
System Specification, Verification and Synthesis
(SSVS) – CS 4830/7485, Fall 2019

11: Formal Specification:
Temporal logic

CTL

Stavros Tripakis

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 1 / 30

(A philosophical note)

Your dreams, aspirations, goals in life: liveness

Your fears: safety

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 2 / 30

BRANCHING-TIME PROPERTIES

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 3 / 30

Linear-Time vs. Branching-Time Properties

So far we have been talking about properties of linear behaviors
(sequences).

But some properties are not linear, e.g.:
“it is possible to recover from any fault”

or
“we can get back to the initial state from any reachable state”

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 4 / 30

Linear-Time vs. Branching-Time Properties

“it is possible to recover from any fault”

Based on one (linear) behavior alone,1 we cannot conclude whether our
system satisfies the property.

E.g., the following system satisfies the property, although it contains a
behavior that stays forever in state s1:

s0 s1

fault

recovery

1if we had all linear behaviors of a system, we could in principle reconstruct its
branching behavior as well – how?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 5 / 30

Linear-Time vs. Branching-Time Behaviors

Linear-time behavior = infinite sequence.

Branching-time behavior = infinite tree.

Hence the name “Computation Tree Logic” – CTL.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 6 / 30

Defining the semantics of CTL

We could:

1 define the semantics of CTL on trees,

2 define the “unfolding” of a transition system into a tree (or forest of
trees, in case there are many initial states),

3 define what it means for a transition system to satisfy a CTL formula:
its forest satisfies the formula.

Instead:

we will simplify and define the semantics of CTL directly on the
transition system (Kripke structure).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 7 / 30

CTL (Computation Tree Logic) – Syntax

There are two kinds of CTL formulas: state formulas and path formulas.
When we just say “CTL formula” we mean CTL state formula.

CTL state formulas are defined by the following grammar:

φ ::= p | q | ..., where p, q, ... ∈ AP

| φ1 ∧ φ2 | ¬φ1 | Eψ | Aψ

where ψ must be a path formula, and φ1, φ2 must be state formulas.

CTL path formulas are defined by the following grammar:

ψ ::= Xφ | φ1Uφ2

where φ, φ1, φ2 must all be state formulas.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 8 / 30

CTL Syntax: Notes

E (“there exists a path”) and A (“for all paths”) are called path
quantifiers.

As usual, we can use any Boolean operator ∨,→,↔, etc., as
abbreviation / syntactic sugar.

Similarly, we can also use the temporal operators G and F in CTL
path formulas.
For example, EFp ≡ E(trueU p), AFp ≡

A(trueU p),
AGp ≡ ¬EF¬p, EGp ≡ ¬AF¬p, etc.

Alternative syntax: ∀2 instead of AG, ∃3 instead of EF, etc.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 9 / 30

CTL Syntax: Notes

E (“there exists a path”) and A (“for all paths”) are called path
quantifiers.

As usual, we can use any Boolean operator ∨,→,↔, etc., as
abbreviation / syntactic sugar.

Similarly, we can also use the temporal operators G and F in CTL
path formulas.
For example, EFp ≡ E(trueU p), AFp ≡ A(trueU p),
AGp ≡

¬EF¬p, EGp ≡ ¬AF¬p, etc.

Alternative syntax: ∀2 instead of AG, ∃3 instead of EF, etc.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 9 / 30

CTL Syntax: Notes

E (“there exists a path”) and A (“for all paths”) are called path
quantifiers.

As usual, we can use any Boolean operator ∨,→,↔, etc., as
abbreviation / syntactic sugar.

Similarly, we can also use the temporal operators G and F in CTL
path formulas.
For example, EFp ≡ E(trueU p), AFp ≡ A(trueU p),
AGp ≡ ¬EF¬p, EGp ≡

¬AF¬p, etc.

Alternative syntax: ∀2 instead of AG, ∃3 instead of EF, etc.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 9 / 30

CTL Syntax: Notes

E (“there exists a path”) and A (“for all paths”) are called path
quantifiers.

As usual, we can use any Boolean operator ∨,→,↔, etc., as
abbreviation / syntactic sugar.

Similarly, we can also use the temporal operators G and F in CTL
path formulas.
For example, EFp ≡ E(trueU p), AFp ≡ A(trueU p),
AGp ≡ ¬EF¬p, EGp ≡ ¬AF¬p, etc.

