
System Specification, Verification and Synthesis
(SSVS) – CS 4830/7485, Fall 2019

9: Formal Specification:
Temporal logic

LTL

Stavros Tripakis

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 1 / 46

Where we stand

We are done with the first part of the course: systems!

We now know how to model systems, formally.

We are ready to begin the second part: specification!

Specification tries to answer questions like:
What are the system requirements?
What is my system supposed to do?
What does it mean for my system to be correct?
What properties does my system have?
...

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 2 / 46

Recall our ultimate goal: verification

We have designed a system.

We want to verify that it is correct.

But what does “correct” mean?

We need to specify correctness ⇒ we need a specification language.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 3 / 46

Current practice

Specifications often written in natural language, e.g., English.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 4 / 46

Example: specification of the SpaceWire protocol
(European Space Agency standard)

From Standard ECSS-E-ST-50-12C, SpaceWire – Links, nodes, routers and networks, 31 July
2008.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 5 / 46

But English is often imprecise: recall our quiz

Express the following English statements in your favorite mathematical formalism:

1 You can fool some people sometimes

2 You can fool some people all the time

3 You can fool some people sometimes but you can’t fool all the people all the time [Bob
Marley]

4 You can fool some of the people all of the time, and all of the people some of the time,
but you cannot fool all of the people all of the time [Abraham Lincoln]

We need a formal (mathematical language) ⇒ precise, unambiguous,
amenable to automation.

We need a logic!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 6 / 46

Language and logic

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 7 / 46

A Logic Primer

Knowledge of basic logic is important (in this course and beyond).

A Logic Primer (DRAFT) posted on course web site.

Go over it to refresh your logic background.

Ask me if and when things are unclear.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 8 / 46

Outline for the entire Specification part

Temporal logic
I Behaviors and properties
I Linear-time behaviors: LTL
I Safety and liveness
I Branching-time behaviors: CTL
I The model-checking problems for LTL and CTL

Automata-based specifications
I Finite vs. infinite behaviors
I Deadlocks
I Finite automata: DFA and NFA
I Omega automata (ω-automata): Büchi automata

Specification, abstraction, refinement:
I Equivalences and preorders
I Trace inclusion, trace equivalence
I Simulation, bisimulation
I Refinement

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 9 / 46

TEMPORAL LOGIC

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 10 / 46

Temporal logic

a formal specification language
=

a way to state properties of our system mathematically
(precisely and unambiguously!)

(as opposed to natural language)

Becoming more and more widespread in the industry
(hardware, robotics, ...)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 11 / 46

Temporal logic

Amir Pnueli (1941 - 2009) won the ACM Turing Award in 1996.

“For seminal work introducing temporal logic into computing sci-
ence and for outstanding contributions to program and system
verification.”

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 12 / 46

Temporal logics

Many variants: for linear-time, branching-time, real-time,
probabilistic, security, ..., properties

We will look at
I LTL (linear temporal logic) for linear-time properties.
I CTL (computation tree logic) for branching-time properties.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 13 / 46

LINEAR-TIME BEHAVIORS and PROPERTIES

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 14 / 46

What is a “behavior”?

We can think of a system, mathematically, as simply a set of
behaviors.

But what exactly is a behavior?

The linear-time view: a behavior is an infinite sequence (of states,
actions, sets of atomic propositions, ...)

Why not a finite sequence?

Reactive systems ⇒ they never stop!

What if I have a system that might stop?

No problem: add stuttering transitions (self-loops) to the legal stop
states.

We will return to this discussion later.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 15 / 46

What is a “behavior”?

We can think of a system, mathematically, as simply a set of
behaviors.

But what exactly is a behavior?

The linear-time view: a behavior is an infinite sequence (of states,
actions, sets of atomic propositions, ...)

Why not a finite sequence?

Reactive systems ⇒ they never stop!

What if I have a system that might stop?

No problem: add stuttering transitions (self-loops) to the legal stop
states.

We will return to this discussion later.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 15 / 46

What is a “property”?

The linear-time view: a property is a set of behaviors, i.e., a set of
infinite sequences.

Every formula in LTL defines a property, i.e., a set of infinite
behaviors.

