System Specification, Verification and Synthesis (SSVS) - CS 4830/7485, Fall 2019

13: Formal Verification:
Symbolic Methods

Stavros Tripakis

Northeastern University Khoury College of Computer Sciences

SYMBOLIC METHODS

Symbolic Methods: Why?

Motivation: attack the state explosion problem.

A seminal paper: Symbolic model checking: 10^{20} states and beyond. [Burch et al., 1990].
10^{20} is less than 2^{67}, so far from adequate for real-world systems.
Nevertheless: a great leap forward at that time.

Ken McMillan

Symbolic Representation of State Spaces

Key idea:
Instead of reasoning about individual states, reason about sets of states.

How do we represent a set of states?
Symbolic representation:
Set $=$ predicate.
Set of states $=$ predicate on state variables.

Symbolic Representation of Sets of States

Examples:
(1) Assume 3 state variables, p, q, r, of type boolean.

$$
S_{1}: \quad p \vee q
$$

Symbolic Representation of Sets of States

Examples:

(1) Assume 3 state variables, p, q, r, of type boolean.

$$
S_{1}: \quad p \vee q=\{p \bar{q} r, p \bar{q} r, \bar{p} q r, \bar{p} q \bar{r}, p q r, p q \bar{r}\}
$$

Symbolic Representation of Sets of States

Examples:
(1) Assume 3 state variables, p, q, r, of type boolean.

$$
S_{1}: \quad p \vee q=\{p \bar{q} r, p \bar{q} r, \bar{p} q r, \bar{p} q \bar{r}, p q r, p q \bar{r}\}
$$

(2) Assume 3 state variables, x, i, b, of types real, integer, boolean.

$$
S_{2}: \quad x>0 \wedge(b \rightarrow i \geq 0)
$$

How many states are in S_{2} ?

Symbolic Representation of Transition Relations

Symbolic Representation of Transition Relations

Key idea:
Use a predicate on two copies of the state variables: unprimed (current state) + primed (next state).

If \vec{x} is the vector of state variables, then the transition relation R is a predicate on \vec{x} and \vec{x}^{\prime} :

$$
R\left(\vec{x}, \vec{x}^{\prime}\right)
$$

e.g., for three state variables, x, i, b :

$$
R\left(x, i, b, x^{\prime}, i^{\prime}, b^{\prime}\right)
$$

Symbolic Representation of Transition Relations

Examples:

(1) Assume one state variable, p, of type boolean.

$$
R_{1}: \quad\left(p \rightarrow \neg p^{\prime}\right) \wedge\left(\neg p \rightarrow p^{\prime}\right)
$$

Which transition relation does this represent? Is it a relation or a function (deterministic)?

Symbolic Representation of Transition Relations

Examples:

(1) Assume one state variable, p, of type boolean.

$$
R_{1}: \quad\left(p \rightarrow \neg p^{\prime}\right) \wedge\left(\neg p \rightarrow p^{\prime}\right)
$$

Which transition relation does this represent? Is it a relation or a function (deterministic)?
(2) Assume one state variable, n, of type integer.

$$
R_{2}: \quad n^{\prime}=n+1 \vee n^{\prime}=n
$$

Which transition relation does this represent? Is it a relation or a function (deterministic)?

Symbolic Representation of Kripke Structures

Kripke structure:

$$
\left(P, S, S_{0}, L, R\right)
$$

Symbolic representation:

$$
(P, \text { Init, Trans })
$$

where

- $P=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$: set of (boolean) state variables, also taken to be the atomic propositions. ${ }^{1}$
- Predicate $\operatorname{Init}(\vec{x})$ on vector $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ represents the set S_{0} of initial states.
- Predicate $\operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)$ represents the transition relation R.
${ }^{1}$ this is done for simplicity, the two could be separated

Symbolic Representation of Kripke Structures

Kripke structure:

$$
\left(P, S, S_{0}, L, R\right)
$$

Symbolic representation:

$$
(P, \text { Init, Trans })
$$

where

- $P=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$: set of (boolean) state variables, also taken to be the atomic propositions. ${ }^{1}$
- Predicate $\operatorname{Init}(\vec{x})$ on vector $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ represents the set S_{0} of initial states.
- Predicate $\operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)$ represents the transition relation R. Basis of the language of SMV/NuSMV/NuXMV.
${ }^{1}$ this is done for simplicity, the two could be separated

Example: NuSMV model

```
MODULE inverter(input)
VAR
    output : boolean;
INIT
    output = FALSE
TRANS
    next(output) = !input | next(output) = output
```

What is the Kripke structure defined by this NuSMV program?

