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Notes on Homework 01

Moore vs Mealy distinction still a bit unclear.

Both machines in homework are Moore, assuming we don’t encode
the input in the state.

Some encoded the input in the state and said it’s Mealy. This is OK.

But some did not encode the input in the state, and still said it’s
Mealy. This is not OK.

Also some got the transition function wrong (self-loops).

From now on, please submit code as separate files.
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Notes on Presentations and Projects

Preliminary lists posted on piazza.

Send me your own suggestions (both for papers and projects).

Goal: finalize things by end of next week (Oct 4).
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FAIRNESS
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Fairness: motivation

Consider the following asynchronous (interleaving) composition of two
processes with shared variable x:

s0 || p0 p1

x++

x > 4

x ≤ 4

Will the rightmost process eventually move to p1?
Is there any behavior where this will not happen?
Let’s see what the transition system says:
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Fairness: motivation

Consider the following asynchronous (interleaving) composition of two
processes with shared variable x:

s0 || p0 p1

x++

x > 4

x ≤ 4

The transition system contains a behavior where the leftmost process
keeps taking transitions forever, while the rightmost process never moves.

This is not realistic: no matter how slow the rightmost process is, it will
move at some point (e.g., in a multi-threaded program, or a distributed
system).
⇒ We need to exclude such unrealistic behaviors. But how?
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Fairness: motivation

Fairness is a mechanism to exclude such unrealistic (unfair) behaviors.

Indispensable for proving properties of systems, e.g.:

A message will eventually reach its destination: need to assume that
the communication channel will not keep losing the message forever.
This is a fairness assumption.

In a distributed protocol, say, leader election, a leader will eventually
be elected: need to assume that nodes will not keep failing.
Again, a fairness assumption.

Every bank transaction eventually completes: need to assume that a
given transaction will not constantly be overlooked due to other
transactions (no starvation).
Again, a fairness assumption.

...
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Defining fairness

We need to be precise: what exactly constitutes a “fair” behavior?

Two basic types [Manna and Pnueli, 1991]:

Weak fairness (sometimes called “justice”): a process cannot be
enabled forever after some point on, without getting to move.

Strong fairness (sometimes called “compassion”): a process cannot
be enabled infinitely often without getting to move.

where some process i is enabled means that the overall system (consisting
of process i and potentially other processes) is at a state where process i
can move.

We can define fairness in different ways. E.g., we can make it part of the system,
or we can make it part of the specification. E.g., instead of verifying that φ holds,
we verify that φfair ⇒ φ holds. We will return to this later.
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Weak fairness

Let TS be a transition system formed by the asynchronous
composition of n processes, P1, P2, ..., Pn.

Let s→ s′ be a transition of TS. We write s
i−→ s′, if process Pi

makes a move in this transition. (Note that in asynchronous
interleaving, a unique process makes a move at each step.)

We say that Pi is enabled at some state s, if there exists a transition

s
i−→ s′.

Then we can define weak fairness:
If Pi is always enabled after some point on, it will eventually get
to move.

or better:

A run s0
i0−→ s1

i1−→ s2
i2−→ · · · is weakly unfair to process Pi if

there exists some integer K, such that Pi is enabled at all states
sj with j ≥ K, but ∀j ≥ K : ij 6= i.
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Weak fairness: example

Consider our earlier example. Weak fairness solves this problem:

s0 || p0 p1

x++

x > 4

x ≤ 4

The run where the transition from p0 to p1 never happens is weakly unfair
to the rightmost process.
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But weak fairness is sometimes too weak

s0 || p0 p1

x++

x > 4 ∧ even(x)

else

Here, the run where the transition from p0 to p1 never happens is not
weakly unfair, because the transition is not always enabled after some
point on.
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Weak fairness is sometimes too weak
A more realistic example:

How to ensure that both processes eventually enter their critical section?
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Strong fairness

We define strong fairness:
If Pi is infinitely-often enabled, it eventually gets to move.

or better:

A run s0
i0−→ s1

i1−→ s2
i2−→ · · · is strongly unfair to process Pi

if Pi is enabled at state sj for infinitely many j’s, but there exists
some integer K, such that ∀j ≥ K : ij 6= i.
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Strong fairness: example

Strong fairness fixes our last example:

s0 || p0 p1

x++

x > 4 ∧ even(x)

else

Here, the run where the transition from p0 to p1 never happens is unfair
w.r.t. strong fairness, because the transition is infinitely-often enabled
(more precisely: enabled every other step).
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More fine-grained notions of fairness
Recall the Forward Channel process of the ABP example:

f0

f1

f2

p0?

p′0!

p1?

p′1!

p0?

p1?

p0?

p1?

p′0!

p0?

p1?

p′1!

Transitions in bold lines and
double arrows are strongly fair,
meaning they cannot be en-
abled infinitely often without
being taken.
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Example of fairness in nuXmv

MODULE main

VAR

state : { new, broken, fixed };

INIT

state = new;

TRANS

(state = new & (next(state) = new | next(state) = broken))

|

(state = broken & (next(state) = broken | next(state) = fixed))

|

(state = fixed & (next(state) = fixed | next(state) = broken));

JUSTICE state = fixed;

SPEC

AG (state = broken -> AF (state = fixed));

Specification is violated without the JUSTICE assumption.
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Fairness: poor man’s probability

We could view fairness as an abstraction of probabilities.

Example: consider a communication channel, which loses a message
with probability p = 10−6 and transmits it correctly with probability
1− p.

In this system, a behavior where the message keeps getting forever
lost has zero probability. So, in principle, probabilistic systems do not
need fairness, since unfair behaviors have zero probability of occurring.

Fairness allows us to avoid specifying probabilities. Even if we don’t
know what p is, we can still claim that a certain behavior is unfair.

Also, probabilistic systems are (other things being equal) harder to
verify than nondeterministic systems (because in addition to
state-space exploration, we have to deal with the numbers).
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