We will make all this more mathematical when we talk about safety
and liveness.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 16 / 46

LTL: SYNTAX and SEMANTICS

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 17 / 46

LTL (Linear Temporal Logic) – Syntax

LTL1 formulas are defined by the following grammar:

φ ::= p | q | ..., where p, q, ... ∈ AP (atomic propositions)

| φ1 ∧ φ2 | ¬φ1
| Gφ1 | Fφ1 | Xφ1 | φ1Uφ2

φ1 ∧ φ2: φ1 and φ2 (logical conjunction)
¬φ1: not φ1 (logical negation)
Gφ: globally φ (always φ), also written 2φ.
Fφ: in the future φ (eventually φ), also written 3φ.
Xφ: next φ, also written ©φ.

φ1Uφ2: φ1 until φ2.

1We will only look at propositional LTL (PLTL). There is also first-order LTL with
quantifiers ∀, ∃.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 18 / 46

LTL – Syntax

We will also use

φ1 ∨ φ2: φ1 or φ2 (logical disjunction)
can be defined as ¬(¬φ1 ∧ ¬φ2)

φ1 → φ2: φ1 implies φ2 (logical implication)
can be defined as ¬φ1 ∨ φ2

φ1 ↔ φ2: φ1 iff φ2 (logical equivalence)
can be defined as φ1 → φ2 ∧ φ2 → φ1

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 19 / 46

LTL – Syntax

Recall LTL syntax:

φ ::= p | q | ... | φ1 ∧ φ2 | ¬φ1 | Gφ1 | Fφ1 | Xφ1 | φ1Uφ2

Examples: let’s look at some syntactically correct (and some incorrect!)
LTL formulas.

p→ q p→ Gp GFp pG

G ∧ Fp G(p→ Fq) G(p→ F) pU (qU (p ∧ r))

pU (Gq) pU (U q) pXq p→ XXq

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 20 / 46

LTL – Syntax

syntactically correct incorrect

p→ q p→
Gp pG
GFp G ∧ Fp

G(p→ Fq) G(p→ F)
pU (qU (p ∧ r)) pU (U q)

pU (Gq) pXq
p→ XXq

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 21 / 46

LTL – Semantics

LTL formulas are evaluated over infinite sequences of sets of atomic
propositions (execution traces).

σ = P0, P1, P2, · · ·

where Pi ⊆ AP for all i.

For instance, let AP = {p, q}. Examples of traces:

σ1 = {p}, {q}, {p}, {q}, {p}, ...
σ2 = {p}, {p}, {p}, {p}, {p}, ...
σ3 = {p}, {q}, {p, q}, {}, {p, q}, ...
. . .

What do these traces mean? p holds at step i iff p ∈ Pi.
Where do these traces come from? From (Kripke-style) transition systems
(we’ll see exactly how later).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 22 / 46

LTL – Semantics

LTL formulas are evaluated over infinite sequences of sets of atomic
propositions (execution traces).

σ = P0, P1, P2, · · ·

where Pi ⊆ AP for all i.

For instance, let AP = {p, q}. Examples of traces:

σ1 = {p}, {q}, {p}, {q}, {p}, ...
σ2 = {p}, {p}, {p}, {p}, {p}, ...
σ3 = {p}, {q}, {p, q}, {}, {p, q}, ...
. . .

What do these traces mean?

p holds at step i iff p ∈ Pi.
Where do these traces come from? From (Kripke-style) transition systems
(we’ll see exactly how later).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 22 / 46

LTL – Semantics

LTL formulas are evaluated over infinite sequences of sets of atomic
propositions (execution traces).

σ = P0, P1, P2, · · ·

where Pi ⊆ AP for all i.

For instance, let AP = {p, q}. Examples of traces:

σ1 = {p}, {q}, {p}, {q}, {p}, ...
σ2 = {p}, {p}, {p}, {p}, {p}, ...
σ3 = {p}, {q}, {p, q}, {}, {p, q}, ...
. . .

What do these traces mean? p holds at step i iff p ∈ Pi.

Where do these traces come from? From (Kripke-style) transition systems
(we’ll see exactly how later).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 22 / 46

LTL – Semantics

LTL formulas are evaluated over infinite sequences of sets of atomic
propositions (execution traces).

σ = P0, P1, P2, · · ·

where Pi ⊆ AP for all i.

