
System Specification, Verification and Synthesis
(SSVS) – CS 4830/7485, Fall 2019

13: Formal Verification:
Symbolic Methods

Stavros Tripakis

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 1 / 28



SYMBOLIC METHODS

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 2 / 28



Symbolic Methods: Why?

Motivation: attack the state explosion problem.

A seminal paper: Symbolic model checking: 1020 states and
beyond. [Burch et al., 1990].

1020 is less than 267, so far from adequate for real-world systems.

Nevertheless: a great leap forward at that time.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 3 / 28



Ken McMillan

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 4 / 28



Symbolic Representation of State Spaces

Key idea:
Instead of reasoning about individual states, reason about sets of
states.

How do we represent a set of states?

Symbolic representation:
Set = predicate.

Set of states = predicate on state variables.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 5 / 28



Symbolic Representation of Sets of States

Examples:

1 Assume 3 state variables, p, q, r, of type boolean.

S1 : p ∨ q

= {pqr, pqr, pqr, pqr, pqr, pqr}

2 Assume 3 state variables, x, i, b, of types real, integer, boolean.

S2 : x > 0 ∧ (b→ i ≥ 0)

How many states are in S2?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 6 / 28



Symbolic Representation of Sets of States

Examples:

1 Assume 3 state variables, p, q, r, of type boolean.

S1 : p ∨ q = {pqr, pqr, pqr, pqr, pqr, pqr}

2 Assume 3 state variables, x, i, b, of types real, integer, boolean.

S2 : x > 0 ∧ (b→ i ≥ 0)

How many states are in S2?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 6 / 28



Symbolic Representation of Sets of States

Examples:

1 Assume 3 state variables, p, q, r, of type boolean.

S1 : p ∨ q = {pqr, pqr, pqr, pqr, pqr, pqr}

2 Assume 3 state variables, x, i, b, of types real, integer, boolean.

S2 : x > 0 ∧ (b→ i ≥ 0)

How many states are in S2?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 6 / 28



Symbolic Representation of Transition Relations

Key idea:
Use a predicate on two copies of the state variables: unprimed
(current state) + primed (next state).

If ~x is the vector of state variables, then the transition relation R is a
predicate on ~x and ~x′:

R(~x, ~x′)

e.g., for three state variables, x, i, b:

R(x, i, b, x′, i′, b′)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 7 / 28



Symbolic Representation of Transition Relations

Key idea:
Use a predicate on two copies of the state variables: unprimed
(current state) + primed (next state).

If ~x is the vector of state variables, then the transition relation R is a
predicate on ~x and ~x′:

R(~x, ~x′)

e.g., for three state variables, x, i, b:

R(x, i, b, x′, i′, b′)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 7 / 28



Symbolic Representation of Transition Relations

Examples:

1 Assume one state variable, p, of type boolean.

R1 : (p→ ¬p′) ∧ (¬p→ p′)

Which transition relation does this represent? Is it a relation or a
function (deterministic)?

2 Assume one state variable, n, of type integer.

R2 : n′ = n+ 1 ∨ n′ = n

Which transition relation does this represent? Is it a relation or a
function (deterministic)?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 8 / 28



Symbolic Representation of Transition Relations

Examples:

1 Assume one state variable, p, of type boolean.

R1 : (p→ ¬p′) ∧ (¬p→ p′)

Which transition relation does this represent? Is it a relation or a
function (deterministic)?

2 Assume one state variable, n, of type integer.

R2 : n′ = n+ 1 ∨ n′ = n

Which transition relation does this represent? Is it a relation or a
function (deterministic)?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 8 / 28



Symbolic Representation of Kripke Structures

Kripke structure:
(P, S, S0, L,R)

Symbolic representation:
(P, Init ,Trans)

where

P = {x1, x2, ..., xn}: set of (boolean) state variables, also taken to be
the atomic propositions.1

Predicate Init(~x) on vector ~x = (x1, ..., xn) represents the set S0 of
initial states.

Predicate Trans(~x, ~x′) represents the transition relation R.

Basis of the language of SMV/NuSMV/NuXMV.

1this is done for simplicity, the two could be separated
Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 9 / 28



Symbolic Representation of Kripke Structures

Kripke structure:
(P, S, S0, L,R)

Symbolic representation:
(P, Init ,Trans)

where

P = {x1, x2, ..., xn}: set of (boolean) state variables, also taken to be
the atomic propositions.1

Predicate Init(~x) on vector ~x = (x1, ..., xn) represents the set S0 of
initial states.

Predicate Trans(~x, ~x′) represents the transition relation R.