Alternative syntax: ∀2 instead of AG, ∃3 instead of EF, etc.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 9 / 30

CTL (Computation Tree Logic) – Syntax

Examples of (syntactically correct) CTL formulas:

AGp

EFq

AGEF(p→ q)

Syntactically incorrect CTL formulas:

Gp, AGFp, (AGp) ∧ Fq, AEGp, Ap, A¬Fp

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 10 / 30

CTL (Computation Tree Logic) – Syntax

Examples of (syntactically correct) CTL formulas:

AGp

EFq

AGEF(p→ q)

Syntactically incorrect CTL formulas:

Gp, AGFp, (AGp) ∧ Fq, AEGp, Ap, A¬Fp

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 10 / 30

CTL – Semantics: Intuition

Let s be a state of the Kripke structure.

Then s satisfies the CTL formula EGφ, written

s |= EGφ

iff there exists an infinite path starting from s and satisfying Gφ.

s |= AGφ

iff every infinite path starting from s satisfies Gφ.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 11 / 30

CTL – Semantics: Intuition

Let s be a state of the Kripke structure.

Then s satisfies the CTL formula EGφ, written

s |= EGφ

iff there exists an infinite path starting from s and satisfying Gφ.

s |= AGφ

iff

every infinite path starting from s satisfies Gφ.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 11 / 30

CTL – Semantics: Intuition

Let s be a state of the Kripke structure.

Then s satisfies the CTL formula EGφ, written

s |= EGφ

iff there exists an infinite path starting from s and satisfying Gφ.

s |= AGφ

iff every infinite path starting from s satisfies Gφ.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 11 / 30

Examples

Let’s construct transition systems (Kripke structures) satisfying or
violating the following CTL formulas:

AGp

AFp

EGp

EFp

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 12 / 30

Examples

Let’s construct transition systems (Kripke structures) satisfying or
violating the following CTL formulas:

AGp

AFp

EGp

EFp

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 12 / 30

Examples

Let’s construct transition systems (Kripke structures) satisfying or
violating the following CTL formulas:

AGp

AFp

EGp

EFp

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 12 / 30

Examples

Let’s construct transition systems (Kripke structures) satisfying or
violating the following CTL formulas:

AGp

AFp

EGp

EFp

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 12 / 30

CTL Semantics – Illustration

Figures taken from [Baier and Katoen, 2008]

322 Computation Tree Logic

∃� black

∀� black

∃♦ black

∀♦ black

∃(grayU black) ∀(grayU black)

Figure 6.2: Visualization of semantics of some basic CTL formulae.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 13 / 30

CTL Semantics – Illustration

Figures taken from [Baier and Katoen, 2008]

322 Computation Tree Logic

∃� black

∀� black

∃♦ black

∀♦ black

∃(grayU black) ∀(grayU black)

Figure 6.2: Visualization of semantics of some basic CTL formulae.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 14 / 30

CTL Semantics – Illustration

Figures taken from [Baier and Katoen, 2008]

322 Computation Tree Logic

∃� black

∀� black

∃♦ black

∀♦ black

∃(grayU black) ∀(grayU black)

Figure 6.2: Visualization of semantics of some basic CTL formulae.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 15 / 30

CTL – Formal Semantics

The satisfaction relation |= for CTL depends on the kind of CTL formula:

CTL state formulas are evaluated on states: if s is a state of the
transition system, and φ is a CTL state formula, we must define what
s |= φ means.

CTL path formulas are evaluated on infinite paths (similar to LTL): if
π is an infinite path in the transition system, and ψ is a CTL path
formula, we must define what π |= ψ means.

Let (AP, S, S0, L,R) be a Kripke structure and let s ∈ S.

Recall: a path π starting from s is an infinite sequence of states and
transitions: π = s→ s1 → s2 → · · ·
π(i) denotes the i-th state in the path, si, with π(0) = s.

Let Paths(s) denote the set of all paths starting from s.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 16 / 30

CTL – Formal Semantics

The satisfaction relation |= for CTL depends on the kind of CTL formula:

CTL state formulas are evaluated on states: if s is a state of the
transition system, and φ is a CTL state formula, we must define what
s |= φ means.

CTL path formulas are evaluated on infinite paths (similar to LTL): if
π is an infinite path in the transition system, and ψ is a CTL path
formula, we must define what π |= ψ means.

Let (AP, S, S0, L,R) be a Kripke structure and let s ∈ S.

Recall: a path π starting from s is an infinite sequence of states and
transitions: π = s→ s1 → s2 → · · ·
π(i) denotes the i-th state in the path, si, with π(0) = s.