Example: NuSMV model

```
MODULE inverter(input)
VAR
    output : boolean;
INIT
    output = FALSE
TRANS
    next(output) = !input | next(output) = output
```

What is the Kripke structure defined by this NuSMV program?

What about P and L ?

Example: Kripke Structure

Represent this symbolically.

A subtlety

Transition relation - symbolic representation 1:

$$
\left(s=s_{1} \rightarrow s^{\prime}=s_{2}\right) \wedge\left(s=s_{2} \rightarrow\left(s^{\prime}=s_{1} \vee s^{\prime}=s_{3}\right)\right) \wedge\left(s=s_{3} \rightarrow s^{\prime}=s_{3}\right)
$$

Transition relation - symbolic representation 2:

$$
\left(s=s_{1} \wedge s^{\prime}=s_{2}\right) \vee\left(s=s_{2} \wedge\left(s^{\prime}=s_{1} \vee s^{\prime}=s_{3}\right)\right) \vee\left(s=s_{3} \wedge s^{\prime}=s_{3}\right)
$$

Which one is the right one?

A subtlety: a bit of propositional logic

Consider the two formulas:

$$
\begin{aligned}
\phi_{1} & =(a \rightarrow b) \wedge(c \rightarrow d) \\
\phi_{2} & =(a \wedge b) \vee(c \wedge d)
\end{aligned}
$$

- Generally, they are not equivalent:
- $\phi_{1} \nRightarrow \phi_{2}$, e.g., when $a=c=0$.
- $\phi_{2} \nRightarrow \phi_{1}$, e.g., when $a=b=c=1, d=0$.
- BUT:
- $\phi_{1} \Rightarrow \phi_{2}$ when $a \vee c$ is valid.
- ϕ_{1} and ϕ_{2} are equivalent when both $a \vee c$ and $a \oplus c(a \operatorname{XOR} c)$ are valid.

A subtlety: a bit of propositional logic

Consider the two formulas:

$$
\begin{aligned}
\phi_{1} & =(a \rightarrow b) \wedge(c \rightarrow d) \\
\phi_{2} & =(a \wedge b) \vee(c \wedge d)
\end{aligned}
$$

- Generally, they are not equivalent:
- $\phi_{1} \nRightarrow \phi_{2}$, e.g., when $a=c=0$.
- $\phi_{2} \nRightarrow \phi_{1}$, e.g., when $a=b=c=1, d=0$.
- BUT:
- $\phi_{1} \Rightarrow \phi_{2}$ when $a \vee c$ is valid.
- ϕ_{1} and ϕ_{2} are equivalent when both $a \vee c$ and $a \oplus c(a \operatorname{XOR} c)$ are valid.

So, if you cover all the cases for the current state s, and the cases are all mutually exclusive, both forms are equivalent.

SYMBOLIC REACHABILITY ANALYSIS

Recall: Symbolic Representation of Kripke Structures

$$
(P, \text { Init, Trans })
$$

where

- $P=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$: set of boolean state variables, also taken to be the atomic propositions.
- Predicate $\operatorname{Init}(\vec{x})$ on vector $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ represents the set S_{0} of initial states.
- Predicate $\operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)$ represents the transition relation R.

Recall: Symbolic Representation

- Set of states $=$ predicate $\phi(\vec{x})$ on vector of state variables \vec{x}. E.g.:
- Init $(x, y, z): x \wedge \neg y$
- $\operatorname{Bad}\left(x_{1}, x_{2}\right): x_{1}=\operatorname{crit} \wedge x_{2}=\operatorname{crit}$
- Transition relation $=$ predicate $\operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)$ on state variables and next-state variables. E.g.:
- Trans $\left(x, y, x^{\prime}, y^{\prime}\right): x^{\prime}=x+1 \wedge\left(y^{\prime}=0 \vee y^{\prime}=1\right)$

