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(A philosophical note)

Your dreams, aspirations, goals in life: liveness

Your fears: safety
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BRANCHING-TIME PROPERTIES
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Linear-Time vs. Branching-Time Properties

So far we have been talking about properties of linear behaviors
(sequences).

But some properties are not linear, e.g.:
“it is possible to recover from any fault”

or
“we can get back to the initial state from any reachable state”
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Linear-Time vs. Branching-Time Properties

“it is possible to recover from any fault”

Based on one (linear) behavior alone,1 we cannot conclude whether our
system satisfies the property.

E.g., the following system satisfies the property, although it contains a
behavior that stays forever in state s1:

s0 s1

fault

recovery

1if we had all linear behaviors of a system, we could in principle reconstruct its
branching behavior as well – how?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 5 / 30



Linear-Time vs. Branching-Time Behaviors

Linear-time behavior = infinite sequence.

Branching-time behavior = infinite tree.

Hence the name “Computation Tree Logic” – CTL.
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Defining the semantics of CTL

We could:

1 define the semantics of CTL on trees,

2 define the “unfolding” of a transition system into a tree (or forest of
trees, in case there are many initial states),

3 define what it means for a transition system to satisfy a CTL formula:
its forest satisfies the formula.

Instead:

we will simplify and define the semantics of CTL directly on the
transition system (Kripke structure).
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CTL (Computation Tree Logic) – Syntax

There are two kinds of CTL formulas: state formulas and path formulas.
When we just say “CTL formula” we mean CTL state formula.

CTL state formulas are defined by the following grammar:

φ ::= p | q | ..., where p, q, ... ∈ AP

| φ1 ∧ φ2 | ¬φ1 | Eψ | Aψ

where ψ must be a path formula, and φ1, φ2 must be state formulas.

CTL path formulas are defined by the following grammar:

ψ ::= Xφ | φ1Uφ2

where φ, φ1, φ2 must all be state formulas.
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CTL Syntax: Notes

E (“there exists a path”) and A (“for all paths”) are called path
quantifiers.

As usual, we can use any Boolean operator ∨,→,↔, etc., as
abbreviation / syntactic sugar.

Similarly, we can also use the temporal operators G and F in CTL
path formulas.
For example, EFp ≡ E(trueU p), AFp ≡

A(trueU p),
AGp ≡ ¬EF¬p, EGp ≡ ¬AF¬p, etc.

Alternative syntax: ∀2 instead of AG, ∃3 instead of EF, etc.
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CTL (Computation Tree Logic) – Syntax

Examples of (syntactically correct) CTL formulas:

AGp

EFq

AGEF(p→ q)

Syntactically incorrect CTL formulas:

Gp, AGFp, (AGp) ∧ Fq, AEGp, Ap, A¬Fp
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CTL – Semantics: Intuition

Let s be a state of the Kripke structure.

Then s satisfies the CTL formula EGφ, written

s |= EGφ

iff there exists an infinite path starting from s and satisfying Gφ.

s |= AGφ

iff every infinite path starting from s satisfies Gφ.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 11 / 30



CTL – Semantics: Intuition

Let s be a state of the Kripke structure.

Then s satisfies the CTL formula EGφ, written

s |= EGφ

iff there exists an infinite path starting from s and satisfying Gφ.

s |= AGφ

iff

every infinite path starting from s satisfies Gφ.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 11 / 30



CTL – Semantics: Intuition

Let s be a state of the Kripke structure.

Then s satisfies the CTL formula EGφ, written

s |= EGφ

iff there exists an infinite path starting from s and satisfying Gφ.

s |= AGφ

iff every infinite path starting from s satisfies Gφ.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 11 / 30



Examples

Let’s construct transition systems (Kripke structures) satisfying or
violating the following CTL formulas:

AGp

AFp

EGp

EFp
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CTL Semantics – Illustration

Figures taken from [Baier and Katoen, 2008]

322 Computation Tree Logic

∃� black

∀� black

∃♦ black

∀♦ black

∃(grayU black) ∀(grayU black)

Figure 6.2: Visualization of semantics of some basic CTL formulae.
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CTL – Formal Semantics

The satisfaction relation |= for CTL depends on the kind of CTL formula:

CTL state formulas are evaluated on states: if s is a state of the
transition system, and φ is a CTL state formula, we must define what
s |= φ means.

CTL path formulas are evaluated on infinite paths (similar to LTL): if
π is an infinite path in the transition system, and ψ is a CTL path
formula, we must define what π |= ψ means.

Let (AP, S, S0, L,R) be a Kripke structure and let s ∈ S.

Recall: a path π starting from s is an infinite sequence of states and
transitions: π = s→ s1 → s2 → · · ·
π(i) denotes the i-th state in the path, si, with π(0) = s.

