
System Specification, Verification and Synthesis
(SSVS) – CS 4830/7485, Fall 2019

12: Formal Verification:
Reachability

Stavros Tripakis

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 1 / 31



Where we stand in the course

Systems: DONE!

Specification: Almost done! (we’ll talk about automata later)

Verification: next

Synthesis: after that

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 2 / 31



Outline

Verification

Reachability analysis

Counterexamples

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 3 / 31



VERIFICATION

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 4 / 31



Verification and Computer-Aided Verification

Systems: DONE!

Specification: DONE (with temporal logics)!

At this point, you should be able to do formal system modeling and
specification.

You could also in principle do verification “by hand”, or using a
general tool like a theorem-prover: plug in the definitions, try to prove
the model-checking theorems.

This is difficult to do by hand (theorem provers also typically require
a lot of human interaction).

So we turn to computer-aided and ideally fully automated
verification.

A.K.A. model-checking.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 5 / 31



ACM Turing Award for Model-Checking

Clarke, Emerson, and Sifakis won the ACM Turing Award in 2007,
for their role in developing Model-Checking into a highly effective
verification technology that is widely adopted in the hardware and
software industries.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 6 / 31



Recall: the model-checking problems for LTL and CTL

Given:

the implementation: a transition system (Kripke structure)
M = (AP, S, S0, L,R)

the specification: a temporal logic (LTL or CTL) formula φ

Check where M satisfies φ:

M
?

|= φ

If φ is LTL: every execution trace of M must satisfy φ.

If φ is CTL: every initial state of M must satisfy φ.

For finite-state M , these questions can be answered fully automatically
(problems are decidable)!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 7 / 31



Recall: the model-checking problems for LTL and CTL

Given:

the implementation: a transition system (Kripke structure)
M = (AP, S, S0, L,R)

the specification: a temporal logic (LTL or CTL) formula φ

Check where M satisfies φ:

M
?

|= φ

If φ is LTL: every execution trace of M must satisfy φ.

If φ is CTL: every initial state of M must satisfy φ.

For finite-state M , these questions can be answered fully automatically
(problems are decidable)!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 7 / 31



REACHABILITY ANALYSIS

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 8 / 31



Some model-checking problems are easier than others

For the same system M , some formulas may be easier to check than
others.

Examples of two (conceptually) easy problems:

checking deadlocks

checking invariants

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 9 / 31



Checking Deadlock-Freedom

Checking that a system has no deadlocks (is deadlock-free) is
conceptually easy:

Explore (generate) all reachable states of the system.

Check that none of them is a deadlock.1

1Some may be “legal end states”, i.e., states without successors but which don’t
count as deadlocks because they have been identified (labeled) by the user as legal end
states.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 10 / 31



Recall: invariants

Suppose φ is of the form

Gψ or AGψ

where ψ is a propositional formula (i.e., a boolean expression on atomic
propositions).

E.g.,
G(p ∨ q), G(p→ q), · · ·

Then ψ must be an invariant: it must hold at all reachable states.

Examples:

“Whenever train is at intersection the gate must be lowered”

“If the autopilot is off then the pilot must not believe it is on”

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 11 / 31



Model-Checking Invariants

Checking that ψ is an invariant is conceptually easy:

Explore (generate) all reachable states.

Check that every one of them satisfies ψ. (Is this easy? Why?)

Caveat: this method is correct provided our system is deadlock-free.
Why?
Only infinite paths count for the verification of a property such as Gp. If
the system deadlocks after every time it violates p, then, formally
speaking, it satisfies Gp!

So, what to do? Check deadlock-freedom before you check invariants!

They both use the same method: reachability analysis!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 12 / 31



Model-Checking Invariants

Checking that ψ is an invariant is conceptually easy:

Explore (generate) all reachable states.

Check that every one of them satisfies ψ. (Is this easy? Why?)

Caveat: this method is correct provided our system is deadlock-free.
Why?

