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SYSTEM COMPOSITION
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Reminder: what is a system?

@ Our definition so far:
system = state + dynamics
@ But this definition is too monolithic

@ Most systems are structured hierarchically: system, subsystems,

subsubsystems, ...

@ Examples:
» The human body is made of organs, which are made of cells, which are made

of ...
Matter is made of molecules, which are made of atoms, which are made of
particles, which are made of ...
> A society is made of people interacting with each other
> In a highway there are several vehicles traveling
> A digital circuit is made of gates, flip-flops, wires, ...
> A piece of software is made of functions, classes, libraries, threads, ...
»
»

v

A distributed system is made of nodes communicating via a network
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Systems: non-monolithic definition:

System: atomic or composite system
Atomic system: state + dynamics (4 inputs/outputs)
Composite system: set of (sub)systems + composition

Dynamics: rules defining how state evolves in time

Composition: rules defining how subsystems interact
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Systems: non-monolithic definition:

System: atomic or composite system
Atomic system: state + dynamics (4 inputs/outputs)
Composite system: set of (sub)systems + composition

Dynamics: rules defining how state evolves in time

Composition: rules defining how subsystems interact

Composition typically ignored in classic system theory.
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System composition paradigms
Two major paradigms:

@ Synchronous composition:

» All sub-systems move together: in “lock-step”.
» Application: synchronous circuits, embedded control systems, ...

@ Asynchronous composition:

» Each sub-system moves “at its own pace”.

» Interleaving: only one sub-system makes a move at a time.

» Applications: concurrent software (processes, threads, ...),
non-synchronized distributed systems, asynchronous circuits, ...
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System composition paradigms
Two major paradigms:

@ Synchronous composition:

» All sub-systems move together: in “lock-step”.
» Application: synchronous circuits, embedded control systems, ...

@ Asynchronous composition:

» Each sub-system moves “at its own pace”.

> Interleaving: only one sub-system makes a move at a time.

» Applications: concurrent software (processes, threads, ...),
non-synchronized distributed systems, asynchronous circuits, ...

Common principle:

@ The state-space of the composite system is the (cartesian) product
of the state-spaces of its components (subsystems).
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Synchronous and asynchronous composition on transition
systems: intuitive drawing
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Example: synchronous composition in nuXmv

MODULE main
VAR
bit0 : counter_cell (TRUE);
bitl : counter_cell(bit0.carry_out);
bit2 : counter_cell(bitl.carry_out);
SPEC
AG AF bit2.carry_out

MODULE counter_cell(carry_in)

VAR

value : boolean;
ASSIGN

init(value) := FALSE;

next(value) := value xor carry_in;
DEFINE

carry_out := value & carry_in;

SMV model counter.smv taken from http://nusmv.fbk.eu/examples/examples.html
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http://nusmv.fbk.eu/examples/examples.html

Example: synchronous composition in nuXmv

MODULE main
VAR
bit0 : counter_cell (TRUE);
bitl : counter_cell(bit0.carry_out);
bit2 : counter_cell(bitl.carry_out);
SPEC
AG AF bit2.carry_out

MODULE counter_cell(carry_in)

VAR

value : boolean;
ASSIGN

init(value) := FALSE;

next(value) := value xor carry_in;
DEFINE

carry_out := value & carry_in;

Simulate it at home!

SMV model counter.smv taken from http://nusmv.fbk.eu/examples/examples.html

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Synchronous composition 8/29


http://nusmv.fbk.eu/examples/examples.html

Example: asynchronous composition in Spin

// a small example spin model
// Peterson’s solution to the mutual exclusion problem (1981)

bool turn, flag[2]; // the shared variables, booleans
byte ncrit; // nr of procs in critical section

active [2] proctype user() // two processes
{

assert(_pid == 0 || _pid == 1);
again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

ncrit++;
assert(ncrit == 1); // critical section
ncrit--;

flag[_pid]l = 0;
goto again
}
// analysis:
// $ spin -run peterson.pml
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Example: asynchronous composition in Spin

// a small example spin model
// Peterson’s solution to the mutual exclusion problem (1981)

bool turn, flag[2]; // the shared variables, booleans
byte ncrit; // nr of procs in critical section

active [2] proctype user() // two processes
{

assert(_pid == 0 || _pid == 1);
again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

ncrit++;
assert(ncrit == 1); // critical section
ncrit--;

flag[_pid]l = 0;

goto again
¥ Simulate it at home!
// analysis:
// $ spin -run peterson.pml
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Example: Petri nets

Semantics usually based on interleaving (asynchronous).

e
-
3
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Example: Petri nets

Semantics usually based on interleaving (asynchronous).

e
-
3

Simulate it at home!
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Naive formal definitions of synchronous and asynchronous
composition on transition systems

Consider two transition systems T'S; and T'Sz with T'S; = (S;, S§, R;).

