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Where we stand in the course

Systems: DONE!

Specification: Almost done! (we’ll talk about automata later)

Verification: next

Synthesis: after that
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Outline

Verification

Reachability analysis

Counterexamples
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VERIFICATION
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Verification and Computer-Aided Verification

Systems: DONE!

Specification: DONE (with temporal logics)!

At this point, you should be able to do formal system modeling and
specification.

You could also in principle do verification “by hand”, or using a
general tool like a theorem-prover: plug in the definitions, try to prove
the model-checking theorems.

This is difficult to do by hand (theorem provers also typically require
a lot of human interaction).

So we turn to computer-aided and ideally fully automated
verification.

A.K.A. model-checking.
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ACM Turing Award for Model-Checking

Clarke, Emerson, and Sifakis won the ACM Turing Award in 2007,
for their role in developing Model-Checking into a highly effective
verification technology that is widely adopted in the hardware and
software industries.
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Recall: the model-checking problems for LTL and CTL

Given:

the implementation: a transition system (Kripke structure)
M = (AP, S, S0, L,R)

the specification: a temporal logic (LTL or CTL) formula φ

Check where M satisfies φ:

M
?

|= φ

If φ is LTL: every execution trace of M must satisfy φ.

If φ is CTL: every initial state of M must satisfy φ.

For finite-state M , these questions can be answered fully automatically
(problems are decidable)!
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REACHABILITY ANALYSIS
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Some model-checking problems are easier than others

For the same system M , some formulas may be easier to check than
others.

Examples of two (conceptually) easy problems:

checking deadlocks

checking invariants
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Checking Deadlock-Freedom

Checking that a system has no deadlocks (is deadlock-free) is
conceptually easy:

Explore (generate) all reachable states of the system.

Check that none of them is a deadlock.1

1Some may be “legal end states”, i.e., states without successors but which don’t
count as deadlocks because they have been identified (labeled) by the user as legal end
states.
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Recall: invariants

Suppose φ is of the form

Gψ or AGψ

where ψ is a propositional formula (i.e., a boolean expression on atomic
propositions).

E.g.,
G(p ∨ q), G(p→ q), · · ·

Then ψ must be an invariant: it must hold at all reachable states.

Examples:

“Whenever train is at intersection the gate must be lowered”

“If the autopilot is off then the pilot must not believe it is on”
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Model-Checking Invariants

Checking that ψ is an invariant is conceptually easy:

Explore (generate) all reachable states.

Check that every one of them satisfies ψ. (Is this easy? Why?)

Caveat: this method is correct provided our system is deadlock-free.
Why?
Only infinite paths count for the verification of a property such as Gp. If
the system deadlocks after every time it violates p, then, formally
speaking, it satisfies Gp!

So, what to do? Check deadlock-freedom before you check invariants!

They both use the same method: reachability analysis!
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Reachability analysis

So, both for deadlocks and invariants, we want to:

Explore (generate) all reachable states: this is called reachability
analysis.

Sometimes it’s also called state-space exploration.

For finite-state systems, it can be done exhaustively and fully
automatically!

... at least in theory ... in practice, often state explosion ...

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 13 / 31



Reachability analysis

So, both for deadlocks and invariants, we want to:

Explore (generate) all reachable states: this is called reachability
analysis.

Sometimes it’s also called state-space exploration.

For finite-state systems, it can be done exhaustively and fully
automatically!

... at least in theory ... in practice, often state explosion ...

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Verification, Reachability 13 / 31



Finite transition systems = Finite directed graphs

Any algorithm that explores all nodes of a graph can be used to explore all
reachable states of a transition system!
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Reachability analysis: summary

Generate all reachable states ...

... while at the same time checking that each of them is “OK”, i.e.,
I it is not a deadlock state
I it does not violate an invariant
I ...
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Reachability methods

Enumerative (also called “explicit state”).
I These are basically search algorithms on directed graphs.

Symbolic (we will see these later)

I Bounded model-checking using SAT/SMT solvers.
I Symbolic reachability.
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ENUMERATIVE (EXPLICIT-STATE) REACHABILITY
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Two standard search algorithms

Depth-First Search (DFS)

Breadth-First Search (BFS)
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Depth-First Search

Assume given: Kripke structure (P, S, S0, L,R).

main:

1: V := ∅; /* V : set of visited states */
2: for all s ∈ S0 do
3: DFS(s);
4: end for

DFS(s):

1: check s; /* is s a deadlock? is given p ∈ L(s)? ... */
2: V := V ∪ {s};
3: for all s′ such that (s, s′) ∈ R do
4: if s′ 6∈ V then
5: DFS(s′); /* recursive call */
6: end if
7: end for
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Depth-First Search

Let’s simulate DFS on this graph.
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Depth-First Search
Quiz:

Does DFS terminate?

Yes, if state space is finite.

