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Reminder: what is a system?

Our definition so far:

system = state + dynamics

But this definition is too monolithic

Most systems are structured hierarchically: system, subsystems,
subsubsystems, ...

Examples:
I The human body is made of organs, which are made of cells, which are made

of ...
I Matter is made of molecules, which are made of atoms, which are made of

particles, which are made of ...
I A society is made of people interacting with each other
I In a highway there are several vehicles traveling
I A digital circuit is made of gates, flip-flops, wires, ...
I A piece of software is made of functions, classes, libraries, threads, ...
I A distributed system is made of nodes communicating via a network
I ...
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Systems: non-monolithic definition:

System: atomic or composite system

Atomic system: state + dynamics (+ inputs/outputs)

Composite system: set of (sub)systems + composition

Dynamics: rules defining how state evolves in time

Composition: rules defining how subsystems interact

Composition typically ignored in classic system theory.
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System composition paradigms

Two major paradigms:

Synchronous composition:
I All sub-systems move together: in “lock-step”.
I Application: synchronous circuits, embedded control systems, ...

Asynchronous composition:
I Each sub-system moves “at its own pace”.
I Interleaving: only one sub-system makes a move at a time.
I Applications: concurrent software (processes, threads, ...),

non-synchronized distributed systems, asynchronous circuits, ...

Common principle:

The state-space of the composite system is the (cartesian) product
of the state-spaces of its components (subsystems).
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Synchronous and asynchronous composition on transition
systems: intuitive drawing
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Example: synchronous composition in nuXmv

MODULE main

VAR

bit0 : counter_cell(TRUE);

bit1 : counter_cell(bit0.carry_out);

bit2 : counter_cell(bit1.carry_out);

SPEC

AG AF bit2.carry_out

MODULE counter_cell(carry_in)

VAR

value : boolean;

ASSIGN

init(value) := FALSE;

next(value) := value xor carry_in;

DEFINE

carry_out := value & carry_in;

SMV model counter.smv taken from http://nusmv.fbk.eu/examples/examples.html
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Example: asynchronous composition in Spin

// a small example spin model

// Peterson’s solution to the mutual exclusion problem (1981)

bool turn, flag[2]; // the shared variables, booleans

byte ncrit; // nr of procs in critical section

active [2] proctype user() // two processes

{

assert(_pid == 0 || _pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

ncrit++;

assert(ncrit == 1); // critical section

ncrit--;

flag[_pid] = 0;

goto again

}

// analysis:

// $ spin -run peterson.pml
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Example: Petri nets

Semantics usually based on interleaving (asynchronous).
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Naive formal definitions of synchronous and asynchronous
composition on transition systems
Consider two transition systems TS1 and TS2 with TSi = (Si, S

i
0, Ri).

The synchronous composition of TS1 and TS2 is a new transition system

TS1 × TS2 = (S1 × S2, S
1
0 × S2

0 , Rsync)

where
Rsync = {

(
(s1, s2), (s

′
1, s

′
2)
)
| (s1, s′1) ∈ R1 ∧ (s2, s

′
2) ∈ R2}

The asynchronous composition of TS1 and TS2 is a new transition system

TS1‖TS2 = (S1 × S2, S
1
0 × S2

0 , Rasync)

where

Rasync = {
(
(s1, s2), (s

′
1, s2)

)
| (s1, s′1) ∈ R1} ∪ {

(
(s1, s2), (s1, s

′
2)
)
| (s2, s′2) ∈ R2}

Why are these definitions “naive”?
Because they don’t model interaction (inputs, outputs, shared vars, ...).
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In practice

Every model-checker has their own language with its own composition
features and semantics.

I Shared variables
I Inputs and outputs
I Communication channels
I Labels and rendez-vous synchronization
I ...

The semantics is defined at the level of that language: given a
program in that language, that program defines a (big) transition
system (for the entire product system).

Direct compositions at the level of transition systems (LTSs and
Kripke structures) also exist, e.g., [Milner, 1980, Hoare, 1985].

One needs to be careful with composition, as there are several
subtleties: we illustrate some in the next few slides.

Many more things to say about composition, not enough time. We
will return to the topic later when we talk about compositionality.
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SYNCHRONOUS COMPOSITION
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Block Diagrams

We should be able to express
any such diagram using formal
composition operators.

Basic primitives:

Serial composition.

Parallel composition.

Feedback composition.
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Three basic composition primitives

C C ′x zy y

C

C ′

x

u

y

v

Serial composition Parallel composition

C

x1 y1

x2
...

y2
...

Feedback composition
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Synchronous serial composition of FSMs: formalization

O1 = I2 - -- M2

O2I1
M1

Given two Mealy machines M1 and M2 with

Mi = (Ii, Oi, Si, s
i
0, δi, λi)

such that O1 = I2, the serial synchronous composition of M1 and M2 is a
new Mealy machine

M = (I1, O2, S1 × S2, (s10, s20), δ, λ)

where

δ
(
(s1, s2), a

)
=

(
δ1(s1, a), δ2(s2, λ1(s1, a))

)
λ
(
(s1, s2), a

)
= λ2(s2, λ1(s1, a))
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Synchronous serial composition of FSMs: formalization
Quizzes:

Define another version of serial composition where the outputs of
both machines are observable to the external world, as shown below:

- --

-

M2

O2I1
M1

O1 = I2

O1

Adapt the previous definitions to Moore machines.