The synchronous composition of 7'Sy and T'S> is a new transition system
TSy X T'So = (51 X Sa,55 x S5, Reyne)

where
Rsync = {((Sla 52)7 (8117812)) | (5178/1) € R A (8278,2) € R2}

The asynchronous composition of T'S1 and T'Ss is a new transition system

TS| TS2 = (S1 x S2,55 x S5, Rasyne)

where

Rasyne = {((s1,52), (s1,52)) | (s1,51) € Ri} U{((s1,52), (s1,52)) | (s2,52) € Ro}
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Naive formal definitions of synchronous and asynchronous
composition on transition systems

Consider two transition systems T'S; and T'Sz with T'S; = (S;, S§, R;).

The synchronous composition of 7'Sy and T'S> is a new transition system
TSy X T'So = (51 X Sa,55 x S5, Reyne)

where
Rsync = {((Sla 52)7 (8117812)) | (5178/1) € R A (8278,2) € R2}

The asynchronous composition of T'S1 and T'Ss is a new transition system
TS| TS2 = (S1 x S2,55 x S5, Rasyne)

where

Rasyne = {((s1,52), (s1,52)) | (s1,51) € Ri} U{((s1,52), (s1,52)) | (s2,52) € Ro}

Why are these definitions “naive”?
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Naive formal definitions of synchronous and asynchronous
composition on transition systems

Consider two transition systems T'S; and T'Sz with T'S; = (S;, S§, R;).

The synchronous composition of 7'Sy and T'S> is a new transition system
TSy X T'So = (51 X Sa,55 x S5, Reyne)

where
Rsync = {((51, 52)7 (8117812)) | (5178/1) € R A (8278,2) € R2}

The asynchronous composition of T'S1 and T'Ss is a new transition system
TS| TS2 = (S1 x S2,55 x S5, Rasyne)
where

Rasyne = {((s1,52), (s1,52)) | (s1,51) € Ri} U{((s1,52), (s1,52)) | (s2,52) € Ro}

Why are these definitions “naive”?
Because they don't model interaction (inputs, outputs, shared vars, ...).
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In practice

@ Every model-checker has their own language with its own composition
features and semantics.

» Shared variables

> Inputs and outputs

» Communication channels

» Labels and rendez-vous synchronization
>

@ The semantics is defined at the level of that language: given a
program in that language, that program defines a (big) transition
system (for the entire product system).

e Direct compositions at the level of transition systems (LTSs and
Kripke structures) also exist, e.g., [Milner, 1980, Hoare, 1985].

@ One needs to be careful with composition, as there are several
subtleties: we illustrate some in the next few slides.

@ Many more things to say about composition, not enough time. We
will return to the topic later when we talk about compositionality.
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SYNCHRONOUS COMPOSITION
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Block Diagrams

Engine Timing Model with Closed-Loop Control

canispeed

Jaive timing pioyins

We should be able to express
any such diagram using formal
composition operators.

‘Copright 19902008 The MatnWers, inc .

Controller Subsystem
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Block Diagrams

Engine Timing Model with Closed-Loop Control

canispeed

Jaive timing e

We should be able to express
any such diagram using formal
composition operators.

Basic primitives:

= Simulstoninputs

‘Copright 19902008 The MatnWers, inc .

@ Serial composition. Contrater subsystem

@ Parallel composition.

@ Feedback composition.
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Three basic composition primitives

Cl
Serial composition Parallel composition
ca [ ] oy
Ty — C — Y2

Feedback composition
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Synchronous serial composition of FSMs: formalization

I O =1 O
1 M, 1= 12 M, 2

Given two Mealy machines M; and Ms with
M; = (1;,04, i, 84, 65, M)

such that O; = I, the serial synchronous composition of M7 and M5 is a
new Mealy machine

M = (11702,81 X S9, (s(l),s%),é, )\)

where
o 5((s1,52),a) = (61(s1,a), 02(s2, M (s1,a)))
o A((s1,52),a) = Aa(s2,\i(s1,0a))
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Synchronous serial composition of FSMs: formalization
Quizzes:

@ Define another version of serial composition where the outputs of
both machines are observable to the external world, as shown below:

I O,=1 O
1 M, 1= 1o M, 2
Ox

@ Adapt the previous definitions to Moore machines.
@ Adapt the previous definitions to Moore — Mealy.
@ Adapt the previous definitions to Mealy — Moore.
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Synchronous serial composition of FSMs: formalization
Quizzes:

@ Define another version of serial composition where the outputs of
both machines are observable to the external world, as shown below:

I O, =1 O
1 M, 1 2 M, /2
O

Adapt the previous definitions to Moore machines.
Adapt the previous definitions to Moore — Mealy.
Adapt the previous definitions to Mealy — Moore.
Is the serial composition of two Mealy machines a Mealy machine?