For instance, let AP = {p, q}. Examples of traces:

σ1 = {p}, {q}, {p}, {q}, {p}, ...
σ2 = {p}, {p}, {p}, {p}, {p}, ...
σ3 = {p}, {q}, {p, q}, {}, {p, q}, ...
. . .

What do these traces mean? p holds at step i iff p ∈ Pi.
Where do these traces come from? From (Kripke-style) transition systems
(we’ll see exactly how later).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 22 / 46

LTL Semantics – Illustration

Figure taken from [Baier and Katoen, 2008]

Linear Temporal Logic 233

a

atomic prop. a

arbitrary arbitrary arbitrary arbitrary

. . .

arbitrary

next step © a
a arbitrary arbitrary arbitrary

. . .

a ∧ ¬b
until aU b

a ∧ ¬b a ∧ ¬b b arbitrary

. . .

¬a
eventually ♦a

¬a ¬a a arbitrary

. . .

a

always �a
a a a a

. . .

Figure 5.1: Intuitive semantics of temporal modalities.

Before proceeding with the formal semantics of LTL, we present some examples.

Example 5.2. Properties for the Mutual Exclusion Problem

Consider the mutual exclusion problem for two concurrent processes P1 and P2, say. Pro-
cess Pi is modeled by three locations: (1) the noncritical section, (2) the waiting phase
which is entered when the process intends to enter the critical section, and (3) the critical
section. Let the propositions waiti and criti denote that process Pi is in its waiting phase
and critical section, respectively.

The safety property stating that P1 and P2 never simultaneously have access to their
critical sections can be described by the LTL-formula:

�(¬ crit1 ∨ ¬ crit2).

This formula expresses that always (�) at least one of the two processes is not in its critical
section (¬criti).

The liveness requirement stating that each process Pi is infinitely often in its critical

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 23 / 46

LTL: examples

Let’s find some traces that satisfy (and some that violate!) these formulas:

Gp (1)

Fp (2)

Xp (3)

pU q (4)

GFp (5)

FGp (6)

G(p→ Fq) (7)

G(p→ XXq) (8)

pU (qU (p ∧ r)) (9)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 24 / 46

LTL – Semantics: Formally

We want to define formally the satisfaction relation: σ |= φ.
Let

σ = P0, P1, P2, · · ·
Notation (suffix): σ[i..] = Pi, Pi+1, Pi+2, · · · .

Satisfaction relation defined recursively on the syntax of a formula:

σ |= p iff p ∈ P0

σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2
σ |= ¬φ iff σ 6|= φ
σ |= Gφ iff ∀i = 0, 1, ... : σ[i..] |= φ
σ |= Fφ iff ∃i = 0, 1, ... : σ[i..] |= φ
σ |= Xφ iff σ[1..] |= φ
σ |= φ1Uφ2 iff ∃i = 0, 1, ... : σ[i..] |= φ2 ∧

∀0 ≤ j < i : σ[j..] |= φ1

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 25 / 46

LTL – Semantics: Formally

Let
σ = P0, P1, P2, · · ·

Satisfaction relation defined recursively on the syntax of a formula:

σ |= p iff p ∈ P0 p holds at the first (current) step
σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2
σ |= ¬φ iff σ 6|= φ
σ |= Gφ iff ∀i = 0, 1, ... : σ[i..] |= φ φ holds for every suffix of σ
σ |= Fφ iff ∃i = 0, 1, ... : σ[i..] |= φ φ holds for some suffix of σ
σ |= Xφ iff σ[1..] |= φ φ holds for the suffix starting at the next step
σ |= φ1 Uφ2 iff ∃i = 0, 1, ... : σ[i..] |= φ2 ∧

∀0 ≤ j < i : σ[j..] |= φ1
φ2 holds for some suffix of σ and
φ1 holds for all previous suffixes

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 26 / 46

Logic recap: basic vocabulary

A formula φ is valid if it is “always” true, i.e., true in all models. In
the case of LTL, it means that ∀σ ∈ Σω : σ |= φ.

A formula φ is satisfiable if it is “sometimes” true, i.e., true in some
model. In the case of LTL, it means that ∃σ ∈ Σω : σ |= φ.
Otherwise, φ is unsatisfiable.