Recall: Symbolic Representation

- Set of states $=$ predicate $\phi(\vec{x})$ on vector of state variables \vec{x}. E.g.:
- Init $(x, y, z): x \wedge \neg y$
- $\operatorname{Bad}\left(x_{1}, x_{2}\right): x_{1}=\operatorname{crit} \wedge x_{2}=\operatorname{crit}$
- Transition relation $=$ predicate $\operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)$ on state variables and next-state variables. E.g.:
- Trans $\left(x, y, x^{\prime}, y^{\prime}\right): x^{\prime}=x+1 \wedge\left(y^{\prime}=0 \vee y^{\prime}=1\right)$
- How do we perform set-theoretic operations with predicates?
- Union of two sets represented by ϕ_{1} and ϕ_{2} :

Recall: Symbolic Representation

- Set of states $=$ predicate $\phi(\vec{x})$ on vector of state variables \vec{x}. E.g.:
- Init $(x, y, z): x \wedge \neg y$
- $\operatorname{Bad}\left(x_{1}, x_{2}\right): x_{1}=\operatorname{crit} \wedge x_{2}=\operatorname{crit}$
- Transition relation $=$ predicate $\operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)$ on state variables and next-state variables. E.g.:
- Trans $\left(x, y, x^{\prime}, y^{\prime}\right): x^{\prime}=x+1 \wedge\left(y^{\prime}=0 \vee y^{\prime}=1\right)$
- How do we perform set-theoretic operations with predicates?
- Union of two sets represented by ϕ_{1} and $\phi_{2}: \phi_{1} \vee \phi_{2}$.
- Intersection of two sets represented by ϕ_{1} and ϕ_{2} :

Recall: Symbolic Representation

- Set of states $=$ predicate $\phi(\vec{x})$ on vector of state variables \vec{x}. E.g.:
- Init $(x, y, z): x \wedge \neg y$
- $\operatorname{Bad}\left(x_{1}, x_{2}\right): x_{1}=\operatorname{crit} \wedge x_{2}=\operatorname{crit}$
- Transition relation $=$ predicate $\operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)$ on state variables and next-state variables. E.g.:
- Trans $\left(x, y, x^{\prime}, y^{\prime}\right): x^{\prime}=x+1 \wedge\left(y^{\prime}=0 \vee y^{\prime}=1\right)$
- How do we perform set-theoretic operations with predicates?
- Union of two sets represented by ϕ_{1} and $\phi_{2}: \phi_{1} \vee \phi_{2}$.
- Intersection of two sets represented by ϕ_{1} and $\phi_{2}: \phi_{1} \wedge \phi_{2}$.
- Complement of a set represented by ϕ :

Recall: Symbolic Representation

- Set of states $=$ predicate $\phi(\vec{x})$ on vector of state variables \vec{x}. E.g.:
- Init $(x, y, z): x \wedge \neg y$
- $\operatorname{Bad}\left(x_{1}, x_{2}\right): x_{1}=\operatorname{crit} \wedge x_{2}=\operatorname{crit}$
- Transition relation $=$ predicate $\operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)$ on state variables and next-state variables. E.g.:
- Trans $\left(x, y, x^{\prime}, y^{\prime}\right): x^{\prime}=x+1 \wedge\left(y^{\prime}=0 \vee y^{\prime}=1\right)$
- How do we perform set-theoretic operations with predicates?
- Union of two sets represented by ϕ_{1} and $\phi_{2}: \phi_{1} \vee \phi_{2}$.
- Intersection of two sets represented by ϕ_{1} and $\phi_{2}: \phi_{1} \wedge \phi_{2}$.
- Complement of a set represented by $\phi: \neg \phi$.

Symbolic Reachability Analysis

Main idea:

- Start with set of initial states S_{0}.
- Compute $S_{1}:=S_{0} \cup\left\{\right.$ all 1-step successors of $\left.S_{0}\right\}=S_{0} \cup \operatorname{post}\left(S_{0}\right)$.
- Compute $S_{2}:=S_{1} \cup\left\{\right.$ all 1-step successors of $\left.S_{1}\right\}=S_{1} \cup \operatorname{post}\left(S_{1}\right)$.
- ...
- Until $S_{k+1}=S_{k}$.
- S_{k} contains all reachable states.

Computing Successors Symbolically

Given a set of states represented as a predicate $\phi(\vec{x})$.