Does it visit all reachable states? Yes: if s is reachable, then either

s ∈ S0, or s is the immediate successor of some s′, which is itself reachable.

In the first case, s is inserted into V because of the main loop. In the

second case, assuming (by induction) that s′ is inserted to V , s will also be

inserted to V by loop in lines 3-6.

Does it visit any unreachable states? No: following the “inverse” of the

argument above, if s is inserted into V , either this is done because of the

main loop, or because of the loop in lines 3-6. In the first case, s must be in

S0, so it’s an initial state, so it’s reachable. In the second case, s must be

successor of some s′, which by induction must be itself in V , therefore

reachable.

What is the complexity of the algorithm? O(n+m) where n is number

of nodes/states and m is number of edges/transitions in the graph. Every

node and edge are visited at most once.
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Breadth-First Search

Assume given: Kripke structure (P, S, S0, L,R).

main:

1: FIFO queue V := S0; /* V : queue of visited states */
2: set E := ∅; /* E: set of explored states */
3: BFS();

BFS:

1: while V non-empty do
2: s := head(V );
3: check s; /* is s a deadlock? is given p ∈ L(s)? ... */
4: E := E ∪ {s};
5: for all s′ such that (s, s′) ∈ R and s′ 6∈ E ∪ V do
6: add s′ to the end of queue V ;
7: end for
8: end while
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Breadth-First Search

Let’s simulate BFS on this graph.
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Breadth-First Search
Quiz:

Does BFS terminate?

Yes, if state space is finite.

Does it explore all reachable states? Yes: if s is reachable, then either

s ∈ S0, or s is the immediate successor of some s′, which is itself reachable.

In the first case, s is inserted initially into V . In the second case, assuming

(by induction) that s′ is inserted to V , s will also be inserted to V by loop

in lines 5-7. All states in V are also eventually added in E.

Does it explore any unreachable states? No: following the “inverse” of

the argument above, if s is inserted into E, it must be first put in V . Either

this is done initially, or because of the loop in lines 5-7. In the first case, s

must be in S0, so it’s an initial state, so it’s reachable. In the second case, s

must be successor of some s′, which by induction must be itself in V ,

therefore reachable.

What is the complexity of the algorithm? O(n+m) where n is number

of nodes/states and m is number of edges/transitions in the graph. Every

node and edge are visited at most once.
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Other enumerative algorithms

Every search algorithm on finite graphs can be used for reachability
analysis:

Best-first search:
I every state is assigned a “value” (using some heuristic value function,

e.g., how “close” we are likely to be to the goal – in our case a “bad”
state) and then next state to explore is the one with the highest value.

A*: classic search technique in artificial intelligence.

...
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But isn’t the complexity of graph search awesome?!

O(m+ n) is a great complexity, right?
Not really...

Most of these algorithms (DFS, BFS, Best-first, A*, ...) have been
tried by researchers in verification.

Basic complexity is the same for all: need to store all reachable states
I in the “worst case” from the algorithmic point of view
I but in fact “best case” from the verification point of view, since we are

trying to prove that our system is correct! ⇒ all reachable states must
be correct

State explosion: the number of reachable states is too large
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The real complexity of reachability

Searching a graph is linear in the size of the graph, which appears to be a
very nice worst-case complexity ...

... until we realize that the size of the graph is exponential in the number
of state variables, processes, etc.

This is not just a practical observation. There is theoretical complexity
results about this, e.g., checking intersection emptiness of a set of DFA is
PSPACE-complete.

So even reachability is a hard problem (both theoretically and in practice).
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Enumerative methods to remedy state explosion

Bit-state hashing: instead of storing the entire state vector, just store 1 bit per

state: its hash value [Holzmann, 1998].

I Do you see a problem with this method?

I Incomplete: two states may hash to the same value ⇒ only one will
be visited ⇒ some reachable states may be missed!

I And as we saw, even 1 bit per state may be too much already.

Partial-order reduction: in asynchronous concurrent systems, transitions of
different processes are often independent ⇒ no need to explore all interleavings
[Valmari, 1990, Godefroid and Wolper, 1991].

Symmetry reduction: many state spaces are symmetric ⇒ equivalence relation on
states ⇒ suffices to explore just one state per equivalence class, e.g.,
see [Sistla and Godefroid, 2004].

...

All these help, but don’t eliminate the state-explosion problem.
Note: above references are representative, there is a lot more work on these topics.
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STATE EXPLOSION in Spin and nuXmv
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State explosion in Spin

// an illustration of state explosion

// as you increase N, the state space increases exponentially

#define N 7

active [N] proctype p() // N processes

{

l0: skip;

l1: skip;

l2: skip;

l3: skip;

l4: skip;

l5: skip;

l6: skip;

l7: skip;

}

// analysis:

// spin -run -noreduce state-explosion.pml

// spin -run state-explosion.pml
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