Is the serial composition of two Moore machines a Moore machine?

Is the serial composition Moore — Mealy a Moore or a Mealy
machine?

@ Is the serial composition Mealy — Moore a Moore or a Mealy
machine?
Synchronous composition 17 /29



Synchronous feedback composition of FSMs

Does this make sense? For Moore machines? For Mealy machines?
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Synchronous feedback composition of FSMs

Does this make sense? For Moore machines? For Mealy machines?

Homework: Formalize feedback composition for Moore machines.
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Synchronous feedback for Mealy machines: not always well
defined

Models the equation:
T =

No solutions.
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Synchronous feedback for Mealy machines: not always well
defined

Models the equation:

Two solutions.
Which one to pick?
Ambiguous semantics.
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Synchronous feedback for Mealy machines: sometimes well
defined

o =

y=yANzx

Models the equation:

If x =0, then y = 0 (unique solution).
If z =1, then the equation becomes y = y (multiple solutions).
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Who cares?

Motivation: cyclic combinational circuits [Malik, 1994]:*

X X
CS1 0 / \ 1 OZC

L

Is there an equivalent acyclic circuit?

This is the same Sharad Malik of later SAT fame
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Who cares?

Motivation: cyclic combinational circuits [Malik, 1994]:*

X X
CS1 0 / \ 1 OZC

L

N\°__/

Is there an equivalent acyclic circuit?
Is the cyclic circuit better?

This is the same Sharad Malik of later SAT fame
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Who cares?

Motivation: cyclic combinational circuits [Malik, 1994]:*

X X
CS1 0 / \ 1 OZC

L

N\°__/

Is there an equivalent acyclic circuit?
Is the cyclic circuit better? Yes: it's smaller (assuming F' and G are large).

This is the same Sharad Malik of later SAT fame
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Synchronous feedback: various approaches

@ Forbid feedback unless “broken” by Moore components (e.g.,
flip-flops or unit-delays): Simulink, Lustre, ...

@ Define the semantics of feedback using fixpoint theory: Esterel,
Ptolemy, ... [Malik, 1994, Shiple et al., 1996, Edwards and Lee, 2003]

© Nondeterministic approach: up to the user to make sure model makes
sense: standard approach in verification languages, e.g., nuXmv.
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Synchronous feedback: various approaches

@ Forbid feedback unless “broken” by Moore components (e.g.,
flip-flops or unit-delays): Simulink, Lustre, ...

@ Define the semantics of feedback using fixpoint theory: Esterel,
Ptolemy, ... [Malik, 1994, Shiple et al., 1996, Edwards and Lee, 2003]

© Nondeterministic approach: up to the user to make sure model makes
sense: standard approach in verification languages, e.g., nuXmv.

In practice people follow 1. We will do the same in this course.
But note that nuXmv does not warn us in case of errors, so we have to be
careful ourselves!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Synchronous composition 23/29



Why call this the nondeterministic approach?

MODULE identity(input)
VAR

output : boolean;
TRANS

output = input

MODULE inverter (input)
VAR

output : boolean;
TRANS

output = !input

MODULE main

VAR

gatel : identity(gate2.output);

-- gatel : inverter(gate2.output);
gate2 : inverter(gatel.output);

SPEC AG ( gatel.output )
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Why call this the nondeterministic approach?

MODULE identity(input) This says:
VAR

output : boolean; id.out = id.in
TRANS

output = input
MODULE inverter (input) inv.out = =inv.in
VAR

output : boolean;

TRANS id.in = inv.out A inv.in = id.out
output = !input

MODULE main

VAR

gatel : identity(gate2.output);

-- gatel : inverter(gate2.output);
gate2 : inverter(gatel.output);

SPEC AG ( gatel.output )
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Why call this the nondeterministic approach?