Adapt the previous definitions to Moore → Mealy.

Adapt the previous definitions to Mealy → Moore.

Is the serial composition of two Mealy machines a Mealy machine?

Is the serial composition of two Moore machines a Moore machine?

Is the serial composition Moore → Mealy a Moore or a Mealy
machine?

Is the serial composition Mealy → Moore a Moore or a Mealy
machine?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Synchronous composition 17 / 29



Synchronous serial composition of FSMs: formalization
Quizzes:

Define another version of serial composition where the outputs of
both machines are observable to the external world, as shown below:

- --

-

M2

O2I1
M1

O1 = I2

O1

Adapt the previous definitions to Moore machines.

Adapt the previous definitions to Moore → Mealy.

Adapt the previous definitions to Mealy → Moore.

Is the serial composition of two Mealy machines a Mealy machine?

Is the serial composition of two Moore machines a Moore machine?

Is the serial composition Moore → Mealy a Moore or a Mealy
machine?

Is the serial composition Mealy → Moore a Moore or a Mealy
machine?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Synchronous composition 17 / 29



Synchronous feedback composition of FSMs

- -M
OI

Does this make sense? For Moore machines? For Mealy machines?

Homework: Formalize feedback composition for Moore machines.
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Synchronous feedback for Mealy machines: not always well
defined

Models the equation:
x = ¬x

No solutions.
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Synchronous feedback for Mealy machines: not always well
defined

Models the equation:
x = x

Two solutions.
Which one to pick?
Ambiguous semantics.
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Synchronous feedback for Mealy machines: sometimes well
defined

x

Models the equation:
y = y ∧ x

If x = 0, then y = 0 (unique solution).
If x = 1, then the equation becomes y = y (multiple solutions).
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Who cares?

Motivation: cyclic combinational circuits [Malik, 1994]:1

950 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 7, JULY 1994 

Short Papers 

Analysis of Cyclic Combinational Circuits 

Sharad Malik, Mrrnher.. IEEE 

Abstract-A logic circuit is said to he combinational if the function 
it computes depends only on the inputs applied to the circuit, and 
is sequential if it depends on some past history in addition to the 
current inputs. Circuits that have an underlying topology that is acyclic 
are combinational, since feedback is a necessary condition for them 
to be sequential. However, it is not a sufficient condition since there 
exist combinational logic circuits that are cyclic. These occur often in 
bus structures in data paths. Traditional formal techniques in logic 
synthesis, logic analysis, and timing analysis of combinational circuits 
have restricted themselves to acyclic combinational circuits, since they 
have been unable to handle the analysis of circuits with cycles. Thus, in 
practice, these circuits are handled using clumsy work-arounds, which 
is obviously undesirable. This paper presents a formal analysis of these 
circuits and presents techniques for the logical and timing analysis of such 
circuits. These techniques are practically feasible on reasonably large 
circuits encountered in practice. 

1. INTRODUCTIOV 
Even though the phrase cyclic combinational cirruits may sound 

like an oxymoron, these circuits do in fact exist. For example, the 
circuit in Fig. 1 is combinational since r. is equal to the present value 
of .r, and it does not depend on the past history of inputs. This can 
be easily verified by checking the circuit output for both .I' = 0 and 
.r = 1. While in this circuit there exists a logical redundancy, and 
the circuit can be reduced to an acyclic form by the removal of this 
redundancy, this is not true in general. As early as in 1970, Kautz 
demonstrated the existence of circuits for which he was able to prove 
that the minimal form must have cycles [ X I .  

The existence of these circuits is not restricted to the world of 
abstract researchers. they occur often in practice. Stok has pointed 
out their existence in circuits synthesized from high-level descriptions 
[13). They also occur often in circuits with bus structures. Both of 
these families of instances are motivated by the following abstract 
example. Consider the function: 

z = if(c) then F(Glx))  else G(F(x))  

Here c is some logical condition and x is an input argument 
(possibly a vector of Boolean variables). Any acyclic implementation 
of this function must have two instances of at least one of E or G, since 
F follows G in the t h e n  part, and the converse is true for the e l s e  
part. However, Fig. 2 shows a cyclic implementation of this function 
that uses only one instance of both F and G, exploiting the fact that 
for any input assignment to c only one of the two possibilities, F 
following G, or G following F will happen. 

This abstract example can be transformed to a practical example 
by replacing F and G by a shifter and an adder respectively and 
considering the function: 

z = ific) then shift(add(a.bj.dJ else add(shift(a.d).b) 
Manuscript received August 6, 1993: revised February I X ,  1994. This work 

was Supported by NSF Research Initiation and Small Scale Infrastructure 
Awards and an IBM Faculty Development Award. This paper was recom- 
mended by Associate Editor L. H. Trevillyan. 