Only infinite paths count for the verification of a property such as Gp. If
the system deadlocks after every time it violates p, then, formally
speaking, it satisfies Gp!

So, what to do? Check deadlock-freedom before you check invariants!

They both use the same method: reachability analysis!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 12 / 31



Model-Checking Invariants

Checking that ψ is an invariant is conceptually easy:

Explore (generate) all reachable states.

Check that every one of them satisfies ψ. (Is this easy? Why?)

Caveat: this method is correct provided our system is deadlock-free.
Why?
Only infinite paths count for the verification of a property such as Gp. If
the system deadlocks after every time it violates p, then, formally
speaking, it satisfies Gp!

So, what to do?

Check deadlock-freedom before you check invariants!

They both use the same method: reachability analysis!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 12 / 31



Model-Checking Invariants

Checking that ψ is an invariant is conceptually easy:

Explore (generate) all reachable states.

Check that every one of them satisfies ψ. (Is this easy? Why?)

Caveat: this method is correct provided our system is deadlock-free.
Why?
Only infinite paths count for the verification of a property such as Gp. If
the system deadlocks after every time it violates p, then, formally
speaking, it satisfies Gp!

So, what to do? Check deadlock-freedom before you check invariants!

They both use the same method: reachability analysis!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 12 / 31



Reachability analysis

So, both for deadlocks and invariants, we want to:

Explore (generate) all reachable states: this is called reachability
analysis.

Sometimes it’s also called state-space exploration.

For finite-state systems, it can be done exhaustively and fully
automatically!

... at least in theory ... in practice, often state explosion ...

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 13 / 31



Reachability analysis

So, both for deadlocks and invariants, we want to:

Explore (generate) all reachable states: this is called reachability
analysis.

Sometimes it’s also called state-space exploration.

For finite-state systems, it can be done exhaustively and fully
automatically!

... at least in theory ... in practice, often state explosion ...

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 13 / 31



Finite transition systems = Finite directed graphs

Any algorithm that explores all nodes of a graph can be used to explore all
reachable states of a transition system!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 14 / 31



Reachability analysis: summary

Generate all reachable states ...

... while at the same time checking that each of them is “OK”, i.e.,
I it is not a deadlock state
I it does not violate an invariant
I ...

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 15 / 31



Reachability methods

Enumerative (also called “explicit state”).
I These are basically search algorithms on directed graphs.

Symbolic (we will see these later)

I Bounded model-checking using SAT/SMT solvers.
I Symbolic reachability.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 16 / 31



ENUMERATIVE (EXPLICIT-STATE) REACHABILITY

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 17 / 31



Two standard search algorithms

Depth-First Search (DFS)

Breadth-First Search (BFS)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 18 / 31



Depth-First Search

Assume given: Kripke structure (P, S, S0, L,R).

main:

1: V := ∅; /* V : set of visited states */
2: for all s ∈ S0 do
3: DFS(s);
4: end for

DFS(s):

1: check s; /* is s a deadlock? is given p ∈ L(s)? ... */
2: V := V ∪ {s};
3: for all s′ such that (s, s′) ∈ R do
4: if s′ 6∈ V then
5: DFS(s′); /* recursive call */
6: end if
7: end for

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 19 / 31



Depth-First Search

Let’s simulate DFS on this graph.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 20 / 31



Depth-First Search
Quiz:

Does DFS terminate?

Yes, if state space is finite.

Does it visit all reachable states? Yes: if s is reachable, then either

s ∈ S0, or s is the immediate successor of some s′, which is itself reachable.

In the first case, s is inserted into V because of the main loop. In the

second case, assuming (by induction) that s′ is inserted to V , s will also be

inserted to V by loop in lines 3-6.

Does it visit any unreachable states? No: following the “inverse” of the

argument above, if s is inserted into V , either this is done because of the

main loop, or because of the loop in lines 3-6. In the first case, s must be in

S0, so it’s an initial state, so it’s reachable. In the second case, s must be

successor of some s′, which by induction must be itself in V , therefore

reachable.

