
System Specification, Verification and Synthesis
(SSVS) – CS 4830/7485, Fall 2019

6: Formal System Modeling:
Asynchronous Composition

Stavros Tripakis

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 1 / 18

ASYNCHRONOUS COMPOSITION

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 2 / 18

Basic model: interleaving and shared variables

A bunch of shared (global) variables.

A bunch of processes: each modeled as an extended state machine.

A process can read a variable, write a variable, test a variable, ...

Processes interleave: only one process moves at a time.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 3 / 18

Basic model: interleaving and shared variables
Example:

// a small example spin model

// Peterson’s solution to the mutual exclusion problem (1981)

bool turn, flag[2]; // the shared variables, booleans

byte ncrit; // nr of procs in critical section

active [2] proctype user() // two processes

{

assert(_pid == 0 || _pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

ncrit++;

assert(ncrit == 1); // critical section

ncrit--;

flag[_pid] = 0;

goto again

}

// analysis:

// $ spin -run peterson.pml

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 4 / 18

Subtleties
Consider this multi-threaded program:

Shared vars A, B: bool;

Initially A = B = 0;

Thread 1 Thread 2

A := 1; B := 1;

if (B = 0) if (A = 0)

print("Hello "); print("World ");

What might be printed?

”Hello ”?

”World ”?

”Hello World ”?

”World Hello ”?

Something else?

Nothing?
Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 5 / 18

Subtleties
Consider this multi-threaded program:

Shared vars A, B: bool;

Initially A = B = 0;

Thread 1 Thread 2

A := 1; B := 1;

if (B = 0) if (A = 0)

print("Hello "); print("World ");

What might be printed?

”Hello ”?

”World ”?

”Hello World ”?

”World Hello ”?

Something else?

Nothing?

Interleaving semantics implicitly
assumes sequential
consistency!

But there are weaker memory
models.

Homework: model and verify
this example in Spin.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 5 / 18

Other subtleties

Atomicity: are reads and writes atomic?

What if Thread 1 has a statement like:

x := x+1;

where x is a shared variable.

Can some other thread update the value of x after Thread 1 has read
it, but before it has updated it?

Careful with what you model!

Some languages offer atomic constructs (e.g., Spin).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 6 / 18

Other subtleties

Atomicity: are reads and writes atomic?

What if Thread 1 has a statement like:

x := x+1;

where x is a shared variable.

Can some other thread update the value of x after Thread 1 has read
it, but before it has updated it?

Careful with what you model!

Some languages offer atomic constructs (e.g., Spin).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 6 / 18

Another basic model: rendez-vous

A bunch of processes: each modeled as an extended state machine.

Processes mostly interleave: only one process moves at a time.

Except for some transitions which must synchronize.

Common in process algebras, e.g., CSP [Hoare, 1985],
CCS [Milner, 1980], etc.

In Spin this is modeled with channels of length 0.
I Message cannot be stored in the channel queue (because queue size is

0) ⇒ transmitter and receiver must synchronize.
⇒ transmission and reception occurs simultaneously.

Called handshake in [Baier and Katoen, 2008].

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 7 / 18

Rendez-vous communication: example

CSP notation:

a! || a? = τ

CCS notation:

a || a = τ

τ : silent (or internal) action.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 8 / 18

Another basic model: asynchronous message passing

Sender sends message to a queue.

Receiver reads message from the queue.

Many variants, depending on how these questions are resolved:
I Can multiple senders write to the same queue?
I Can multiple receivers read from the same queue?
I Are the queues FIFO? lossy? ...
I Are the queues of finite length?
I If queues are finite, what happens when I try to send a message and

the queue is already full?
I What happens if I try to read and the queue is empty?
I ...

Some examples of models:
I Kahn Process Networks [Kahn, 1974]: infinite queues, single-writer,

single-reader, blocking read ⇒ determinism!
I Petri nets [Murata, 1989]: unordered tokens, multiple-writer,

multiple-reader.
I Spin: shared vars + rendez-vous + channels

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 9 / 18

EXAMPLE: THE ALTERNATING BIT PROTOCOL

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 10 / 18

The Alternating Bit Protocol (ABP)

A simple communication protocol: reliable transmission over
unreliable channels.

Routinely used to illustrate formal modeling and verification
techniques [Holzmann, 2003, Lynch, 1996].

Model presented here taken from [Alur and Tripakis, 2017].

We will return to this example later.

Homework: For now, you should use it as practice to form the
asynchronous parallel composition of all processes in the system.

Homework: How many states does the product transition system for
the ABP model have in total? How many of those states are
reachable?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 11 / 18

ABP System Architecture

ABP
Sender

Forward
Channel

Backward
Channel

ABP
Receiver

Safety Monitor 1

Safety Monitor 2

Liveness Monitor 1

Liveness Monitor 2

Liveness Monitor 3

Sending
Client

Receiving
Client

Timer

timeout

send

done

deliver

p0, p1 p′0, p′1

a′0, a′1 a0, a1

send, deliver

deliver, done

send, deliver

send, done

all 12 system events

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 12 / 18

The channels

f0

f1

f2

p0?

p′0!

p1?

p′1!

p0?

p1?

p0?

p1?

p′0!

p0?

p1?

p′1!

b0

b1

b2

a0?

a′0!

a1?

a′1!

a0?

a1?

a0?

a1?

a′0!

a0?

a1?

a′1!

Figure: Environment processes Forward Channel (left) and Backward Channel
(right). Transitions in bold lines and double arrows are strongly fair, meaning
they cannot be enabled infinitely often without being taken.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 13 / 18

The Environment Processes

sc0 sc1

send !

done ?

done ?

rc0

deliver ?

t0

timeout !

Figure: Environment processes Sending Client (left), Receiving Client (middle),
and Timer (right).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 14 / 18

ABP Sender

s0

s1 s2 s3

s4

s5s6s7

a′1?

a′0?

timeout ?

send ?

p0!

timeout ?

a′1?

a′0?

send ?

done !

a′1?

a′0?

timeout ?

send ?p1!

timeout ?

a′0?

a′1?

send ?

done !

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 15 / 18

ABP Receiver

r0 r1 r2

r3r4r5

p′0?

p′1?

deliver !

a0!p′0?

p′1?deliver !

a1!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 16 / 18

A Blocking Sender

s0

a′1?

a′0?

timeout ?

Figure: Blocking Sender: it blocks the send event of the Sending Client by not
having any transition labeled with that event.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 17 / 18

Bibliography

Alur, R. and Tripakis, S. (2017).

Automatic synthesis of distributed protocols.
SIGACT News, 48(1):55–90.

Baier, C. and Katoen, J.-P. (2008).

Principles of Model Checking.
MIT Press.

Hoare, C. (1985).

Communicating Sequential Processes.
Prentice Hall.

Holzmann, G. (2003).

The Spin Model Checker.
Addison-Wesley.

Kahn, G. (1974).

The semantics of a simple language for parallel programming.
In Information Processing 74, Proceedings of IFIP Congress 74. North-Holland.

Lynch, N. A. (1996).

Distributed Algorithms.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Milner, R. (1980).

A Calculus of Communicating Systems, volume 92 of LNCS.
Springer-Verlag.

Murata, T. (1989).

Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541–580.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Asynchronous composition 18 / 18