Basis of the language of SMV/NuSMV/NuXMV.

1this is done for simplicity, the two could be separated
Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 9 / 28



Example: NuSMV model

MODULE inverter(input)

VAR

output : boolean;

INIT

output = FALSE

TRANS

next(output) = !input | next(output) = output

What is the Kripke structure defined by this NuSMV program?

What about P and L?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 10 / 28



Example: NuSMV model

MODULE inverter(input)

VAR

output : boolean;

INIT

output = FALSE

TRANS

next(output) = !input | next(output) = output

What is the Kripke structure defined by this NuSMV program?

What about P and L?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 10 / 28



Example: Kripke Structure

Represent this symbolically.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 11 / 28



A subtlety

Transition relation – symbolic representation 1:

(s = s1 → s′ = s2) ∧ (s = s2 → (s′ = s1 ∨ s′ = s3)) ∧ (s = s3 → s′ = s3)

Transition relation – symbolic representation 2:

(s = s1 ∧ s′ = s2) ∨ (s = s2 ∧ (s′ = s1 ∨ s′ = s3)) ∨ (s = s3 ∧ s′ = s3)

Which one is the right one?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 12 / 28



A subtlety: a bit of propositional logic

Consider the two formulas:

φ1 = (a→ b) ∧ (c→ d)

φ2 = (a ∧ b) ∨ (c ∧ d)

Generally, they are not equivalent:
I φ1 6⇒ φ2, e.g., when a = c = 0.
I φ2 6⇒ φ1, e.g., when a = b = c = 1, d = 0.

BUT:
I φ1 ⇒ φ2 when a ∨ c is valid.
I φ1 and φ2 are equivalent when both a ∨ c and a⊕ c (a XOR c) are

valid.

So, if you cover all the cases for the current state s, and the cases are all
mutually exclusive, both forms are equivalent.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 13 / 28



A subtlety: a bit of propositional logic

Consider the two formulas:

φ1 = (a→ b) ∧ (c→ d)

φ2 = (a ∧ b) ∨ (c ∧ d)

Generally, they are not equivalent:
I φ1 6⇒ φ2, e.g., when a = c = 0.
I φ2 6⇒ φ1, e.g., when a = b = c = 1, d = 0.

BUT:
I φ1 ⇒ φ2 when a ∨ c is valid.
I φ1 and φ2 are equivalent when both a ∨ c and a⊕ c (a XOR c) are

valid.

So, if you cover all the cases for the current state s, and the cases are all
mutually exclusive, both forms are equivalent.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 13 / 28



SYMBOLIC REACHABILITY ANALYSIS

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 14 / 28



Recall: Symbolic Representation of Kripke Structures

(P, Init ,Trans)

where

P = {x1, x2, ..., xn}: set of boolean state variables, also taken to be
the atomic propositions.

Predicate Init(~x) on vector ~x = (x1, ..., xn) represents the set S0 of
initial states.

Predicate Trans(~x, ~x′) represents the transition relation R.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 15 / 28



Recall: Symbolic Representation

Set of states = predicate φ(~x) on vector of state variables ~x. E.g.:
I Init(x, y, z) : x ∧ ¬y
I Bad(x1, x2) : x1 = crit ∧ x2 = crit

Transition relation = predicate Trans(~x, ~x′) on state variables and
next-state variables. E.g.:

I Trans(x, y, x′, y′) : x′ = x+ 1 ∧ (y′ = 0 ∨ y′ = 1)

How do we perform set-theoretic operations with predicates?
I Union of two sets represented by φ1 and φ2: φ1 ∨ φ2.
I Intersection of two sets represented by φ1 and φ2: φ1 ∧ φ2.
I Complement of a set represented by φ: ¬φ.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 16 / 28



Recall: Symbolic Representation

Set of states = predicate φ(~x) on vector of state variables ~x. E.g.:
I Init(x, y, z) : x ∧ ¬y
I Bad(x1, x2) : x1 = crit ∧ x2 = crit

Transition relation = predicate Trans(~x, ~x′) on state variables and
next-state variables. E.g.:

I Trans(x, y, x′, y′) : x′ = x+ 1 ∧ (y′ = 0 ∨ y′ = 1)

How do we perform set-theoretic operations with predicates?
I Union of two sets represented by φ1 and φ2:

φ1 ∨ φ2.
I Intersection of two sets represented by φ1 and φ2: φ1 ∧ φ2.
I Complement of a set represented by φ: ¬φ.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 16 / 28



Recall: Symbolic Representation

Set of states = predicate φ(~x) on vector of state variables ~x. E.g.:
I Init(x, y, z) : x ∧ ¬y
I Bad(x1, x2) : x1 = crit ∧ x2 = crit

