are not so trivial.
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Shannon expansion

Let f be a boolean expression and let x be a boolean variable.

Recall that
f [x; 0]

is a new formula f ′ obtained by replacing any occurrence of x in f by 0.

Similarly for f [x; 1].

f [x; 1] and f [x; 0] are called the (positive and negative) cofactors of
f , and are denoted fx and fx.

Then
f ⇔ x · fx + x · fx︸ ︷︷ ︸

this is called the Shannon expansion of f

(For brevity, we denote ∧ as · and ∨ as +, and ¬x as x.)
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Shannon expansion and BDDs

f ⇔ x · fx + x · fx

This is the essence of binary decision trees and BDDs: if f is the root,
then

fx is the sub-tree rooted at the 1-branch (“true”-branch) child of f

fx is the sub-tree rooted at the 0-branch (“false”-branch) child of f
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Recursive application of boolean operations based on
Shannon expansion

Suppose � is some boolean operation (e.g., conjunction or disjunction).

Let f and g be two boolean expressions, and x be a boolean variable
(usually f and g refer to x, but they don’t have to).

Then
f � g ⇔ x · (fx � gx) + x · (fx � gx)

For instance, if � is conjunction:

f · g ⇔ x · fx · gx + x · fx · gx

This leads to the apply function.
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The apply function

Takes as input:
I A boolean operation � (e.g., conjunction or disjunction).
I Two BDDs Bf and Bg (with the same variable ordering) representing

two boolean functions f and g.

Computes as output:
I A BDD B representing f � g:

B = apply(�, Bf , Bg) such that B ⇔ Bf�g

Operates recursively based on Shannon expansion.

Resulting BDD may not be reduced, so needs to be generally reduced
afterwards.
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The apply function
We are computing apply(�, Bf , Bg). Let vf and vg be the root nodes of Bf and
Bg respectively.

There are the following cases to consider:

1 Both vf and vg are leaves (i.e., 0 or 1). Then, apply returns the leaf BDD
with truth value vf � vg.

2 Both vf and vg are internal x-nodes, i.e., corresponding to variable x. Then,
let Bxf , B

x
g be the positive sub-BDDs (i.e., positive cofactors, i.e., BDDs

rooted at the true-branch children) of vf and vg, respectively; and similarly
with Bxf , B

x
g . Then:

1 Recursively compute BDD Bx := apply(�, Bxf , Bxg ).
2 Recursively compute BDD Bx := apply(�, Bxf , Bxg ).
3 Create and return a new BDD with root x and Bx as positive sub-BDD

and Bx as negative sub-BDD.

The justification for this comes directly from

f � g ⇔ x · (fx � gx) + x · (fx � gx)
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The apply function (continued)

3 vf is an internal x-node, but vg is either a leaf (0 or 1) or an internal
y-node, with y > x, i.e., variable y is after x in the ordering (y is lower in
the tree). Then we know, since Bf and Bg must follow the same variable
ordering, that Bg is independent from x at this point in the tree. So we
proceed as follows:

1 Recursively compute BDD Bx := apply(�, Bxf , Bg).
2 Recursively compute BDD Bx := apply(�, Bxf , Bg).
3 Create and return a new BDD with root x and Bx as positive sub-BDD

and Bx as negative sub-BDD.

Do you see room for optimization here?

E.g., when � is + and vg is 0 or 1. If 0, return vf . If 1, return 1.

4 Symmetric to case 3 above, but with vg being higher in the tree than vf
instead of lower.
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The apply function: example

Let’s try apply(+) on the two BDDs below:
6.2 Algorithms for reduced OBDDs 375
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Figure 6.15. An example of two arguments for a call apply (+, Bf , Bg).

of Bf and Bg downwards to construct nodes of the OBDD Bf op g. Let rf be

the root node of Bf and rg the root node of Bg.

1. If both rf and rg are terminal nodes with labels lf and lg, respectively (recall

that terminal labels are either 0 or 1), then we compute the value lf op lg and

let the resulting OBDD be B0 if that value is 0 and B1 otherwise.

2. In the remaining cases, at least one of the root nodes is a non-terminal. Suppose

that both root nodes are xi-nodes. Then we create an xi-node n with a dashed

line to apply (op, lo(rf ), lo(rg)) and a solid line to apply (op,hi(rf ),hi(rg)), i.e.

we call apply recursively on the basis of (6.2).

3. If rf is an xi-node, but rg is a terminal node or an xj-node with j > i,

then we know that there is no xi-node in Bg because the two OBDDs have

a compatible ordering of boolean variables. Thus, g is independent of xi
(g ≡ g[0/xi] ≡ g[1/xi]). Therefore, we create an xi-node n with a dashed line

to apply (op, lo(rf ), rg) and a solid line to apply (op,hi(rf ), rg).

4. The case in which rg is a non-terminal, but rf is a terminal or an xj-node with

j > i, is handled symmetrically to case 3.

The result of this procedure might not be reduced; therefore apply finishes

by calling the function reduce on the OBDD it constructed. An example of

apply (where op is +) can be seen in Figures 6.15–6.17. Figure 6.16 shows

the recursive descent control structure of apply and Figure 6.17 shows the

final result. In this example, the result of apply (+, Bf , Bg) is Bf .

Figure 6.16 shows that numerous calls to apply occur several times with

the same arguments. Efficiency could be gained if these were evaluated only

Figure taken from [Huth and Ryan, 2004].
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Existential quantifier elimination

Recall that if x is a boolean variable then:

∃x : f ⇔ f [x; 0] ∨ f [x; 1] ⇔ fx ∨ fx

Let Bf be the BDD for f . How to compute the BDD for ∃x : f?

We know how to compute disjunction of BDDs already. It suffices to be
able to compute substitutions like f [x; 0].

This is simple:

For every x-node v in Bf , eliminate v and redirect all incoming links
to the 0-child of v.

(If we wanted f [x; 1] instead, we would redirect them to the 1-child
of v.)

We must then reduce the resulting BDD.
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Putting it all together
Recall: Symbolic Reachability Analysis Algorithm
1: Reachable := Init ;
2: terminate := false;
3: repeat
4: tmp := Reachable ∨ succ(Reachable);
5: if tmp ⇔ Reachable then
6: terminate := true;
7: else
8: Reachable := tmp;
9: end if
10: until terminate
11: return Reachable;

where
succ

(
φ(~x)

)
:=

(
∃~x : φ(~x) ∧ Trans(~x, ~x′)

)
[~x′ ; ~x]

We have all the ingredients to implement this algorithm using BDDs:

Init ,Reachable, tmp are each represented as a BDD on state variables ~x.

Trans is represented as another BDD on ~x, ~x′.

We know how to compute ∧,∨,∃ on BDDs.

Renaming variables [~x′
; ~x] is straightforward also.

We know how to check ⇔ on BDDs.
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