System Specification, Verification and Synthesis (SSVS) – CS 4830/7485, Fall 2019

10: Formal Specification: Safety and Liveness

Stavros Tripakis

SAFETY and LIVENESS

Two important classes of properties.

- **Safety** property: *something "bad" does not happen.*
 - ▶ E.g., system never crashes, division by zero never happens, voltage stays always $\leq K$ (never exceeds K), etc.
 - Finite length error trace.
- Liveness property: something "good" must happen.
 - E.g., every request must eventually receive a response.
 - ► Infinite length error trace.

Are these LTL properties safety, liveness, or something else?

• **G**p:

- $\mathbf{G}p$: safety.
- **F***p*:

- $\mathbf{G}p$: safety.
- $\mathbf{F}p$: liveness.
- **X***p*:

- **G***p*: safety.
- \bullet **F**p: liveness.
- ullet $\mathbf{X}p$: safety.
- p **U** q:

- **G***p*: safety.
- $\mathbf{F}p$: liveness.
- Xp: safety.
- $p \mathbf{U} q$: a "mix" of both!
- **GF***p*:

- Gp: safety.
- $\mathbf{F}p$: liveness.
- Xp: safety.
- $p \mathbf{U} q$: a "mix" of both!
- **GF***p*: liveness.
- $\mathbf{G}(p \to \mathbf{F}q)$:

- $\mathbf{G}p$: safety.
- \bullet **F**p: liveness.
- **X**p: safety.
- $p \mathbf{U} q$: a "mix" of both!
- **GF***p*: liveness.
- $\mathbf{G}(p \to \mathbf{F}q)$: liveness.
- $\mathbf{G}(p \to \mathbf{X}q)$:

- $\mathbf{G}p$: safety.
- $\mathbf{F}p$: liveness.
- Xp: safety.
- $p \mathbf{U} q$: a "mix" of both!
- **GF***p*: liveness.
- $\mathbf{G}(p \to \mathbf{F}q)$: liveness.
- ullet $\mathbf{G}(p o \mathbf{X}q)$: safety.

Are these LTL properties safety, liveness, or something else?

- $\mathbf{G}p$: safety.
- $\mathbf{F}p$: liveness.
- Xp: safety.
- $p \mathbf{U} q$: a "mix" of both!
- **GF***p*: liveness.
- $\mathbf{G}(p \to \mathbf{F}q)$: liveness.
- ullet $\mathbf{G}(p o \mathbf{X}q)$: safety.

Let's formalize all this.

Finite and infinite sequences over a set

Let Σ be a set.

- Σ^* is the set of all finite sequences (also called finite *words*) over Σ .
- Σ^{ω} is the set of all infinite sequences (also called infinite *words*) over Σ .

The empty sequence is often denoted ϵ .

Example: let $\Sigma = \{a, b\}$

- $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, \dots\}$
- $\Sigma^{\omega} = \{aaa \cdots, bbb \cdots, baa \cdots, abb \cdots, ababab \cdots, \ldots\}$

Notes:

- Regular and ω -regular expression notation:
 - $ightharpoonup a^*$: a finite sequence of a's, zero, one, or more
 - a^{ω} : an infinite sequence of a's, $a^{\omega} = aaa \cdots$
- Note: a^* is a set of (finite) words, but a^{ω} is just one (infinite) word
- \bullet Note: some infinite words are not periodic, e.g., $aabaabaaab\cdots \in \Sigma^\omega$

Properties - Formally

What is a property, formally?

A **property** L over Σ is a set of infinite sequences over Σ :

$$L \subseteq \Sigma^{\omega}$$

Examples:

- $L = \Sigma^{\omega}$: L holds on all traces (every trace is in L, i.e., every trace satisfies property L).
- $L = \emptyset$: no trace satisfies L.
- L = the set of all traces satisfying $\mathbf{GF}p$.
- ullet L= the set of all traces such that p holds at every odd step in the trace.

 $^{^{1}}$ In our case, $\Sigma=2^{\mathsf{AP}}$, where AP is a set of atomic propositions, and 2^{AP} is the powerset (set of all subsets) of AP.

Prefixes

• Let $\sigma \in \Sigma^{\omega}$ and let $\rho \in \Sigma^*$: ρ is called a **prefix of** σ if

$$\exists \sigma' \in \Sigma^{\omega} : \sigma = \rho \cdot \sigma'$$

i.e., the concatenation of ρ and σ' gives σ .

- If $\sigma = \alpha_1 \alpha_2 \alpha_3 \cdots$, and ρ is a prefix of σ , then there must be some $k \in \mathbb{N}$ such that $\rho = \alpha_1 \cdots \alpha_k$. We denote the finite prefix $\alpha_1 \cdots \alpha_k$ by $\sigma[1..k]$.
- When k=0 we get the **empty** prefix, denoted ϵ .
- Let $L \subseteq \Sigma^{\omega}$ be a property over Σ . Prefixes(L) denotes the set of all finite prefixes of all words in L:

$$Prefixes(L) = \{ \rho \in \Sigma^* \mid \exists \sigma \in L : \rho \text{ is a prefix of } \sigma \}$$

Safety - Formally

Let L be a property = set of (infinite) traces.

 \bullet L is a **safety property** if

$$\forall \sigma \notin L : \exists k \in \mathbb{N} : \forall \rho \in \Sigma^{\omega} : \sigma[1..k] \cdot \rho \notin L$$

Safety – Formally

Let L be a property = set of (infinite) traces.

ullet L is a safety property if

$$\forall \sigma \not\in L : \exists k \in \mathbb{N} : \forall \rho \in \Sigma^{\omega} : \sigma[1..k] \cdot \rho \not\in L$$

i.e., for any σ violating the safety property, there exists a **bad prefix** $\sigma[1..k]$, such that no matter how we extend this prefix we can no longer satisfy the safety property.