We want to compute a new predicate ϕ^{\prime}, representing the set of all 1-step successors of states in $\phi(\vec{x})$.

Predicate Transformer

- Successors can be computed by a predicate transformer :

$$
\operatorname{succ}(\phi(\vec{x})):=\left(\exists \vec{x}: \phi(\vec{x}) \wedge \operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)\right)\left[\vec{x}^{\prime} \sim \vec{x}\right]
$$

- $\exists \vec{x}: \phi(\vec{x}) \wedge \operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right):$ successors of states in ϕ
- $\left[\vec{x}^{\prime} \leadsto \vec{x}\right]$: renames variables so that resulting predicate is over current state variables

Predicate Transformer

- Successors can be computed by a predicate transformer :

$$
\operatorname{succ}(\phi(\vec{x})):=\left(\exists \vec{x}: \phi(\vec{x}) \wedge \operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)\right)\left[\vec{x}^{\prime} \leadsto \vec{x}\right]
$$

- $\exists \vec{x}: \phi(\vec{x}) \wedge \operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)$: successors of states in ϕ
- $\left[\vec{x}^{\prime} \leadsto \vec{x}\right]$: renames variables so that resulting predicate is over current state variables

Example:

$$
\begin{aligned}
\phi & =0 \leq x \leq 5 \\
\operatorname{Trans} & =x \leq x^{\prime} \leq x+1 \\
\operatorname{succ}(\phi) & =\left(\exists x: 0 \leq x \leq 5 \wedge x \leq x^{\prime} \leq x+1\right)\left[x^{\prime} \leadsto x\right]
\end{aligned}
$$

Predicate Transformer

- Successors can be computed by a predicate transformer :

$$
\operatorname{succ}(\phi(\vec{x})):=\left(\exists \vec{x}: \phi(\vec{x}) \wedge \operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)\right)\left[\vec{x}^{\prime} \leadsto \vec{x}\right]
$$

- $\exists \vec{x}: \phi(\vec{x}) \wedge \operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)$: successors of states in ϕ
- $\left[\vec{x}^{\prime} \leadsto \vec{x}\right]$: renames variables so that resulting predicate is over current state variables

Example:

$$
\begin{aligned}
\phi & =0 \leq x \leq 5 \\
\text { Trans } & =x \leq x^{\prime} \leq x+1 \\
\operatorname{succ}(\phi) & =\left(\exists x: 0 \leq x \leq 5 \wedge x \leq x^{\prime} \leq x+1\right)\left[x^{\prime} \leadsto x\right] \\
& =\left(\exists x: 0 \leq x \leq 5 \wedge 0 \leq x^{\prime} \leq 5+1\right)\left[x^{\prime} \leadsto x\right]
\end{aligned}
$$

Predicate Transformer

- Successors can be computed by a predicate transformer :

$$
\operatorname{succ}(\phi(\vec{x})):=\left(\exists \vec{x}: \phi(\vec{x}) \wedge \operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)\right)\left[\vec{x}^{\prime} \leadsto \vec{x}\right]
$$

- $\exists \vec{x}: \phi(\vec{x}) \wedge \operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right):$ successors of states in ϕ
- $\left[\vec{x}^{\prime} \leadsto \vec{x}\right]$: renames variables so that resulting predicate is over current state variables

Example:

$$
\begin{aligned}
\phi & =0 \leq x \leq 5 \\
\text { Trans } & =x \leq x^{\prime} \leq x+1 \\
\operatorname{succ}(\phi) & =\left(\exists x: 0 \leq x \leq 5 \wedge x \leq x^{\prime} \leq x+1\right)\left[x^{\prime} \leadsto x\right] \\
& =\left(\exists x: 0 \leq x \leq 5 \wedge 0 \leq x^{\prime} \leq 5+1\right)\left[x^{\prime} \leadsto x\right] \\
& =\left(0 \leq x^{\prime} \leq 6\right)\left[x^{\prime} \leadsto x\right]
\end{aligned}
$$

Predicate Transformer

- Successors can be computed by a predicate transformer :

$$
\operatorname{succ}(\phi(\vec{x})):=\left(\exists \vec{x}: \phi(\vec{x}) \wedge \operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)\right)\left[\vec{x}^{\prime} \leadsto \vec{x}\right]
$$