Let Paths(s) denote the set of all paths starting from s.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 16 / 30

CTL – Formal Semantics

Let (AP, S, S0, L,R) be a Kripke structure and let s ∈ S.

Satisfaction relation for CTL state formulas:

s |= p iff p ∈ L(s)
s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2
s |= ¬φ iff s 6|= φ
s |= Eψ iff ∃π ∈ Paths(s) : π |= ψ
s |= Aψ iff ∀π ∈ Paths(s) : π |= ψ

Satisfaction relation for CTL path formulas (similar to LTL):

π |= Xφ iff π(1) |= φ
π |= φ1Uφ2 iff ∃i ≥ 0 : π(i) |= φ2 ∧ ∀0 ≤ j < i : π(j) |= φ1

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 17 / 30

CTL – Examples

How to express these properties in CTL?
“p holds at all reachable states”

AGp

“there exists a way to get back to the initial state from any reach-
able state” AG EF init

“p is inevitable” AF p

“p is possible” EF p

How would you express the last two in LTL?
We will see that when we compare LTL and CTL.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 18 / 30

CTL – Examples

How to express these properties in CTL?
“p holds at all reachable states” AGp

“there exists a way to get back to the initial state from any reach-
able state” AG EF init

“p is inevitable” AF p

“p is possible” EF p

How would you express the last two in LTL?
We will see that when we compare LTL and CTL.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 18 / 30

CTL – Examples

How to express these properties in CTL?
“p holds at all reachable states” AGp

“there exists a way to get back to the initial state from any reach-
able state”

AG EF init

“p is inevitable” AF p

“p is possible” EF p

How would you express the last two in LTL?
We will see that when we compare LTL and CTL.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 18 / 30

CTL – Examples

How to express these properties in CTL?
“p holds at all reachable states” AGp

“there exists a way to get back to the initial state from any reach-
able state” AG EF init

“p is inevitable” AF p

“p is possible” EF p

How would you express the last two in LTL?
We will see that when we compare LTL and CTL.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 18 / 30

CTL – Examples

How to express these properties in CTL?
“p holds at all reachable states” AGp

“there exists a way to get back to the initial state from any reach-
able state” AG EF init

“p is inevitable”

AF p

“p is possible” EF p

How would you express the last two in LTL?
We will see that when we compare LTL and CTL.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 18 / 30

CTL – Examples

How to express these properties in CTL?
“p holds at all reachable states” AGp

“there exists a way to get back to the initial state from any reach-
able state” AG EF init

“p is inevitable” AF p

“p is possible” EF p

How would you express the last two in LTL?
We will see that when we compare LTL and CTL.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 18 / 30

CTL – Examples

How to express these properties in CTL?
“p holds at all reachable states” AGp

“there exists a way to get back to the initial state from any reach-
able state” AG EF init

“p is inevitable” AF p

“p is possible”

EF p

How would you express the last two in LTL?
We will see that when we compare LTL and CTL.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 18 / 30

CTL – Examples

How to express these properties in CTL?
“p holds at all reachable states” AGp

“there exists a way to get back to the initial state from any reach-
able state” AG EF init

“p is inevitable” AF p

“p is possible” EF p

How would you express the last two in LTL?
We will see that when we compare LTL and CTL.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 18 / 30

CTL – Examples

How to express these properties in CTL?
“p holds at all reachable states” AGp

“there exists a way to get back to the initial state from any reach-
able state” AG EF init

“p is inevitable” AF p

“p is possible” EF p

How would you express the last two in LTL?

We will see that when we compare LTL and CTL.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 18 / 30

CTL – Examples

How to express these properties in CTL?
“p holds at all reachable states” AGp

“there exists a way to get back to the initial state from any reach-
able state” AG EF init

“p is inevitable” AF p

“p is possible” EF p

How would you express the last two in LTL?
We will see that when we compare LTL and CTL.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 18 / 30

THE MODEL-CHECKING PROBLEM FOR CTL

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 19 / 30

The verification problem for CTL: CTL model checking

The CTL model checking problem: does a given transition system
(Kripke structure) M satisfy a given CTL (state) formula φ?

Let M = (AP, S, S0, L,R).
S0 is a set, so M generally has many initial states.

We want every initial state of M to satisfy φ:

∀s ∈ S0 : s |= φ

We write this as:
M |= φ

(same notation as in LTL model-checking, but here φ is a CTL formula).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 20 / 30

LTL vs CTL: EXPRESSIVENESS COMPARISON

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 21 / 30

Formula equivalence

Recall: When are two formulas φ1, φ2 in the same logic, say LTL,
equivalent?