Liveness – Formally

Let L be a property = set of (infinite) traces.

ullet L is a **liveness property** if

$$\forall \sigma \in \Sigma^* : \exists \rho \in \Sigma^\omega : \sigma \cdot \rho \in L$$

Liveness - Formally

Let L be a property = set of (infinite) traces.

ullet L is a **liveness property** if

$$\forall \sigma \in \Sigma^* : \exists \rho \in \Sigma^\omega : \sigma \cdot \rho \in L$$

i.e., every finite trace can be extended, by appending a **good suffix**, into an infinite trace which satisfies the liveness property.

Liveness - Formally

Let L be a property = set of (infinite) traces.

ullet L is a **liveness property** if

$$\forall \sigma \in \Sigma^* : \exists \rho \in \Sigma^\omega : \sigma \cdot \rho \in L$$

i.e., every finite trace can be extended, by appending a **good suffix**, into an infinite trace which satisfies the liveness property.

ullet Equivalently, L is a liveness property iff

$$Prefixes(L) = \Sigma^*$$

Safety and Liveness – Topological Characterization

Theorem ([Alpern and Schneider, 1985] and others)

Every property is the intersection of a safety property and a liveness property.

This follows from a topological characterization of subsets of Σ^{ω} :

- Safety properties are the closed sets
- Liveness properties are the dense sets
- The open sets of the topology are the sets of all traces that share a common prefix.

Let $\Sigma=\{a,b\}$, or $\Sigma=2^{\sf AP}$ with ${\sf AP}=\{p,q\}$, as appropriate for each example below.

For each of the following sets: is it a safety property? a liveness property? Hint: think of the **violating** traces!

 \bullet Σ^{ω} :

Let $\Sigma=\{a,b\}$, or $\Sigma=2^{\sf AP}$ with ${\sf AP}=\{p,q\}$, as appropriate for each example below.

- Σ^{ω} : both!
- Ø:

Let $\Sigma=\{a,b\}$, or $\Sigma=2^{\sf AP}$ with ${\sf AP}=\{p,q\}$, as appropriate for each example below.

- Σ^{ω} : both!
- ∅: safety.
- $(ab)^{\omega}$:

Let $\Sigma=\{a,b\}$, or $\Sigma=2^{\sf AP}$ with ${\sf AP}=\{p,q\}$, as appropriate for each example below.

- Σ^{ω} : both!
- ∅: safety.
- $(ab)^{\omega}$: safety.
- **F**q:

Let $\Sigma=\{a,b\}$, or $\Sigma=2^{\sf AP}$ with ${\sf AP}=\{p,q\}$, as appropriate for each example below.

- Σ^{ω} : both!
- Ø: safety.
- $(ab)^{\omega}$: safety.
- $\mathbf{F}q$: liveness.
- ba appears at least three times in the trace:

Let $\Sigma=\{a,b\}$, or $\Sigma=2^{\sf AP}$ with ${\sf AP}=\{p,q\}$, as appropriate for each example below.

- Σ^{ω} : both!
- Ø: safety.
- $(ab)^{\omega}$: safety.
- $\mathbf{F}q$: liveness.
- ba appears at least three times in the trace: liveness.
- p **U** q:

Let $\Sigma=\{a,b\}$, or $\Sigma=2^{\sf AP}$ with ${\sf AP}=\{p,q\}$, as appropriate for each example below.

- Σ^{ω} : both!
- Ø: safety.
- $(ab)^{\omega}$: safety.
- $\mathbf{F}q$: liveness.
- ba appears at least three times in the trace: liveness.
- $p \mathbf{U} q$: neither! Can we define $p \mathbf{U} q$ as the intersection of a safety and a liveness property? Hint: start with the liveness part.

Let $\Sigma=\{a,b\}$, or $\Sigma=2^{\sf AP}$ with ${\sf AP}=\{p,q\}$, as appropriate for each example below.

For each of the following sets: is it a safety property? a liveness property? Hint: think of the **violating** traces!

- Σ^{ω} : both!
- Ø: safety.
- $(ab)^{\omega}$: safety.
- $\mathbf{F}q$: liveness.
- ullet ba appears at least three times in the trace: liveness.
- p U q: neither! Can we define p U q as the intersection of a safety and a liveness property? Hint: start with the liveness part.

$$p \mathbf{U} q = (\mathbf{F}q) \wedge (p \mathbf{W} q)$$

where $p \mathbf{W} q$ (p "weak until" q) is the safety property that says that p must continuously hold (no "gap") until q holds, if q ever holds.

Safety and Liveness – Closure Properties

- Safety properties are closed under union and intersection.
- ullet I.e., if L_1 and L_2 are both safety, then so are $L_1 \cup L_2$ and $L_1 \cap L_2$.
- Liveness properties are closed under union, but generally not under intersection.
- Neither safety nor liveness properties are closed under set complement.

Homework: find examples and counter-examples to the above closure and non-closure claims.

Bibliography

Alpern, B. and Schneider, F. B. (1985).

Defining liveness.

Information Processing Letters, 21(4):181 - 185.

Baier, C. and Katoen, J.-P. (2008).

Principles of Model Checking.

Clarke, E., Grumberg, O., and Peled, D. (2000).

Model Checking. MIT Press.