- $\exists \vec{x}: \phi(\vec{x}) \wedge \operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)$: successors of states in ϕ
- $\left[\vec{x}^{\prime} \leadsto \vec{x}\right]$: renames variables so that resulting predicate is over current state variables

Example:

$$
\begin{aligned}
\phi & =0 \leq x \leq 5 \\
\text { Trans } & =x \leq x^{\prime} \leq x+1 \\
\operatorname{succ}(\phi) & =\left(\exists x: 0 \leq x \leq 5 \wedge x \leq x^{\prime} \leq x+1\right)\left[x^{\prime} \leadsto x\right] \\
& =\left(\exists x: 0 \leq x \leq 5 \wedge 0 \leq x^{\prime} \leq 5+1\right)\left[x^{\prime} \leadsto x\right] \\
& =\left(0 \leq x^{\prime} \leq 6\right)\left[x^{\prime} \leadsto x\right] \\
& =0 \leq x \leq 6
\end{aligned}
$$

Predicate Transformer

$$
\operatorname{succ}(\phi(\vec{x})):=\left(\exists \vec{x}: \phi(\vec{x}) \wedge \operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)\right)\left[\vec{x}^{\prime} \leadsto \vec{x}\right]
$$

How to do quantifier elimination automatically?
In the case of propositional logic, quantifier elimination is simple. Suppose x is a boolean variable:

$$
\exists x: \phi \quad \Leftrightarrow
$$

Predicate Transformer

$$
\operatorname{succ}(\phi(\vec{x})):=\left(\exists \vec{x}: \phi(\vec{x}) \wedge \operatorname{Trans}\left(\vec{x}, \vec{x}^{\prime}\right)\right)\left[\vec{x}^{\prime} \leadsto \vec{x}\right]
$$

How to do quantifier elimination automatically?
In the case of propositional logic, quantifier elimination is simple. Suppose x is a boolean variable:

$$
\exists x: \phi \quad \Leftrightarrow \quad \phi[x \leadsto 0] \vee \phi[x \sim 1]
$$

where $\phi[x \sim 0]$ is the formula obtained by ϕ after replacing all free occurrences of x by 0 (false), and similarly for $\phi[x \sim 1]$.

Predicate Transformer: Another Example

$$
\operatorname{succ}(p \wedge q)=(\exists p, q: p \wedge q \wedge \operatorname{Tr} a n s)\left[p^{\prime} \sim p, q^{\prime} \leadsto q\right]
$$

Predicate Transformer: Another Example

$$
\begin{aligned}
\operatorname{succ}(p \wedge q) & =(\exists p, q: p \wedge q \wedge \operatorname{Trans})\left[p^{\prime} \leadsto p, q^{\prime} \leadsto q\right] \\
& =\left(\exists p, q: p \wedge q \wedge \bar{p}^{\prime} \wedge q^{\prime}\right)\left[p^{\prime} \leadsto p, q^{\prime} \leadsto q\right]
\end{aligned}
$$

Predicate Transformer: Another Example

$$
\begin{aligned}
\operatorname{succ}(p \wedge q) & =(\exists p, q: p \wedge q \wedge \text { Trans })\left[p^{\prime} \leadsto p, q^{\prime} \leadsto q\right] \\
& =\left(\exists p, q: p \wedge q \wedge \bar{p}^{\prime} \wedge q^{\prime}\right)\left[p^{\prime} \leadsto p, q^{\prime} \leadsto q\right] \\
& =\left(\bar{p}^{\prime} \wedge q^{\prime}\right)\left[p^{\prime} \leadsto p, q^{\prime} \leadsto q\right]
\end{aligned}
$$

Predicate Transformer: Another Example

$$
\begin{aligned}
\operatorname{succ}(p \wedge q) & =(\exists p, q: p \wedge q \wedge \operatorname{Trans})\left[p^{\prime} \leadsto p, q^{\prime} \leadsto q\right] \\
& =\left(\exists p, q: p \wedge q \wedge \bar{p}^{\prime} \wedge q^{\prime}\right)\left[p^{\prime} \leadsto p, q^{\prime} \leadsto q\right] \\
& =\left(\bar{p}^{\prime} \wedge q^{\prime}\right)\left[p^{\prime} \leadsto p, q^{\prime} \leadsto q\right] \\
& =\bar{p} \wedge q
\end{aligned}
$$

succ vs post

- post takes a set of states and returns a set of states:

$$
\text { post }: 2^{S} \rightarrow 2^{S}
$$

where S is the set of states of the transition system.