Let Paths(s) denote the set of all paths starting from s.
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CTL – Formal Semantics

Let (AP, S, S0, L,R) be a Kripke structure and let s ∈ S.

Satisfaction relation for CTL state formulas:

s |= p iff p ∈ L(s)
s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2
s |= ¬φ iff s 6|= φ
s |= Eψ iff ∃π ∈ Paths(s) : π |= ψ
s |= Aψ iff ∀π ∈ Paths(s) : π |= ψ

Satisfaction relation for CTL path formulas (similar to LTL):

π |= Xφ iff π(1) |= φ
π |= φ1Uφ2 iff ∃i ≥ 0 : π(i) |= φ2 ∧ ∀0 ≤ j < i : π(j) |= φ1
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CTL – Examples

How to express these properties in CTL?
“p holds at all reachable states”

AGp

“there exists a way to get back to the initial state from any reach-
able state” AG EF init

“p is inevitable” AF p

“p is possible” EF p

How would you express the last two in LTL?
We will see that when we compare LTL and CTL.
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THE MODEL-CHECKING PROBLEM FOR CTL
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The verification problem for CTL: CTL model checking

The CTL model checking problem: does a given transition system
(Kripke structure) M satisfy a given CTL (state) formula φ?

Let M = (AP, S, S0, L,R).
S0 is a set, so M generally has many initial states.

We want every initial state of M to satisfy φ:

∀s ∈ S0 : s |= φ

We write this as:
M |= φ

(same notation as in LTL model-checking, but here φ is a CTL formula).
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LTL vs CTL: EXPRESSIVENESS COMPARISON
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Formula equivalence

Recall: When are two formulas φ1, φ2 in the same logic, say LTL,
equivalent?

Multiple ways to define this, all equivalent:
I When the formula φ1 ↔ φ2 is valid.
I When ∀σ ∈ Σω : σ |= φ1 ⇔ σ |= φ2.
I ...

Can we compare LTL and CTL formulas for equivalence?
What would it even mean, since LTL is linear-time and CTL is
branching-time?
Idea: compare the transition systems that satisfy these formulas!

Let φ1 be an LTL formula and φ2 be a CTL formula.
We say that φ1 and φ2 are equivalent if for any Kripke structure
TS: TS |= φ1 ⇔ TS |= φ2.
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Examples of equivalent formulas

LTL formula Equivalent CTL formula

p

p
Gp AGp
Fp AFp
Xp AXp
pU q A(pU q)
GFp AGAFp
FGp AFAGp ??? NO! Argh!
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FGp and AFAGp are not equivalent

Here’s a transition system that distinguishes them:

{p} {} {p}

The above transition system satisfies FGp but violates AFAGp.

Homework: Is there a transition system that satisfies AFAGp but
violates FGp?
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LTL and CTL are incomparable in terms of expressiveness

Theorem

There is no CTL formula equivalent to the LTL formula FGp.

Theorem

There is no LTL formula equivalent to the CTL formula AGEFp.

Proofs: on whiteboard.
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CTL: historical and other remarks

Introduced by [Emerson and Clarke, 1981]

Long intellectual “fights” over which logic is better!
I Sometimes is Sometimes “Not Never”– on the temporal logic of

programs [Lamport, 1980]
I What good is temporal logic? [Lamport, 1983]
I Modalities for Model Checking: Branching Time Logic Strikes

Back [Emerson and Lei, 1985]
I “Sometimes” and “Not Never” revisited: On branching versus linear

time temporal logic [Emerson and Halpern, 1986]
I Branching versus linear logics yet again [Carmo and Sernadas, 1990]
I Sometimes and not never re-revisited: on branching versus linear

time [Vardi, 1998]
I Branching vs. Linear Time: Final Showdown [Vardi, 2001]

More powerful logics:
I CTL*: a combination of CTL and LTL, e.g., can write things like

AFGp.
I The µ-calculus [Kozen, 1983]
I ...
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CTL and LTL in nuXmv
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CTL and LTL in nuXmv

-- transition system from lemma 6.19 of Baier-Katoen

MODULE TransitionSystem3

VAR state : { s0, s1, s2 };

INIT state = s0

TRANS (state = s0 -> (next(state) = s0 | next(state) = s1))

&

(state = s1 -> next(state) = s2)

&

(state = s2 -> next(state) = s2)

MODULE main

VAR

-- this illustrates the difference between FGp and AFAGp:

ts3: TransitionSystem3;

LTLSPEC F G(ts3.state=s0 | ts3.state=s2)

CTLSPEC AF AG (ts3.state=s0 | ts3.state=s2)
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