Multiple ways to define this, all equivalent:
I When the formula φ1 ↔ φ2 is valid.
I When ∀σ ∈ Σω : σ |= φ1 ⇔ σ |= φ2.
I ...

Can we compare LTL and CTL formulas for equivalence?
What would it even mean, since LTL is linear-time and CTL is
branching-time?
Idea: compare the transition systems that satisfy these formulas!

Let φ1 be an LTL formula and φ2 be a CTL formula.
We say that φ1 and φ2 are equivalent if for any Kripke structure
TS: TS |= φ1 ⇔ TS |= φ2.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 22 / 30

Formula equivalence

Recall: When are two formulas φ1, φ2 in the same logic, say LTL,
equivalent?
Multiple ways to define this, all equivalent:

I When the formula φ1 ↔ φ2 is valid.
I When ∀σ ∈ Σω : σ |= φ1 ⇔ σ |= φ2.
I ...

Can we compare LTL and CTL formulas for equivalence?
What would it even mean, since LTL is linear-time and CTL is
branching-time?

Idea: compare the transition systems that satisfy these formulas!

Let φ1 be an LTL formula and φ2 be a CTL formula.
We say that φ1 and φ2 are equivalent if for any Kripke structure
TS: TS |= φ1 ⇔ TS |= φ2.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 22 / 30

Formula equivalence

Recall: When are two formulas φ1, φ2 in the same logic, say LTL,
equivalent?
Multiple ways to define this, all equivalent:

I When the formula φ1 ↔ φ2 is valid.
I When ∀σ ∈ Σω : σ |= φ1 ⇔ σ |= φ2.
I ...

Can we compare LTL and CTL formulas for equivalence?
What would it even mean, since LTL is linear-time and CTL is
branching-time?
Idea: compare the transition systems that satisfy these formulas!

Let φ1 be an LTL formula and φ2 be a CTL formula.
We say that φ1 and φ2 are equivalent if for any Kripke structure
TS: TS |= φ1 ⇔ TS |= φ2.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 22 / 30

Examples of equivalent formulas

LTL formula Equivalent CTL formula

p

p
Gp AGp
Fp AFp
Xp AXp
pU q A(pU q)
GFp AGAFp
FGp AFAGp ??? NO! Argh!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 23 / 30

Examples of equivalent formulas

LTL formula Equivalent CTL formula

p p
Gp

AGp
Fp AFp
Xp AXp
pU q A(pU q)
GFp AGAFp
FGp AFAGp ??? NO! Argh!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 23 / 30

Examples of equivalent formulas

LTL formula Equivalent CTL formula

p p
Gp AGp
Fp

AFp
Xp AXp
pU q A(pU q)
GFp AGAFp
FGp AFAGp ??? NO! Argh!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 23 / 30

Examples of equivalent formulas

LTL formula Equivalent CTL formula

p p
Gp AGp
Fp AFp
Xp

AXp
pU q A(pU q)
GFp AGAFp
FGp AFAGp ??? NO! Argh!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 23 / 30

Examples of equivalent formulas

LTL formula Equivalent CTL formula

p p
Gp AGp
Fp AFp
Xp AXp
pU q

A(pU q)
GFp AGAFp
FGp AFAGp ??? NO! Argh!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 23 / 30

Examples of equivalent formulas

LTL formula Equivalent CTL formula

p p
Gp AGp
Fp AFp
Xp AXp
pU q A(pU q)
GFp

AGAFp
FGp AFAGp ??? NO! Argh!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 23 / 30

Examples of equivalent formulas

LTL formula Equivalent CTL formula

p p
Gp AGp
Fp AFp
Xp AXp
pU q A(pU q)
GFp AGAFp
FGp

AFAGp ??? NO! Argh!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 23 / 30

Examples of equivalent formulas

LTL formula Equivalent CTL formula

p p
Gp AGp
Fp AFp
Xp AXp
pU q A(pU q)
GFp AGAFp
FGp AFAGp ???

NO! Argh!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 23 / 30

Examples of equivalent formulas

LTL formula Equivalent CTL formula

p p
Gp AGp
Fp AFp
Xp AXp
pU q A(pU q)
GFp AGAFp
FGp AFAGp ??? NO! Argh!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 23 / 30

FGp and AFAGp are not equivalent

Here’s a transition system that distinguishes them:

{p} {} {p}

The above transition system satisfies FGp but violates AFAGp.