What is the complexity of the algorithm? O(n+m) where n is number

of nodes/states and m is number of edges/transitions in the graph. Every

node and edge are visited at most once.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 21 / 31



Depth-First Search
Quiz:

Does DFS terminate? Yes, if state space is finite.

Does it visit all reachable states?

Yes: if s is reachable, then either

s ∈ S0, or s is the immediate successor of some s′, which is itself reachable.

In the first case, s is inserted into V because of the main loop. In the

second case, assuming (by induction) that s′ is inserted to V , s will also be

inserted to V by loop in lines 3-6.

Does it visit any unreachable states? No: following the “inverse” of the

argument above, if s is inserted into V , either this is done because of the

main loop, or because of the loop in lines 3-6. In the first case, s must be in

S0, so it’s an initial state, so it’s reachable. In the second case, s must be

successor of some s′, which by induction must be itself in V , therefore

reachable.

What is the complexity of the algorithm? O(n+m) where n is number

of nodes/states and m is number of edges/transitions in the graph. Every

node and edge are visited at most once.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 21 / 31



Depth-First Search
Quiz:

Does DFS terminate? Yes, if state space is finite.

Does it visit all reachable states? Yes: if s is reachable, then either

s ∈ S0, or s is the immediate successor of some s′, which is itself reachable.

In the first case, s is inserted into V because of the main loop. In the

second case, assuming (by induction) that s′ is inserted to V , s will also be

inserted to V by loop in lines 3-6.

Does it visit any unreachable states?

No: following the “inverse” of the

argument above, if s is inserted into V , either this is done because of the

main loop, or because of the loop in lines 3-6. In the first case, s must be in

S0, so it’s an initial state, so it’s reachable. In the second case, s must be

successor of some s′, which by induction must be itself in V , therefore

reachable.

What is the complexity of the algorithm? O(n+m) where n is number

of nodes/states and m is number of edges/transitions in the graph. Every

node and edge are visited at most once.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 21 / 31



Depth-First Search
Quiz:

Does DFS terminate? Yes, if state space is finite.

Does it visit all reachable states? Yes: if s is reachable, then either

s ∈ S0, or s is the immediate successor of some s′, which is itself reachable.

In the first case, s is inserted into V because of the main loop. In the

second case, assuming (by induction) that s′ is inserted to V , s will also be

inserted to V by loop in lines 3-6.

Does it visit any unreachable states? No: following the “inverse” of the

argument above, if s is inserted into V , either this is done because of the

main loop, or because of the loop in lines 3-6. In the first case, s must be in

S0, so it’s an initial state, so it’s reachable. In the second case, s must be

successor of some s′, which by induction must be itself in V , therefore

reachable.

What is the complexity of the algorithm?

O(n+m) where n is number

of nodes/states and m is number of edges/transitions in the graph. Every

node and edge are visited at most once.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 21 / 31



Depth-First Search
Quiz:

Does DFS terminate? Yes, if state space is finite.

Does it visit all reachable states? Yes: if s is reachable, then either

s ∈ S0, or s is the immediate successor of some s′, which is itself reachable.

In the first case, s is inserted into V because of the main loop. In the

second case, assuming (by induction) that s′ is inserted to V , s will also be

inserted to V by loop in lines 3-6.

Does it visit any unreachable states? No: following the “inverse” of the

argument above, if s is inserted into V , either this is done because of the

main loop, or because of the loop in lines 3-6. In the first case, s must be in

S0, so it’s an initial state, so it’s reachable. In the second case, s must be

successor of some s′, which by induction must be itself in V , therefore

reachable.