A formula φ1 is stronger than another formula φ2 if the formula
φ1 → φ2 is valid.2 Equivalently: ∀σ ∈ Σω : σ |= φ1 ⇒ σ |= φ2.

A formula φ1 is weaker than another formula φ2 if φ2 is stronger
than φ1. Equivalently: if φ2 → φ1 is valid.

Formulas φ1, φ2 are equivalent if the formula φ1 ↔ φ2 is valid, i.e., if
both φ1 → φ2 and φ2 → φ1 are valid, i.e., both φ1 is stronger than
φ2 and φ2 is stronger than φ1.

A condition φ1 is necessary for φ2 if φ2 implies (is stronger than) φ1.

A condition φ1 is sufficient for φ2 if φ1 implies φ2.

2So “stronger” really means “stronger or equivalent”.
Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 27 / 46

Interesting facts about LTL

Can we express Gp using only F, p, and boolean operators?

Gp⇔ ¬F¬p

Vice versa, can we express F in terms of G?

Fφ⇔ ¬G¬φ

Can we express F in terms of U ?

Fφ⇔ trueUφ

What is “true” ? Can be defined as a primitive formula, or as p∨¬p.

Can we express X in terms of G, F, U ? No!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 28 / 46

Interesting facts about LTL

Can we express Gp using only F, p, and boolean operators?

Gp⇔ ¬F¬p

Vice versa, can we express F in terms of G?

Fφ⇔ ¬G¬φ

Can we express F in terms of U ?

Fφ⇔ trueUφ

What is “true” ? Can be defined as a primitive formula, or as p∨¬p.

Can we express X in terms of G, F, U ? No!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 28 / 46

Interesting facts about LTL

Can we express Gp using only F, p, and boolean operators?

Gp⇔ ¬F¬p

Vice versa, can we express F in terms of G?

Fφ⇔ ¬G¬φ

Can we express F in terms of U ?

Fφ⇔ trueUφ

What is “true” ? Can be defined as a primitive formula, or as p∨¬p.

Can we express X in terms of G, F, U ? No!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 28 / 46

Interesting facts about LTL

Can we express Gp using only F, p, and boolean operators?

Gp⇔ ¬F¬p

Vice versa, can we express F in terms of G?

Fφ⇔ ¬G¬φ

Can we express F in terms of U ?

Fφ⇔ trueUφ

What is “true” ? Can be defined as a primitive formula, or as p∨¬p.

Can we express X in terms of G, F, U ? No!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 28 / 46

Interesting facts about LTL

Can we express Gp using only F, p, and boolean operators?

Gp⇔ ¬F¬p

Vice versa, can we express F in terms of G?

Fφ⇔ ¬G¬φ

Can we express F in terms of U ?

Fφ⇔ trueUφ

What is “true” ? Can be defined as a primitive formula, or as p∨¬p.

Can we express X in terms of G, F, U ? No!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 28 / 46

Interesting facts about LTL

Can we express Gp using only F, p, and boolean operators?

Gp⇔ ¬F¬p

Vice versa, can we express F in terms of G?

Fφ⇔ ¬G¬φ

Can we express F in terms of U ?

Fφ⇔ trueUφ

What is “true” ?

Can be defined as a primitive formula, or as p∨¬p.

Can we express X in terms of G, F, U ? No!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 28 / 46

Interesting facts about LTL

Can we express Gp using only F, p, and boolean operators?

Gp⇔ ¬F¬p

Vice versa, can we express F in terms of G?

Fφ⇔ ¬G¬φ

Can we express F in terms of U ?

Fφ⇔ trueUφ

What is “true” ? Can be defined as a primitive formula, or as p∨¬p.

Can we express X in terms of G, F, U ? No!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 28 / 46

Interesting facts about LTL

Can we express Gp using only F, p, and boolean operators?

Gp⇔ ¬F¬p

Vice versa, can we express F in terms of G?

Fφ⇔ ¬G¬φ

Can we express F in terms of U ?

Fφ⇔ trueUφ

What is “true” ? Can be defined as a primitive formula, or as p∨¬p.

Can we express X in terms of G, F, U ?

No!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 28 / 46

Interesting facts about LTL

Can we express Gp using only F, p, and boolean operators?

Gp⇔ ¬F¬p

Vice versa, can we express F in terms of G?

Fφ⇔ ¬G¬φ

Can we express F in terms of U ?