Transition relation = predicate Trans(~x, ~x′) on state variables and
next-state variables. E.g.:

I Trans(x, y, x′, y′) : x′ = x+ 1 ∧ (y′ = 0 ∨ y′ = 1)

How do we perform set-theoretic operations with predicates?
I Union of two sets represented by φ1 and φ2: φ1 ∨ φ2.
I Intersection of two sets represented by φ1 and φ2:

φ1 ∧ φ2.
I Complement of a set represented by φ: ¬φ.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 16 / 28



Recall: Symbolic Representation

Set of states = predicate φ(~x) on vector of state variables ~x. E.g.:
I Init(x, y, z) : x ∧ ¬y
I Bad(x1, x2) : x1 = crit ∧ x2 = crit

Transition relation = predicate Trans(~x, ~x′) on state variables and
next-state variables. E.g.:

I Trans(x, y, x′, y′) : x′ = x+ 1 ∧ (y′ = 0 ∨ y′ = 1)

How do we perform set-theoretic operations with predicates?
I Union of two sets represented by φ1 and φ2: φ1 ∨ φ2.
I Intersection of two sets represented by φ1 and φ2: φ1 ∧ φ2.
I Complement of a set represented by φ:

¬φ.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 16 / 28



Recall: Symbolic Representation

Set of states = predicate φ(~x) on vector of state variables ~x. E.g.:
I Init(x, y, z) : x ∧ ¬y
I Bad(x1, x2) : x1 = crit ∧ x2 = crit

Transition relation = predicate Trans(~x, ~x′) on state variables and
next-state variables. E.g.:

I Trans(x, y, x′, y′) : x′ = x+ 1 ∧ (y′ = 0 ∨ y′ = 1)

How do we perform set-theoretic operations with predicates?
I Union of two sets represented by φ1 and φ2: φ1 ∨ φ2.
I Intersection of two sets represented by φ1 and φ2: φ1 ∧ φ2.
I Complement of a set represented by φ: ¬φ.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 16 / 28



Symbolic Reachability Analysis

Main idea:

Start with set of initial states S0.

Compute S1 := S0 ∪ {all 1-step successors of S0} = S0 ∪ post(S0).

Compute S2 := S1 ∪ {all 1-step successors of S1} = S1 ∪ post(S1).

...

Until Sk+1 = Sk.

Sk contains all reachable states.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 17 / 28



Computing Successors Symbolically

Given a set of states represented as a predicate φ(~x).

We want to compute a new predicate φ′, representing the set of all 1-step
successors of states in φ(~x).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 18 / 28



Predicate Transformer

Successors can be computed by a predicate transformer :

succ
(
φ(~x)

)
:=

(
∃~x : φ(~x) ∧ Trans(~x, ~x′)

)
[~x′ ; ~x]

I ∃~x : φ(~x) ∧ Trans(~x, ~x′): successors of states in φ
I [~x′ ; ~x]: renames variables so that resulting predicate is over current

state variables

Example:

φ = 0 ≤ x ≤ 5

Trans = x ≤ x′ ≤ x+ 1

succ(φ) = (∃x : 0 ≤ x ≤ 5 ∧ x ≤ x′ ≤ x+ 1)[x′ ; x]

= (∃x : 0 ≤ x ≤ 5 ∧ 0 ≤ x′ ≤ 5 + 1)[x′ ; x]

= (0 ≤ x′ ≤ 6)[x′ ; x]

= 0 ≤ x ≤ 6

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 19 / 28



Predicate Transformer

Successors can be computed by a predicate transformer :

succ
(
φ(~x)

)
:=

(
∃~x : φ(~x) ∧ Trans(~x, ~x′)

)
[~x′ ; ~x]

I ∃~x : φ(~x) ∧ Trans(~x, ~x′): successors of states in φ
I [~x′ ; ~x]: renames variables so that resulting predicate is over current

state variables

Example:

φ = 0 ≤ x ≤ 5

Trans = x ≤ x′ ≤ x+ 1

succ(φ) = (∃x : 0 ≤ x ≤ 5 ∧ x ≤ x′ ≤ x+ 1)[x′ ; x]

= (∃x : 0 ≤ x ≤ 5 ∧ 0 ≤ x′ ≤ 5 + 1)[x′ ; x]

= (0 ≤ x′ ≤ 6)[x′ ; x]

= 0 ≤ x ≤ 6

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 19 / 28



Predicate Transformer

Successors can be computed by a predicate transformer :

succ
(
φ(~x)