What is the complexity of the algorithm? O(n+m) where n is number

of nodes/states and m is number of edges/transitions in the graph. Every

node and edge are visited at most once.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 21 / 31



Breadth-First Search

Assume given: Kripke structure (P, S, S0, L,R).

main:

1: FIFO queue V := S0; /* V : queue of visited states */
2: set E := ∅; /* E: set of explored states */
3: BFS();

BFS:

1: while V non-empty do
2: s := head(V );
3: check s; /* is s a deadlock? is given p ∈ L(s)? ... */
4: E := E ∪ {s};
5: for all s′ such that (s, s′) ∈ R and s′ 6∈ E ∪ V do
6: add s′ to the end of queue V ;
7: end for
8: end while

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 22 / 31



Breadth-First Search

Let’s simulate BFS on this graph.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 23 / 31



Breadth-First Search
Quiz:

Does BFS terminate?

Yes, if state space is finite.

Does it explore all reachable states? Yes: if s is reachable, then either

s ∈ S0, or s is the immediate successor of some s′, which is itself reachable.

In the first case, s is inserted initially into V . In the second case, assuming

(by induction) that s′ is inserted to V , s will also be inserted to V by loop

in lines 5-7. All states in V are also eventually added in E.

Does it explore any unreachable states? No: following the “inverse” of

the argument above, if s is inserted into E, it must be first put in V . Either

this is done initially, or because of the loop in lines 5-7. In the first case, s

must be in S0, so it’s an initial state, so it’s reachable. In the second case, s

must be successor of some s′, which by induction must be itself in V ,

therefore reachable.

What is the complexity of the algorithm? O(n+m) where n is number

of nodes/states and m is number of edges/transitions in the graph. Every

node and edge are visited at most once.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 24 / 31



Breadth-First Search
Quiz:

Does BFS terminate? Yes, if state space is finite.

Does it explore all reachable states?

Yes: if s is reachable, then either

s ∈ S0, or s is the immediate successor of some s′, which is itself reachable.

In the first case, s is inserted initially into V . In the second case, assuming

(by induction) that s′ is inserted to V , s will also be inserted to V by loop

in lines 5-7. All states in V are also eventually added in E.

Does it explore any unreachable states? No: following the “inverse” of

the argument above, if s is inserted into E, it must be first put in V . Either

this is done initially, or because of the loop in lines 5-7. In the first case, s

must be in S0, so it’s an initial state, so it’s reachable. In the second case, s

must be successor of some s′, which by induction must be itself in V ,

therefore reachable.

What is the complexity of the algorithm? O(n+m) where n is number

of nodes/states and m is number of edges/transitions in the graph. Every

node and edge are visited at most once.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 24 / 31



Breadth-First Search
Quiz:

Does BFS terminate? Yes, if state space is finite.

Does it explore all reachable states? Yes: if s is reachable, then either

s ∈ S0, or s is the immediate successor of some s′, which is itself reachable.

In the first case, s is inserted initially into V . In the second case, assuming

(by induction) that s′ is inserted to V , s will also be inserted to V by loop

in lines 5-7. All states in V are also eventually added in E.

Does it explore any unreachable states?

No: following the “inverse” of

the argument above, if s is inserted into E, it must be first put in V . Either

this is done initially, or because of the loop in lines 5-7. In the first case, s

must be in S0, so it’s an initial state, so it’s reachable. In the second case, s

must be successor of some s′, which by induction must be itself in V ,

therefore reachable.

What is the complexity of the algorithm? O(n+m) where n is number

of nodes/states and m is number of edges/transitions in the graph. Every

node and edge are visited at most once.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 24 / 31



Breadth-First Search
Quiz:

Does BFS terminate? Yes, if state space is finite.

Does it explore all reachable states? Yes: if s is reachable, then either

s ∈ S0, or s is the immediate successor of some s′, which is itself reachable.

In the first case, s is inserted initially into V . In the second case, assuming

(by induction) that s′ is inserted to V , s will also be inserted to V by loop

in lines 5-7. All states in V are also eventually added in E.

