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Outline

Transition systems

Fundamental concepts: reachable states, deadlocks, pre/post,
invariants, inductive invariants

Labeled transition systems and Kripke structures

Transition systems as the underlying semantics of many formalisms

Modeling transition systems in Spin/Promela
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TRANSITION SYSTEMS
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Transition Systems

@ The fundamental mathematical model in modern system theory
@ A very basic model, capturing the essence of systems
@ Reminder: System = state + dynamics

o Transition system = states + transitions
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Transition Systems

@ The fundamental mathematical model in modern system theory
@ A very basic model, capturing the essence of systems
@ Reminder: System = state + dynamics

e Transition system = states + transitions (+ labels)
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Transition Systems: version 1 (without labels)

A tuple:
(S7 SO7R)

@ S: set of states (perhaps infinite)
@ Sy C S: set of initial states

@ R: transition relation
RCSxS
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Example: from an FSM to a transition system

Let's build the transition system for this Mealy machine:

00/0 00/0

01/1 11/1 01/1
10/2 11/2 10/2
Main idea:

@ In an FSM, the next state depends on the input.

o For different inputs, different transitions = non-determinism!
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Transition Systems: crucial features

@ Sets of states/transitions possibly infinite:

» This allows to model everything! Finite-state systems, infinite-state
systems, discrete systems, continuous systems, hybrid systems, ...

o Non-determinism:

» This allows to avoid having to model everything!
» E.g., omit modeling the inputs (abstraction).
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Example: transition system for a digital circuit

Figure from [Baier and Katoen, 2008]:

Xx——2—XOR] NoTh—Y
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Figure 2.2: Transition system representation of a simple hardware circuit.

How would the transition system look if we didn't include the input x in the state?
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Example: transition system for a program

var int x;

x :=0

while (x<100) {
X = x+1;

}
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Example: transition system for a program

var int x;

x :=0

while (x<100) {
X = x+1;

}

What if the loop condition was true instead?
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Example: transition system for a program

Figure from [Clarke et al., 2018]:

Var n:Integer initially n=10
lp : while (n>0) {
I n=n—1;

lz:}
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What if the program was this one?

var int x;
x := read_input();
while (x>1) {
if (x % 2=0)
x = x/2;
else
x = 3xx+1;
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What if the program was this one?

var int x;
x := read_input();
while (x>1) {

if (x % 2=0)

x = x/2;
else
x = 3xx+1;

Collatz conjecture: the above program terminates for every x.
Open problem in mathematics.
Nevertheless, the transition system is well-defined.
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What if we had a real program?

3 p————— o x

quarded_
Yo

malloc(sizeof (BOUND_TYPE *) * dimension;

) malloc(sizeof (BOUND_TYPE) * dimension);
i 3+

on(marx) = dime

t_trivial_matrix(mar:
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Transition systems: some fundamental concepts

Transition system: (.S, Sp, R), also called a state space (sometimes state
space refers only to .5).

@ We often write s — s instead of (s,s") € R.
Note that the notation s — s’ leaves R implicit.

e s’ is a successor of s, and s a predecessor of s'.

o A (finite or infinite) sequence of states/transitions:
$1 — S9 —» §3 — --- is called a trace.

@ A state s is reachable if there exists a trace
So — 81 — S9 — --- — &, such that sy € Sy.
Otherwise s is called unreachable.
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Transition systems: some fundamental concepts

Transition system: (.S, Sp, R), also called a state space (sometimes state
space refers only to .5).

@ We often write s — s instead of (s,s") € R.
Note that the notation s — s’ leaves R implicit.

e s’ is a successor of s, and s a predecessor of s'.

o A (finite or infinite) sequence of states/transitions:
$1 — S9 —» §3 — --- is called a trace.

@ A state s is reachable if there exists a trace
So — 81 — S9 — --- — &, such that sy € Sy.
Otherwise s is called unreachable.

@ Note: every initial state is reachable by definition. Why?
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Transition systems: some fundamental concepts

Transition system: (.S, Sp, R), also called a state space (sometimes state
space refers only to .5).

@ We often write s — s instead of (s,s") € R.
Note that the notation s — s’ leaves R implicit.

e s’ is a successor of s, and s a predecessor of s'.

o A (finite or infinite) sequence of states/transitions:
$1 — S9 —» §3 — --- is called a trace.

@ A state s is reachable if there exists a trace
So — 81 — S9 — --- — &, such that sy € Sy.
Otherwise s is called unreachable.

@ Note: every initial state is reachable by definition. Why?

Quiz: are all states in S reachable?
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Transition systems: some fundamental concepts

Transition system: (S, Sp, R).

o A state s is a deadlock if As' € S:s— s (i.e, if s has no
successor). Deadlocks are sometimes called trap states or just traps.

o A cycle is a trace s; — s9 — -+ — s, such that s, = s7.

@ Alasso is a trace s1 — S9 — -+ — Sp —> Spt1 —> -+ — Sy such
that s, = Sp41 — -+ = sy is @ cycle.
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Transition systems: some fundamental concepts

Transition system: (S, Sp, R).

@ The transition system is called deterministic if every state has at
most one successor:
Vs, s, s"€S:i(s—>sNns—=s)=s ="

@ Otherwise it is called non-deterministic.
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Transition systems: some fundamental concepts

Transition system: (S, Sp, R).