The author is with the Department of Electrical Engineering, Princeton 
University. Princeton NJ USA. 

IEEE Log Number 9400663. 
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"Wz 

Fig. 1 ,  Cyclic Combination Circuits: A Simple Example 

z 

Fig. 2. Cyclic Combinational Circuits: Abstract Example. 

a 

Z 

Fig. 3 .  Cyclic combinational circuits: practical example 

Here a and b are the data arguments and d is the amount the shifter 
must shift its first argument by. Depending on the logical condition 
c, the shift is either performed on input a before addition to b or the 
result of adding a and b is shifted after addition. The cyclic version 
of the circuit implementation is shown in Fig. 3. It is common to use 
tri-state buses instead of multiplexors in data paths, however the two 
are logically equivalent. 

Traditional formal techniques in logic synthesis, logic analysis, and 
timing analysis of combinational circuits have restricted themselves 
to acyclic combinational circuits, since they have been unable to 
handle the analysis of circuits with cycles. Stok laments the lack 

0278-0070/94$04.00 0 1994 IEEE 

Is there an equivalent acyclic circuit?

Is the cyclic circuit better? Yes: it’s smaller (assuming F and G are large).

1This is the same Sharad Malik of later SAT fame
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0278-0070/94$04.00 0 1994 IEEE 

Is there an equivalent acyclic circuit?
Is the cyclic circuit better? Yes: it’s smaller (assuming F and G are large).

1This is the same Sharad Malik of later SAT fame
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Synchronous feedback: various approaches

- -M
OI

1 Forbid feedback unless “broken” by Moore components (e.g.,
flip-flops or unit-delays): Simulink, Lustre, ...

2 Define the semantics of feedback using fixpoint theory: Esterel,
Ptolemy, ... [Malik, 1994, Shiple et al., 1996, Edwards and Lee, 2003]

3 Nondeterministic approach: up to the user to make sure model makes
sense: standard approach in verification languages, e.g., nuXmv.

In practice people follow 1. We will do the same in this course.
But note that nuXmv does not warn us in case of errors, so we have to be
careful ourselves!
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Why call this the nondeterministic approach?

MODULE identity(input)

VAR

output : boolean;

TRANS

output = input

MODULE inverter(input)

VAR

output : boolean;

TRANS

output = !input

MODULE main

VAR

gate1 : identity(gate2.output);

-- gate1 : inverter(gate2.output);

gate2 : inverter(gate1.output);

SPEC AG ( gate1.output )

This says:

id.out = id.in

inv.out = ¬inv.in

id.in = inv.out ∧ inv.in = id.out

Put it all together and simplify:

x = y ∧ y = ¬x

nuXmv issues a warning about “fair
states set” being empty.
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Why call this the nondeterministic approach?

MODULE identity(input)

VAR

output : boolean;

TRANS

output = input

MODULE inverter(input)

VAR

output : boolean;

TRANS

output = !input

MODULE main

VAR

-- gate1 : identity(gate2.output);

gate1 : inverter(gate2.output);

gate2 : inverter(gate1.output);

SPEC AG ( gate1.output )

If we use two inverters instead:

x = ¬y ∧ y = ¬x

nuXmv says the spec is false and gives
a counter-example.
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Justification for the nondeterministic approach

The fact that different communities take different approaches to the
synchronous feedback composition problem is not an accident:

Circuits, synchronous languages, control communities:
I Focus is building circuits, controllers: these are deterministic systems.
⇒ Determinism is extremely important.
⇒ Need compiler to catch errors that may result in nondeterministic

behavior.

Verification community:
I Focus is checking that property holds over all possible system

behaviors.
⇒ Systems are typically nondeterministic: they have many possible

behaviors (e.g., due to unknown inputs, environment behavior,
over-approximations, ...).

Having said that: must be careful of unintended effects during
composition.
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Synchronous parallel composition of FSMs

O1

M2

M1

-

- -

-

I1

I2 O2

Given two Mealy machines M1 and M2 with Mi = (Ii, Oi, Si, s
i
0, δi, λi) the

synchronous parallel composition of M1 and M2 is a new Mealy machine

M = (I1 × I2, O1 ×O2, S1 × S2, (s10, s20), δ, λ)

where

δ
(
(s1, s2), (a1, a2)

)
=

(
δ1(s1, a1), δ2(s2, a2)

)
λ
(
(s1, s2), (a1, a2)

)
=

(
λ1(s1, a1), λ2(s2, a2)

)
We will call this the monolithic definition. We will see why.

Quizzes: Similar to those for serial composition.
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Problem: the monolithic definition is not compositional!

These two block diagrams should be equivalent:

O1

M2

M1

-

- -

-

I1

I2 O2

=
O1 = I2 - -- M2

O2I1
M1

But if we use the monolithic definition, we cannot form the diagram to the
left.
Solution: non-monolithic Mealy machines
[Lublinerman and Tripakis, 2008, Lublinerman et al., 2009].

Note: problem does not arise if M1 is a Moore machine. Why?
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