)
:=

(
∃~x : φ(~x) ∧ Trans(~x, ~x′)

)
[~x′ ; ~x]

I ∃~x : φ(~x) ∧ Trans(~x, ~x′): successors of states in φ
I [~x′ ; ~x]: renames variables so that resulting predicate is over current

state variables

Example:

φ = 0 ≤ x ≤ 5

Trans = x ≤ x′ ≤ x+ 1

succ(φ) = (∃x : 0 ≤ x ≤ 5 ∧ x ≤ x′ ≤ x+ 1)[x′ ; x]

= (∃x : 0 ≤ x ≤ 5 ∧ 0 ≤ x′ ≤ 5 + 1)[x′ ; x]

= (0 ≤ x′ ≤ 6)[x′ ; x]

= 0 ≤ x ≤ 6

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 19 / 28



Predicate Transformer

Successors can be computed by a predicate transformer :

succ
(
φ(~x)

)
:=

(
∃~x : φ(~x) ∧ Trans(~x, ~x′)

)
[~x′ ; ~x]

I ∃~x : φ(~x) ∧ Trans(~x, ~x′): successors of states in φ
I [~x′ ; ~x]: renames variables so that resulting predicate is over current

state variables

Example:

φ = 0 ≤ x ≤ 5

Trans = x ≤ x′ ≤ x+ 1

succ(φ) = (∃x : 0 ≤ x ≤ 5 ∧ x ≤ x′ ≤ x+ 1)[x′ ; x]

= (∃x : 0 ≤ x ≤ 5 ∧ 0 ≤ x′ ≤ 5 + 1)[x′ ; x]

= (0 ≤ x′ ≤ 6)[x′ ; x]

= 0 ≤ x ≤ 6

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 19 / 28



Predicate Transformer

Successors can be computed by a predicate transformer :

succ
(
φ(~x)

)
:=

(
∃~x : φ(~x) ∧ Trans(~x, ~x′)

)
[~x′ ; ~x]

I ∃~x : φ(~x) ∧ Trans(~x, ~x′): successors of states in φ
I [~x′ ; ~x]: renames variables so that resulting predicate is over current

state variables

Example:

φ = 0 ≤ x ≤ 5

Trans = x ≤ x′ ≤ x+ 1

succ(φ) = (∃x : 0 ≤ x ≤ 5 ∧ x ≤ x′ ≤ x+ 1)[x′ ; x]

= (∃x : 0 ≤ x ≤ 5 ∧ 0 ≤ x′ ≤ 5 + 1)[x′ ; x]

= (0 ≤ x′ ≤ 6)[x′ ; x]

= 0 ≤ x ≤ 6

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 19 / 28



Predicate Transformer

succ
(
φ(~x)

)
:=

(
∃~x : φ(~x) ∧ Trans(~x, ~x′)

)
[~x′ ; ~x]

How to do quantifier elimination automatically?

In the case of propositional logic, quantifier elimination is simple.
Suppose x is a boolean variable:

∃x : φ ⇔

φ[x; 0] ∨ φ[x; 1]

where φ[x; 0] is the formula obtained by φ after replacing all free
occurrences of x by 0 (false), and similarly for φ[x; 1].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 20 / 28



Predicate Transformer

succ
(
φ(~x)

)
:=

(
∃~x : φ(~x) ∧ Trans(~x, ~x′)

)
[~x′ ; ~x]

How to do quantifier elimination automatically?

In the case of propositional logic, quantifier elimination is simple.
Suppose x is a boolean variable:

∃x : φ ⇔ φ[x; 0] ∨ φ[x; 1]

where φ[x; 0] is the formula obtained by φ after replacing all free
occurrences of x by 0 (false), and similarly for φ[x; 1].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 20 / 28



Predicate Transformer: Another Example

succ(p ∧ q) = (∃p, q : p ∧ q ∧ Trans)[p′ ; p, q′ ; q]

= (∃p, q : p ∧ q ∧ p′ ∧ q′)[p′ ; p, q′ ; q]

= (p′ ∧ q′)[p′ ; p, q′ ; q]

= p ∧ q

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 21 / 28



Predicate Transformer: Another Example

succ(p ∧ q) = (∃p, q : p ∧ q ∧ Trans)[p′ ; p, q′ ; q]

= (∃p, q : p ∧ q ∧ p′ ∧ q′)[p′ ; p, q′ ; q]

= (p′ ∧ q′)[p′ ; p, q′ ; q]

= p ∧ q

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 21 / 28



Predicate Transformer: Another Example

succ(p ∧ q) = (∃p, q : p ∧ q ∧ Trans)[p′ ; p, q′ ; q]