Does it explore any unreachable states? No: following the “inverse” of

the argument above, if s is inserted into E, it must be first put in V . Either

this is done initially, or because of the loop in lines 5-7. In the first case, s

must be in S0, so it’s an initial state, so it’s reachable. In the second case, s

must be successor of some s′, which by induction must be itself in V ,

therefore reachable.

What is the complexity of the algorithm?

O(n+m) where n is number

of nodes/states and m is number of edges/transitions in the graph. Every

node and edge are visited at most once.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 24 / 31



Breadth-First Search
Quiz:

Does BFS terminate? Yes, if state space is finite.

Does it explore all reachable states? Yes: if s is reachable, then either

s ∈ S0, or s is the immediate successor of some s′, which is itself reachable.

In the first case, s is inserted initially into V . In the second case, assuming

(by induction) that s′ is inserted to V , s will also be inserted to V by loop

in lines 5-7. All states in V are also eventually added in E.

Does it explore any unreachable states? No: following the “inverse” of

the argument above, if s is inserted into E, it must be first put in V . Either

this is done initially, or because of the loop in lines 5-7. In the first case, s

must be in S0, so it’s an initial state, so it’s reachable. In the second case, s

must be successor of some s′, which by induction must be itself in V ,

therefore reachable.

What is the complexity of the algorithm? O(n+m) where n is number

of nodes/states and m is number of edges/transitions in the graph. Every

node and edge are visited at most once.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 24 / 31



Other enumerative algorithms

Every search algorithm on finite graphs can be used for reachability
analysis:

Best-first search:
I every state is assigned a “value” (using some heuristic value function,

e.g., how “close” we are likely to be to the goal – in our case a “bad”
state) and then next state to explore is the one with the highest value.

A*: classic search technique in artificial intelligence.

...

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 25 / 31



But isn’t the complexity of graph search awesome?!

O(m+ n) is a great complexity, right?
Not really...

Most of these algorithms (DFS, BFS, Best-first, A*, ...) have been
tried by researchers in verification.

Basic complexity is the same for all: need to store all reachable states
I in the “worst case” from the algorithmic point of view
I but in fact “best case” from the verification point of view, since we are

trying to prove that our system is correct! ⇒ all reachable states must
be correct

State explosion: the number of reachable states is too large

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 26 / 31



The real complexity of reachability

Searching a graph is linear in the size of the graph, which appears to be a
very nice worst-case complexity ...

... until we realize that the size of the graph is exponential in the number
of state variables, processes, etc.

This is not just a practical observation. There is theoretical complexity
results about this, e.g., checking intersection emptiness of a set of DFA is
PSPACE-complete.

So even reachability is a hard problem (both theoretically and in practice).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 27 / 31



The real complexity of reachability

Searching a graph is linear in the size of the graph, which appears to be a
very nice worst-case complexity ...

... until we realize that the size of the graph is exponential in the number
of state variables, processes, etc.

This is not just a practical observation. There is theoretical complexity
results about this, e.g., checking intersection emptiness of a set of DFA is
PSPACE-complete.

So even reachability is a hard problem (both theoretically and in practice).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 27 / 31



The real complexity of reachability

Searching a graph is linear in the size of the graph, which appears to be a
very nice worst-case complexity ...

... until we realize that the size of the graph is exponential in the number
of state variables, processes, etc.

This is not just a practical observation. There is theoretical complexity
results about this, e.g., checking intersection emptiness of a set of DFA is
PSPACE-complete.

So even reachability is a hard problem (both theoretically and in practice).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 27 / 31



The real complexity of reachability

Searching a graph is linear in the size of the graph, which appears to be a
very nice worst-case complexity ...

... until we realize that the size of the graph is exponential in the number
of state variables, processes, etc.

This is not just a practical observation. There is theoretical complexity
results about this, e.g., checking intersection emptiness of a set of DFA is
PSPACE-complete.

So even reachability is a hard problem (both theoretically and in practice).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 27 / 31



Enumerative methods to remedy state explosion

Bit-state hashing: instead of storing the entire state vector, just store 1 bit per

state: its hash value [Holzmann, 1998].