- succ takes a formula and returns a formula:

$$
\text { succ: Formula } \rightarrow \text { Formula }
$$

Symbolic Reachability Analysis Algorithm

: Reachable := Init;
2: terminate $:=$ false;
3: repeat
4: \quad tmp $:=$ Reachable $\vee \operatorname{succ}($ Reachable $)$;
5: \quad if $t m p \Leftrightarrow$ Reachable then
6: terminate := true;
7: else
8: \quad Reachable $:=t m p ;$
9: end if
10: until terminate
11: return Reachable;

Symbolic Reachability Analysis Algorithm

1: Reachable := Init;
2: terminate := false;
3: repeat
4: \quad tmp $:=$ Reachable $\vee \operatorname{succ}($ Reachable $)$;
5: \quad if $t m p \Leftrightarrow$ Reachable then
6: terminate := true;
7: else
8: \quad Reachable $:=t m p ;$
9: end if
10: until terminate
11: return Reachable;
Does the algorithm terminate? Why?

Symbolic Reachability Analysis Algorithm

1: Reachable := Init;
2: terminate := false;
3: repeat
4: \quad tmp $:=$ Reachable $\vee \operatorname{succ}($ Reachable $)$;
5: \quad if $t m p \Leftrightarrow$ Reachable then
6: terminate := true;
7: else
8: \quad Reachable $:=t m p ;$
9: end if
10: until terminate
11: return Reachable;
Does the algorithm terminate? Why?
Quiz: modify the algorithm to make it check reachability of a set of bad states characterized by predicate Bad.

Symbolic Reachability Algorithm: checking for Bad states

1: Reachable := Init;
2: terminate := false;
error := false;
4: repeat
5: \quad tmp $:=$ Reachable $\vee \operatorname{succ}($ Reachable $)$;
6: \quad if $t m p \Leftrightarrow$ Reachable then
7: terminate := true;
8: else
9: \quad Reachable $:=t m p ;$
10: end if
11: if SAT (Reachable \wedge Bad) then
12: error := true;
13: end if
14: until terminate or error
15: return (Reachable,error);

Symbolic Reachability: Example

Let's check this system symbolically!
We want to check that all reachable states satisfy $p \vee q$. In temporal logic parlance:

$$
\begin{array}{ll}
\text { CTL: } & \mathbf{A G}(p \vee q) \\
\text { LTL: } & \mathbf{G}(p \vee q)
\end{array}
$$

Symbolic Model-Checking: Implementation

- For finite-state systems, boolean variables can be used to encode state.
- All predicates then become boolean expressions.
- Efficient data structures for boolean expressions:
- BDDs (Binary Decision Diagrams)
- Efficient algorithms for implementing logical operations (conjunction, disjunction, satisfiability check, ...) on BDDs.
- Note: logical operations correspond to set-theoretic operations:
- Conjunction: intersection
- Disjunction: union
- Satisfiability check: emptiness check
- ...

Example: BDD

Can you guess which boolean expression this BDD represents?

Example: BDD

Can you guess which boolean expression this BDD represents?

$$
x_{4}\left(\overline{x_{3}}\left(\overline{x_{2}}+x_{2} \overline{x_{1}}\right)+x_{3}\left(\overline{x_{2}} \overline{x_{1}}+x_{2}\right)\right)+\overline{x_{4}} x_{2} x_{1}
$$

Bibliography

Baier, C. and Katoen, J.-P. (2008).
Principles of Model Checking.
MIT Press.
Bryant, R. E. (1992).
Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Comput. Surv., 24(3):293-318.
Burch, J., Clarke, E., Dill, D., Hwang, L., and McMillan, K. (1990).
Symbolic model checking: 10^{20} states and beyond.
In 5th LICS, pages 428-439. IEEE.
Clarke, E., Grumberg, O., and Peled, D. (2000).
Model Checking.
MIT Press.
Huth, M. and Ryan, M. (2004).
Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press.