= (∃p, q : p ∧ q ∧ p′ ∧ q′)[p′ ; p, q′ ; q]

= (p′ ∧ q′)[p′ ; p, q′ ; q]

= p ∧ q

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 21 / 28



Predicate Transformer: Another Example

succ(p ∧ q) = (∃p, q : p ∧ q ∧ Trans)[p′ ; p, q′ ; q]

= (∃p, q : p ∧ q ∧ p′ ∧ q′)[p′ ; p, q′ ; q]

= (p′ ∧ q′)[p′ ; p, q′ ; q]

= p ∧ q

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 21 / 28



succ vs post

post takes a set of states and returns a set of states:

post : 2S → 2S

where S is the set of states of the transition system.

succ takes a formula and returns a formula:

succ : Formula → Formula

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 22 / 28



Symbolic Reachability Analysis Algorithm

1: Reachable := Init ;
2: terminate := false;
3: repeat
4: tmp := Reachable ∨ succ(Reachable);
5: if tmp ⇔ Reachable then
6: terminate := true;
7: else
8: Reachable := tmp;
9: end if

10: until terminate
11: return Reachable;

Does the algorithm terminate? Why?

Quiz: modify the algorithm to make it check reachability of a set of bad
states characterized by predicate Bad .

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 23 / 28



Symbolic Reachability Analysis Algorithm

1: Reachable := Init ;
2: terminate := false;
3: repeat
4: tmp := Reachable ∨ succ(Reachable);
5: if tmp ⇔ Reachable then
6: terminate := true;
7: else
8: Reachable := tmp;
9: end if

10: until terminate
11: return Reachable;

Does the algorithm terminate? Why?

Quiz: modify the algorithm to make it check reachability of a set of bad
states characterized by predicate Bad .

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 23 / 28



Symbolic Reachability Analysis Algorithm

1: Reachable := Init ;
2: terminate := false;
3: repeat
4: tmp := Reachable ∨ succ(Reachable);
5: if tmp ⇔ Reachable then
6: terminate := true;
7: else
8: Reachable := tmp;
9: end if

10: until terminate
11: return Reachable;

Does the algorithm terminate? Why?

Quiz: modify the algorithm to make it check reachability of a set of bad
states characterized by predicate Bad .

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 23 / 28



Symbolic Reachability Algorithm: checking for Bad states

1: Reachable := Init ;
2: terminate := false;
3: error := false;
4: repeat
5: tmp := Reachable ∨ succ(Reachable);
6: if tmp ⇔ Reachable then
7: terminate := true;
8: else
9: Reachable := tmp;

10: end if
11: if SAT(Reachable ∧ Bad) then
12: error := true;
13: end if
14: until terminate or error
15: return (Reachable,error);

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 24 / 28



Symbolic Reachability: Example

Let’s check this system symbolically!
We want to check that all reachable states satisfy p ∨ q.
In temporal logic parlance:

CTL: AG(p ∨ q)
LTL: G(p ∨ q)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 25 / 28



Symbolic Model-Checking: Implementation

For finite-state systems, boolean variables can be used to encode
state.

All predicates then become boolean expressions.

Efficient data structures for boolean expressions:
I BDDs (Binary Decision Diagrams)

Efficient algorithms for implementing logical operations (conjunction,
disjunction, satisfiability check, ...) on BDDs.

Note: logical operations correspond to set-theoretic operations:
I Conjunction: intersection
I Disjunction: union
I Satisfiability check: emptiness check
I ...

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 26 / 28



Example: BDD

Can you guess which boolean expression this BDD represents?

x4
(
x3(x2 + x2x1) + x3(x2 x1 + x2)

)
+ x4x2x1

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 27 / 28



Example: BDD

Can you guess which boolean expression this BDD represents?

x4
(
x3(x2 + x2x1) + x3(x2 x1 + x2)

)
+ x4x2x1

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 27 / 28



Bibliography

Baier, C. and Katoen, J.-P. (2008).

Principles of Model Checking.
MIT Press.

Bryant, R. E. (1992).

Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Comput. Surv., 24(3):293–318.

Burch, J., Clarke, E., Dill, D., Hwang, L., and McMillan, K. (1990).

Symbolic model checking: 1020 states and beyond.
In 5th LICS, pages 428–439. IEEE.

Clarke, E., Grumberg, O., and Peled, D. (2000).

Model Checking.
MIT Press.

Huth, M. and Ryan, M. (2004).

Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Symbolic Methods 28 / 28


	Symbolic methods
	Symbolic reachability analysis
	Bibliography