I Do you see a problem with this method?

I Incomplete: two states may hash to the same value ⇒ only one will
be visited ⇒ some reachable states may be missed!

I And as we saw, even 1 bit per state may be too much already.

Partial-order reduction: in asynchronous concurrent systems, transitions of
different processes are often independent ⇒ no need to explore all interleavings
[Valmari, 1990, Godefroid and Wolper, 1991].

Symmetry reduction: many state spaces are symmetric ⇒ equivalence relation on
states ⇒ suffices to explore just one state per equivalence class, e.g.,
see [Sistla and Godefroid, 2004].

...

All these help, but don’t eliminate the state-explosion problem.
Note: above references are representative, there is a lot more work on these topics.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 28 / 31



Enumerative methods to remedy state explosion

Bit-state hashing: instead of storing the entire state vector, just store 1 bit per

state: its hash value [Holzmann, 1998].

I Do you see a problem with this method?
I Incomplete: two states may hash to the same value ⇒ only one will

be visited ⇒ some reachable states may be missed!
I And as we saw, even 1 bit per state may be too much already.

Partial-order reduction: in asynchronous concurrent systems, transitions of
different processes are often independent ⇒ no need to explore all interleavings
[Valmari, 1990, Godefroid and Wolper, 1991].

Symmetry reduction: many state spaces are symmetric ⇒ equivalence relation on
states ⇒ suffices to explore just one state per equivalence class, e.g.,
see [Sistla and Godefroid, 2004].

...

All these help, but don’t eliminate the state-explosion problem.
Note: above references are representative, there is a lot more work on these topics.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 28 / 31



Enumerative methods to remedy state explosion

Bit-state hashing: instead of storing the entire state vector, just store 1 bit per

state: its hash value [Holzmann, 1998].

I Do you see a problem with this method?
I Incomplete: two states may hash to the same value ⇒ only one will

be visited ⇒ some reachable states may be missed!
I And as we saw, even 1 bit per state may be too much already.

Partial-order reduction: in asynchronous concurrent systems, transitions of
different processes are often independent ⇒ no need to explore all interleavings
[Valmari, 1990, Godefroid and Wolper, 1991].

Symmetry reduction: many state spaces are symmetric ⇒ equivalence relation on
states ⇒ suffices to explore just one state per equivalence class, e.g.,
see [Sistla and Godefroid, 2004].

...

All these help, but don’t eliminate the state-explosion problem.
Note: above references are representative, there is a lot more work on these topics.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 28 / 31



STATE EXPLOSION in Spin and nuXmv

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 29 / 31



State explosion in Spin

// an illustration of state explosion

// as you increase N, the state space increases exponentially

#define N 7

active [N] proctype p() // N processes

{

l0: skip;

l1: skip;

l2: skip;

l3: skip;

l4: skip;

l5: skip;

l6: skip;

l7: skip;

}

// analysis:

// spin -run -noreduce state-explosion.pml

// spin -run state-explosion.pml

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 30 / 31



Bibliography

Baier, C. and Katoen, J.-P. (2008).

Principles of Model Checking.
MIT Press.

Clarke, E., Grumberg, O., and Peled, D. (2000).

Model Checking.
MIT Press.

Godefroid, P. and Wolper, P. (1991).

Using partial orders for the efficient verification of deadlock freedom and safety properties.
In 4th CAV.

Holzmann, G. (1998).

An analysis of bitstate hashing.
In Formal Methods in System Design, pages 301–314. Chapman & Hall.

Sistla, A. P. and Godefroid, P. (2004).

Symmetry and reduced symmetry in model checking.
ACM Trans. Program. Lang. Syst., 26(4):702–734.

Valmari, A. (1990).

Stubborn sets for reduced state space generation.
In Advances in Petri Nets, LNCS 483. Springer.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 31 / 31


	Verification
	Reachability
	Enumerative reachability
	Bibliography