Fφ⇔ trueUφ

What is “true” ? Can be defined as a primitive formula, or as p∨¬p.

Can we express X in terms of G, F, U ? No!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 28 / 46

LTL – more examples
Let’s try to express the following requirements in LTL:

1 No more than one processor (in a 2-processor system) shall have a
cache line in write mode.

Let AP = {p1, p2}, with pi meaning “processor i has the cache line in
write mode.”

G¬(p1 ∧ p2)
2 The grant signal must be asserted some time after the request signal

is asserted.
Let AP = {r, g}, with r meaning “request signal is asserted” and g
meaning “grant signal is asserted.”

G(r → Fg)

3 A request must receive an acknowledgement, and the request should
stay asserted until the acknowledgment is received.
Let AP = {r, a}, with r request and a acknowledgment.

G(r → (rU a))

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 29 / 46

LTL – more examples
Let’s try to express the following requirements in LTL:

1 No more than one processor (in a 2-processor system) shall have a
cache line in write mode.
Let AP = {p1, p2}, with pi meaning “processor i has the cache line in
write mode.”

G¬(p1 ∧ p2)

2 The grant signal must be asserted some time after the request signal
is asserted.
Let AP = {r, g}, with r meaning “request signal is asserted” and g
meaning “grant signal is asserted.”

G(r → Fg)

3 A request must receive an acknowledgement, and the request should
stay asserted until the acknowledgment is received.
Let AP = {r, a}, with r request and a acknowledgment.

G(r → (rU a))

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 29 / 46

LTL – more examples
Let’s try to express the following requirements in LTL:

1 No more than one processor (in a 2-processor system) shall have a
cache line in write mode.
Let AP = {p1, p2}, with pi meaning “processor i has the cache line in
write mode.”

G¬(p1 ∧ p2)
2 The grant signal must be asserted some time after the request signal

is asserted.

Let AP = {r, g}, with r meaning “request signal is asserted” and g
meaning “grant signal is asserted.”

G(r → Fg)

3 A request must receive an acknowledgement, and the request should
stay asserted until the acknowledgment is received.
Let AP = {r, a}, with r request and a acknowledgment.

G(r → (rU a))

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 29 / 46

LTL – more examples
Let’s try to express the following requirements in LTL:

1 No more than one processor (in a 2-processor system) shall have a
cache line in write mode.
Let AP = {p1, p2}, with pi meaning “processor i has the cache line in
write mode.”

G¬(p1 ∧ p2)
2 The grant signal must be asserted some time after the request signal

is asserted.
Let AP = {r, g}, with r meaning “request signal is asserted” and g
meaning “grant signal is asserted.”

G(r → Fg)

3 A request must receive an acknowledgement, and the request should
stay asserted until the acknowledgment is received.
Let AP = {r, a}, with r request and a acknowledgment.

G(r → (rU a))

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 29 / 46

LTL – more examples
Let’s try to express the following requirements in LTL:

1 No more than one processor (in a 2-processor system) shall have a
cache line in write mode.
Let AP = {p1, p2}, with pi meaning “processor i has the cache line in
write mode.”

G¬(p1 ∧ p2)
2 The grant signal must be asserted some time after the request signal

is asserted.
Let AP = {r, g}, with r meaning “request signal is asserted” and g
meaning “grant signal is asserted.”

G(r → Fg)

3 A request must receive an acknowledgement, and the request should
stay asserted until the acknowledgment is received.

Let AP = {r, a}, with r request and a acknowledgment.

G(r → (rU a))

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 29 / 46

LTL – more examples
Let’s try to express the following requirements in LTL:

1 No more than one processor (in a 2-processor system) shall have a
cache line in write mode.
Let AP = {p1, p2}, with pi meaning “processor i has the cache line in
write mode.”

G¬(p1 ∧ p2)
2 The grant signal must be asserted some time after the request signal

is asserted.
Let AP = {r, g}, with r meaning “request signal is asserted” and g
meaning “grant signal is asserted.”

G(r → Fg)

3 A request must receive an acknowledgement, and the request should
stay asserted until the acknowledgment is received.
Let AP = {r, a}, with r request and a acknowledgment.

G(r → (rU a))

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 29 / 46

LTL in the industry

Several industrial standard languages based on LTL, e.g.,

PSL (Property Specification Language), an IEEE standard.