MODULE identity(input)

VAR
output :

TRANS
output = input

boolean;

MODULE inverter (input)

VAR
output :

TRANS
output = !input

boolean;

MODULE main

VAR

gatel : identity(gate2.output);

-- gatel : inverter(gate2.output);
gate2 : inverter(gatel.output);

SPEC AG ( gatel.output )
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This says:

id.out = id.in

inv.out = —inv.in

id.in = inv.out A inv.in = id.out

Put it all together and simplify:

rT=yANy=—x
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Why call this the nondeterministic approach?

MODULE identity(input)

VAR
output :

TRANS
output = input

boolean;

MODULE inverter (input)

VAR
output :

TRANS
output = !input

boolean;

MODULE main

VAR

gatel : identity(gate2.output);

-- gatel : inverter(gate2.output);
gate2 : inverter(gatel.output);

SPEC AG ( gatel.output )
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This says:

id.out = id.in

inv.out = —inv.in

id.in = inv.out A inv.in = id.out

Put it all together and simplify:

rT=yANy=—x

nuXmv issues a warning about “fair

states set” being empty.

Synchronous composition

24 /29



Why call this the nondeterministic approach?

MODULE identity(input)
VAR

output : boolean;
TRANS

output = input

ME:DULE inverter (input) If we use two inverters instead:
VAR

output : boolean;
TRANS = YyNANy =

output = !input
nuXmv says the spec is false and gives

MODULE main a counter-example.
VAR

-- gatel : identity(gate2.output);

gatel : inverter(gate2.output);

gate2 : inverter(gatel.output);

SPEC AG ( gatel.output )
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Justification for the nondeterministic approach

The fact that different communities take different approaches to the
synchronous feedback composition problem is not an accident:

@ Circuits, synchronous languages, control communities:
» Focus is building circuits, controllers: these are deterministic systems.

= Determinism is extremely important.
= Need compiler to catch errors that may result in nondeterministic

behavior.

o Verification community:
» Focus is checking that property holds over all possible system

behaviors.
= Systems are typically nondeterministic: they have many possible

behaviors (e.g., due to unknown inputs, environment behavior,
over-approximations, ...).
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Justification for the nondeterministic approach

The fact that different communities take different approaches to the
synchronous feedback composition problem is not an accident:

@ Circuits, synchronous languages, control communities:
» Focus is building circuits, controllers: these are deterministic systems.

= Determinism is extremely important.
= Need compiler to catch errors that may result in nondeterministic

behavior.

o Verification community:
» Focus is checking that property holds over all possible system

behaviors.
= Systems are typically nondeterministic: they have many possible
behaviors (e.g., due to unknown inputs, environment behavior,

over-approximations, ...).

Having said that: must be careful of unintended effects during
composition.
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Synchronous parallel composition of FSMs

I 0
1 M, 1

1 0
2 M, 2

Given two Mealy machines M; and Mj with M; = (1;,0;, S;, sé,&i, i) the
synchronous parallel composition of M7 and Ms is a new Mealy machine

M = (I x I,01 x O3, 81 x Sa, (s, 53),9,\)

where
o 5((81,82), (al,ag)) = (51(81,@1),(52(82,@2))
] )\((81,82), (al,ag)) = ()\1(81,&1),)\2(82,(12))

We will call this the monolithic definition. We will see why.
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Synchronous parallel composition of FSMs

I 0
1 M, 1

1 0
2 M, 2

Given two Mealy machines M; and Mj with M; = (1;,0;, S;, sé,&i, i) the
synchronous parallel composition of M7 and Ms is a new Mealy machine

M = (I x I,01 x O3, 81 x Sa, (s, 53),9,\)

where
o 5((81,82), (al,ag)) = (51(81,&1),(52(82,@2))
] )\((81,82), (al,ag)) = ()\1(81,&1),)\2(82,&2))

We will call this the monolithic definition. We will see why.
Quizzes: Similar to those for serial composition.
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Problem: the monolithic definition is not compositional!

These two block diagrams should be equivalent:

But if we use the monolithic definition, we cannot form the diagram to the
left.

Solution: non-monolithic Mealy machines

[Lublinerman and Tripakis, 2008, Lublinerman et al., 2009].
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Problem: the monolithic definition is not compositional!

These two block diagrams should be equivalent:

M, J I O,=1 O,

But if we use the monolithic definition, we cannot form the diagram to the
left.

Solution: non-monolithic Mealy machines
[Lublinerman and Tripakis, 2008, Lublinerman et al., 2009].

Note: problem does not arise if M7 is a Moore machine. Why?
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