
System Specification, Verification and Synthesis
(SSVS) – CS 4830/7485, Fall 2019

13: Formal Verification:
Symbolic Methods

Stavros Tripakis

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 1 / 28



SYMBOLIC METHODS

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 2 / 28



Symbolic Methods: Why?

Motivation: attack the state explosion problem.

A seminal paper: Symbolic model checking: 1020 states and
beyond. [Burch et al., 1990].

1020 is less than 267, so far from adequate for real-world systems.

Nevertheless: a great leap forward at that time.
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Ken McMillan

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 4 / 28



Symbolic Representation of State Spaces

Key idea:
Instead of reasoning about individual states, reason about sets of
states.

How do we represent a set of states?

Symbolic representation:
Set = predicate.

Set of states = predicate on state variables.
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Symbolic Representation of Sets of States

Examples:

1 Assume 3 state variables, p, q, r, of type boolean.

S1 : p ∨ q

= {pqr, pqr, pqr, pqr, pqr, pqr}

2 Assume 3 state variables, x, i, b, of types real, integer, boolean.

S2 : x > 0 ∧ (b→ i ≥ 0)

How many states are in S2?
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Symbolic Representation of Transition Relations

Key idea:
Use a predicate on two copies of the state variables: unprimed
(current state) + primed (next state).

If ~x is the vector of state variables, then the transition relation R is a
predicate on ~x and ~x′:

R(~x, ~x′)

e.g., for three state variables, x, i, b:

R(x, i, b, x′, i′, b′)
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Symbolic Representation of Transition Relations

Examples:

1 Assume one state variable, p, of type boolean.

R1 : (p→ ¬p′) ∧ (¬p→ p′)

Which transition relation does this represent? Is it a relation or a
function (deterministic)?

2 Assume one state variable, n, of type integer.

R2 : n′ = n+ 1 ∨ n′ = n

Which transition relation does this represent? Is it a relation or a
function (deterministic)?
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Symbolic Representation of Kripke Structures

Kripke structure:
(P, S, S0, L,R)

Symbolic representation:
(P, Init ,Trans)

where

P = {x1, x2, ..., xn}: set of (boolean) state variables, also taken to be
the atomic propositions.1

Predicate Init(~x) on vector ~x = (x1, ..., xn) represents the set S0 of
initial states.

Predicate Trans(~x, ~x′) represents the transition relation R.

Basis of the language of SMV/NuSMV/NuXMV.

1this is done for simplicity, the two could be separated
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Example: NuSMV model

MODULE inverter(input)

VAR

output : boolean;

INIT

output = FALSE

TRANS

next(output) = !input | next(output) = output

What is the Kripke structure defined by this NuSMV program?

What about P and L?
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Example: Kripke Structure

Represent this symbolically.
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A subtlety

Transition relation – symbolic representation 1:

(s = s1 → s′ = s2) ∧ (s = s2 → (s′ = s1 ∨ s′ = s3)) ∧ (s = s3 → s′ = s3)

Transition relation – symbolic representation 2:

(s = s1 ∧ s′ = s2) ∨ (s = s2 ∧ (s′ = s1 ∨ s′ = s3)) ∨ (s = s3 ∧ s′ = s3)

Which one is the right one?
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A subtlety: a bit of propositional logic

Consider the two formulas:

φ1 = (a→ b) ∧ (c→ d)

φ2 = (a ∧ b) ∨ (c ∧ d)

Generally, they are not equivalent:
I φ1 6⇒ φ2, e.g., when a = c = 0.
I φ2 6⇒ φ1, e.g., when a = b = c = 1, d = 0.

BUT:
I φ1 ⇒ φ2 when a ∨ c is valid.
I φ1 and φ2 are equivalent when both a ∨ c and a⊕ c (a XOR c) are

valid.

So, if you cover all the cases for the current state s, and the cases are all
mutually exclusive, both forms are equivalent.
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SYMBOLIC REACHABILITY ANALYSIS
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Recall: Symbolic Representation of Kripke Structures

(P, Init ,Trans)

where

P = {x1, x2, ..., xn}: set of boolean state variables, also taken to be
the atomic propositions.

Predicate Init(~x) on vector ~x = (x1, ..., xn) represents the set S0 of
initial states.