PSL/Sugar (IBM variant).

Example properties written in PSL/Sugar:

assert always req -> next (ack until grant);

G(r → X(aU g))

assert always req -> next[3] (grant);

G(r → XXXg)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 30 / 46

LTL expressiveness

Are there properties that we cannot write in LTL?

There must be, because of cardinality arguments: Σω is uncountable,
so its powerset is even more uncountable!
But the set of all LTL formulas is countable – why? I can enumerate
all formulas of length 1 (there’s finitely many of them), then all those
of length 2, then length 3, etc.

You will explore this a bit more in the next homework.

We will also return to it when we talk about Büchi automata.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 31 / 46

LTL expressiveness

Are there properties that we cannot write in LTL?

There must be, because of cardinality arguments: Σω is uncountable,
so its powerset is even more uncountable!
But the set of all LTL formulas is countable – why?

I can enumerate
all formulas of length 1 (there’s finitely many of them), then all those
of length 2, then length 3, etc.

You will explore this a bit more in the next homework.

We will also return to it when we talk about Büchi automata.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 31 / 46

LTL expressiveness

Are there properties that we cannot write in LTL?

There must be, because of cardinality arguments: Σω is uncountable,
so its powerset is even more uncountable!
But the set of all LTL formulas is countable – why? I can enumerate
all formulas of length 1 (there’s finitely many of them), then all those
of length 2, then length 3, etc.

You will explore this a bit more in the next homework.

We will also return to it when we talk about Büchi automata.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 31 / 46

THE MODEL-CHECKING PROBLEM FOR LTL

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 32 / 46

The verification problem

Specification (the “what”) = the property that we want the system to
have

Implementation (the “how”) = the system that we want to verify

The verification problem: does the implementation satisfy the
specification?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 33 / 46

The verification problem for LTL = LTL model checking

The LTL model checking problem:

Given:
I Implementation: state machine or transition system M
I Specification: LTL formula φ

Check whether every trace of M satisfies φ:

∀σ ∈ Traces(M) : σ |= φ

We write this as:
M |= φ

In case M 6|= φ we would also like to get a counter-example: most
model-checkers provide that

In case M |= φ we might want to get a “proof”: this is typically not
provided (what would that proof look like?)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 34 / 46

The verification problem for LTL = LTL model checking

The LTL model checking problem:

Given:
I Implementation: state machine or transition system M
I Specification: LTL formula φ

Check whether every trace of M satisfies φ:

∀σ ∈ Traces(M) : σ |= φ

We write this as:
M |= φ

In case M 6|= φ we would also like to get a counter-example: most
model-checkers provide that

In case M |= φ we might want to get a “proof”: this is typically not
provided (what would that proof look like?)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 34 / 46

Parenthesis: how to be precise about the problem you are
solving

Thesis: Every CS problem can be cast in this form:

Given: X

Find: Y

Such that: Z

Make sure you follow that format when you present your papers: you
should be able to explain to us what problem each paper is trying to solve
in the above terms!

Understanding what problem is being solved is much more important than
understanding how it is being solved!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 35 / 46

Parenthesis: how to be precise about the problem you are
solving

Thesis: Every CS problem can be cast in this form:

Given: X

Find: Y

Such that: Z

Make sure you follow that format when you present your papers: you
should be able to explain to us what problem each paper is trying to solve
in the above terms!

Understanding what problem is being solved is much more important than
understanding how it is being solved!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 35 / 46

Traces of a transition system

An infinite path in a Kripke structure (AP, S, S0, L,R) is an infinite
sequence of states linked by transitions:

s0, s1, s2, · · ·

such that s0 ∈ S0 and ∀i : (si, si+1) ∈ R.

The corresponding observable trace σ is the corresponding infinite
sequence of sets of atomic propositions:

σ = L(s0), L(s1), L(s2), · · ·

If M is a Kripke structure then Traces(M) is the set of all observable
traces over all infinite paths of M .

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 36 / 46

Example

List some of the traces of the following transition system:

How many traces are there in total?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 37 / 46

Traces of a state machine

An infinite run of a Mealy machine (I,O, S, s0, δ, λ) is an infinite sequence
of states / transitions:

s0
x0/y0−→ s1

x1/y1−→ s2
x2/y2−→ s3 · · ·

such that ∀i : xi ∈ I, yi ∈ O, ∀i : si+1 = δ(si, xi), and ∀i : yi = λ(si, xi).