Homework: Is there a transition system that satisfies AFAGp but
violates FGp?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 24 / 30

FGp and AFAGp are not equivalent

Here’s a transition system that distinguishes them:

{p} {} {p}

The above transition system satisfies FGp but violates AFAGp.

Homework: Is there a transition system that satisfies AFAGp but
violates FGp?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 24 / 30

FGp and AFAGp are not equivalent

Here’s a transition system that distinguishes them:

{p} {} {p}

The above transition system satisfies FGp but violates AFAGp.

Homework: Is there a transition system that satisfies AFAGp but
violates FGp?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 24 / 30

LTL and CTL are incomparable in terms of expressiveness

Theorem

There is no CTL formula equivalent to the LTL formula FGp.

Theorem

There is no LTL formula equivalent to the CTL formula AGEFp.

Proofs: on whiteboard.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 25 / 30

CTL: historical and other remarks

Introduced by [Emerson and Clarke, 1981]

Long intellectual “fights” over which logic is better!
I Sometimes is Sometimes “Not Never”– on the temporal logic of

programs [Lamport, 1980]
I What good is temporal logic? [Lamport, 1983]
I Modalities for Model Checking: Branching Time Logic Strikes

Back [Emerson and Lei, 1985]
I “Sometimes” and “Not Never” revisited: On branching versus linear

time temporal logic [Emerson and Halpern, 1986]
I Branching versus linear logics yet again [Carmo and Sernadas, 1990]
I Sometimes and not never re-revisited: on branching versus linear

time [Vardi, 1998]
I Branching vs. Linear Time: Final Showdown [Vardi, 2001]

More powerful logics:
I CTL*: a combination of CTL and LTL, e.g., can write things like

AFGp.
I The µ-calculus [Kozen, 1983]
I ...

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 26 / 30

CTL and LTL in nuXmv

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 27 / 30

CTL and LTL in nuXmv

-- transition system from lemma 6.19 of Baier-Katoen

MODULE TransitionSystem3

VAR state : { s0, s1, s2 };

INIT state = s0

TRANS (state = s0 -> (next(state) = s0 | next(state) = s1))

&

(state = s1 -> next(state) = s2)

&

(state = s2 -> next(state) = s2)

MODULE main

VAR

-- this illustrates the difference between FGp and AFAGp:

ts3: TransitionSystem3;

LTLSPEC F G(ts3.state=s0 | ts3.state=s2)

CTLSPEC AF AG (ts3.state=s0 | ts3.state=s2)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 28 / 30

Bibliography I
Baier, C. and Katoen, J.-P. (2008).

Principles of Model Checking.
MIT Press.

Carmo, J. and Sernadas, A. (1990).

Branching versus linear logics yet again.
Formal Aspects of Computing, 2(1):24–59.

Clarke, E., Grumberg, O., and Peled, D. (2000).

Model Checking.
MIT Press.

Emerson, E. and Clarke, E. (1981).

Design and synthesis of synchronization skeletons using branching-time temporal logic.
In Workshop on Logic of Programs. LNCS 131.

Emerson, E. and Halpern, J. (1986).

“sometimes” and “not never” revisited: On branching versus linear time temporal logic.
ACM journal, 33(1):151–178.

Emerson, E. and Lei, C. (1985).

Modalities for model checking: Branching time logic strikes back.
In 12th ACM Symp. POPL.

Huth, M. and Ryan, M. (2004).

Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press.

Kozen, D. (1983).

Results on the propositional µ-calculus.
Theoretical Computer Science, 27(3):333–354.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 29 / 30

Bibliography II

Lamport, L. (1980).

Sometimes is sometimes “not never”– on the temporal logic of programs.
In 7th ACM Symp. POPL, pages 174–185.

Lamport, L. (1983).

What good is temporal logic?
In Mason, R., editor, Information Processing 83: Proceedings of the Ninth IFIP World Computer Congress, pages
657–668. Elsevier Science Publishers.

Vardi, M. (1998).

Sometimes and not never re-revisited: on branching versus linear time.
In Concurrency Theory, CONCUR 1998, volume 1466 of Lecture Notes in Computer Science.

Vardi, M. (2001).

Branching vs. linear time: Final showdown.
In Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2001, volume 2031 of Lecture Notes in
Computer Science.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, CTL 30 / 30

	Branching-Time Properties
	CTL: Syntax and Semantics
	The Model-Checking Problem for CTL
	LTL vs CTL
	CTL and LTL in nuXmv
	Bibliography