Predicate Trans(~x, ~x′) represents the transition relation R.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 15 / 28



Recall: Symbolic Representation

Set of states = predicate φ(~x) on vector of state variables ~x. E.g.:
I Init(x, y, z) : x ∧ ¬y
I Bad(x1, x2) : x1 = crit ∧ x2 = crit

Transition relation = predicate Trans(~x, ~x′) on state variables and
next-state variables. E.g.:

I Trans(x, y, x′, y′) : x′ = x+ 1 ∧ (y′ = 0 ∨ y′ = 1)

How do we perform set-theoretic operations with predicates?
I Union of two sets represented by φ1 and φ2: φ1 ∨ φ2.
I Intersection of two sets represented by φ1 and φ2: φ1 ∧ φ2.
I Complement of a set represented by φ: ¬φ.
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Symbolic Reachability Analysis

Main idea:

Start with set of initial states S0.

Compute S1 := S0 ∪ {all 1-step successors of S0} = S0 ∪ post(S0).

Compute S2 := S1 ∪ {all 1-step successors of S1} = S1 ∪ post(S1).

...

Until Sk+1 = Sk.

Sk contains all reachable states.
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Computing Successors Symbolically

Given a set of states represented as a predicate φ(~x).

We want to compute a new predicate φ′, representing the set of all 1-step
successors of states in φ(~x).
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Predicate Transformer

Successors can be computed by a predicate transformer :

succ
(
φ(~x)

)
:=

(
∃~x : φ(~x) ∧ Trans(~x, ~x′)

)
[~x′ ; ~x]

I ∃~x : φ(~x) ∧ Trans(~x, ~x′): successors of states in φ
I [~x′ ; ~x]: renames variables so that resulting predicate is over current

state variables

Example:

φ = 0 ≤ x ≤ 5

Trans = x ≤ x′ ≤ x+ 1

succ(φ) = (∃x : 0 ≤ x ≤ 5 ∧ x ≤ x′ ≤ x+ 1)[x′ ; x]

= (∃x : 0 ≤ x ≤ 5 ∧ 0 ≤ x′ ≤ 5 + 1)[x′ ; x]

= (0 ≤ x′ ≤ 6)[x′ ; x]

= 0 ≤ x ≤ 6
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Predicate Transformer

succ
(
φ(~x)

)
:=

(
∃~x : φ(~x) ∧ Trans(~x, ~x′)

)
[~x′ ; ~x]

How to do quantifier elimination automatically?

In the case of propositional logic, quantifier elimination is simple.
Suppose x is a boolean variable:

∃x : φ ⇔

φ[x; 0] ∨ φ[x; 1]

where φ[x; 0] is the formula obtained by φ after replacing all free
occurrences of x by 0 (false), and similarly for φ[x; 1].
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Predicate Transformer: Another Example

succ(p ∧ q) = (∃p, q : p ∧ q ∧ Trans)[p′ ; p, q′ ; q]

= (∃p, q : p ∧ q ∧ p′ ∧ q′)[p′ ; p, q′ ; q]

= (p′ ∧ q′)[p′ ; p, q′ ; q]

= p ∧ q
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succ vs post

post takes a set of states and returns a set of states:

post : 2S → 2S

where S is the set of states of the transition system.

succ takes a formula and returns a formula:

succ : Formula → Formula
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Symbolic Reachability Analysis Algorithm

1: Reachable := Init ;
2: terminate := false;
3: repeat
4: tmp := Reachable ∨ succ(Reachable);
5: if tmp ⇔ Reachable then
6: terminate := true;
7: else
8: Reachable := tmp;
9: end if

10: until terminate
11: return Reachable;

Does the algorithm terminate? Why?

Quiz: modify the algorithm to make it check reachability of a set of bad
states characterized by predicate Bad .
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Symbolic Reachability Algorithm: checking for Bad states

1: Reachable := Init ;
2: terminate := false;
3: error := false;
4: repeat
5: tmp := Reachable ∨ succ(Reachable);
6: if tmp ⇔ Reachable then
7: terminate := true;
8: else
9: Reachable := tmp;

10: end if
11: if SAT(Reachable ∧ Bad) then
12: error := true;
13: end if
14: until terminate or error
15: return (Reachable,error);
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Symbolic Reachability: Example

Let’s check this system symbolically!
We want to check that all reachable states satisfy p ∨ q.
In temporal logic parlance:

CTL: AG(p ∨ q)
LTL: G(p ∨ q)
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Symbolic Model-Checking: Implementation

For finite-state systems, boolean variables can be used to encode
state.

All predicates then become boolean expressions.

Efficient data structures for boolean expressions:
I BDDs (Binary Decision Diagrams)

Efficient algorithms for implementing logical operations (conjunction,
disjunction, satisfiability check, ...) on BDDs.

Note: logical operations correspond to set-theoretic operations:
I Conjunction: intersection
I Disjunction: union
I Satisfiability check: emptiness check
I ...
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Example: BDD

Can you guess which boolean expression this BDD represents?

x4
(
x3(x2 + x2x1) + x3(x2 x1 + x2)

)
+ x4x2x1
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