The observable I/O behavior (trace) corresponding to the above run is

σ = {x0, y0}, {x1, y1}, {x2, y2}, · · ·

where we assume AP = I ∪O and interpret xi as the atomic proposition
“the value of the input is xi”, and similarly for yi.

(Here we assume that only I/O are observable. We could also define traces that
expose the internal state of the machine. E.g., we may want to state the
requirement that a certain register never has a certain value.)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 38 / 46

Traces of a state machine

An infinite run of a Mealy machine (I,O, S, s0, δ, λ) is an infinite sequence
of states / transitions:

s0
x0/y0−→ s1

x1/y1−→ s2
x2/y2−→ s3 · · ·

such that ∀i : xi ∈ I, yi ∈ O, ∀i : si+1 = δ(si, xi), and ∀i : yi = λ(si, xi).

The observable I/O behavior (trace) corresponding to the above run is

σ = {x0, y0}, {x1, y1}, {x2, y2}, · · ·

where we assume AP = I ∪O and interpret xi as the atomic proposition
“the value of the input is xi”, and similarly for yi.

(Here we assume that only I/O are observable. We could also define traces that
expose the internal state of the machine. E.g., we may want to state the
requirement that a certain register never has a certain value.)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 38 / 46

Traces of a state machine

An infinite run of a Mealy machine (I,O, S, s0, δ, λ) is an infinite sequence
of states / transitions:

s0
x0/y0−→ s1

x1/y1−→ s2
x2/y2−→ s3 · · ·

such that ∀i : xi ∈ I, yi ∈ O, ∀i : si+1 = δ(si, xi), and ∀i : yi = λ(si, xi).

The observable I/O behavior (trace) corresponding to the above run is

σ = {x0, y0}, {x1, y1}, {x2, y2}, · · ·

where we assume AP = I ∪O and interpret xi as the atomic proposition
“the value of the input is xi”, and similarly for yi.

(Here we assume that only I/O are observable. We could also define traces that
expose the internal state of the machine. E.g., we may want to state the
requirement that a certain register never has a certain value.)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 38 / 46

Examples

Let’s check the following LTL formulas on the previous Kripke structure:

Gp

Fp

GFp

G(p→ Fq)

pU q

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 39 / 46

INVARIANTS IN LTL

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 40 / 46

Recall: Invariants

In a transition system, an invariant is a superset of the set of
reachable states.

So, an invariant is a “property” that all reachable states must have,
or in other words, a condition/constraint that all reachable states
must satisfy.

How can we express that something is an invariant in LTL?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 41 / 46

Invariants in LTL

Let φ be an LTL formula without temporal operators, i.e., φ can
contain only atomic propositions and Boolean operators (∧,∨,¬, ...),
but no G,F,X, U .
Such a φ is called a state formula.

Then, a linear-time property is an invariant if it can be expressed as
an LTL formula Gφ, where φ is a state formula.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 42 / 46

LTL in Spin

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 43 / 46

LTL in Spin: a toy example

bool a, b // initialized to false

active proctype system()

{

do

:: a = 1; b = 1; a = 0; b = 0

od

}

// ltl p1 { ([] <> a) }

// ltl p2 { ([] <> (a && b)) }

// ltl p3 { [] (a -> (<> b)) }

// ltl p4 { always (a -> (eventually b)) }

// ltl p5 { always (a -> (next b)) }

ltl p5 { always (a -> (next a)) }

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 44 / 46

More Spin examples

See, for instance, http://spinroot.com/spin/Man/1_Exercises.html

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 45 / 46

http://spinroot.com/spin/Man/1_Exercises.html

Bibliography

Baier, C. and Katoen, J.-P. (2008).

Principles of Model Checking.
MIT Press.

Clarke, E., Grumberg, O., and Peled, D. (2000).

Model Checking.
MIT Press.

Huth, M. and Ryan, M. (2004).

Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press.

Pnueli, A. (1981).

A temporal logic of concurrent programs.
Theoretical Computer Science, 13:45–60.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 46 / 46

	Specification
	Temporal logic
	LTL