@ The transition system is called deterministic if every state has at
most one successor:

Vs, s',s"€S:i(s—>sNns—=5")=8=4"

@ Otherwise it is called non-deterministic.

@ Quiz: can deadlocks introduce non-determinism?
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Transition systems: some fundamental concepts

Transition system: (S, Sy, R).
Let X C S be a set of states.

@ One-step predecessors:
pre(X)={seS |3 € X:5—>5}
@ One-step successors:

post(X)={se€ S |3’ e X :5 — s}
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Transition systems: some fundamental concepts

Transition system: (S, Sp, R).
Let X C S be a set of states.

@ X is an invariant if every reachable state is in X

@ i.e,, an invariant is a superset of the set of reachable states

e X is inductive if post(X) C X

@ i.e.,, X is inductive if when starting at any state in X, we cannot
leave X

X is an inductive invariant if X is both an invariant and inductive
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Transition systems with labels

@ Kripke Structures: labels on states

@ Labeled Transition Systems: labels on transitions
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Kripke Structures
A Kripke structure is a tuple:

(AP, S, S0, L, R)

AP: set of atomic propositions (modeling state properties)
S: set of states (perhaps infinite)
So C S set of initial states

L: labeling function on states
L:S— 2%

2AP: the powerset (set of all subsets) of AP.
For p € AP and s € S: “s has property p" iff p € L(s).

@ R: transition relation
RCSxS
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Example: Kripke Structure

In a Kripke structure the labels are on the states. Each state is labeled with a set of
atomic propositions (those facts that are true when system is in that state).

In the example above, AP = {p, q}. Atomic proposition p holds at states s; and ss,
while atomic proposition ¢ holds at states s; and sa.
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Labeled Transition Systems

An LTS is a tuple:
(Z,S, SOvR)

Y. set of labels (modeling events, actions, ...)
S': set of states (perhaps infinite)
So C S: set of initial states

R: transition relation
RCSx(ZU{e}) xS

€ (sometimes 7): internal, unobservable action (used in composition,
simulation /bisimulation equivalences, ...).
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Example: LTS

In a LTS the labels are on the transitions:
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TRANSITION SYSTEMS: SEMANTIC FOUNDATIONS
OF OTHER FORMALISMS
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Transition systems of timed automata [Aiur and Dill, 1904]

Timed automaton = finite automaton + clocks
Clocks = continuous (real) variables measuring time

<
response, 5 < ¢ < 15 @

x > 15, error

request

z:=0
~(»)

cancel, x <5
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Transition systems of timed automata [Aur and Dill, 1994]

Timed automaton = finite automaton + clocks
Clocks = continuous (real) variables measuring time

<
response, 5 < ¢ < 15 @

x > 15, error

Transition system of timed automaton:

States: {(q1,2 =0),(q1,z =1),(q1,z =0.5),(q1,2 =0.1), ..., (g2, 2 = 0), ...}
Transitions: discrete (change ¢;) or continuous (change x, time elapses)

State space, transition space: infinite and uncountable!

request

z:=0
~(»)

cancel, x <5

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 24 /34



Transition systems of hybrid automata [aiur et al., 1905)

Hybrid automaton = finite automaton + continuous (real) variables
Continuous dynamics: differential equations
Example: thermostat:
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Transition systems of hybrid automata [aiur et al., 1905)

Hybrid automaton = finite automaton + continuous (real) variables
Continuous dynamics: differential equations
Example: thermostat:

Transition system of hybrid automaton:

State space: {on, off} x R

Transitions: discrete or continuous

Both state and transition spaces: infinite and uncountable!
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Transition system of a biological system
Modeling biological networks with Petri nets:
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(a) A simple, standard Petri net. The circles denote places, whereas the boxes denote transitions. The distribution of tokens
(black dots) in the places at a given time defines a marking. Transitions change the marking by removing a token from each
incoming arrow and adding a token to each outgoing arrow. (b) Simplified logical regulatory graph for the biosynthesis of
tryptophan in E. coli. Each node of the regulatory graph represents an active component: tryptophan (Trp), the active enzyme
(TrpE) and the active repressor (TrpR). The node marked by a rectangle accounts for the import of Trp from external medium.
All nodes are binary (that is, can take the value 0 or 1), except Trp, which is represented by a ternary variable (taking the values
0, 1, 2). Arrows represent activation and bars denote inhibition. (c) Petri net of the Trp regulatory network. Each of the four
components of b is represented by two complementary places and all the different situations that lead to a change of the state of
the system are modeled by one of the nine transitions.

Figure and text taken from [Fisher and Henzinger, 2007]. For more info on Petri nets, see [Petri and Reisig, 2008].

SSVS, Fall 20
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Challenge — Extra credit!

Can you think of a system that cannot be modeled as a transition system?
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Spin
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The model-checker Spin

Widespread explicit-state (enumerative) model checker
Created by Gerard J. Holzmann at Bell Labs in the 1980s
Open source, numerous extensions, continuously evolving
Two books [Holzmann, 1991, Holzmann, 2003], online course
ACM System Software Award 2001

Asynchronous systems (mostly)
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Modeling discrete transition systems in Spin

// a small example spin model
// Peterson’s solution to the mutual exclusion problem (1981)

bool turn, flag[2]; // the shared variables, booleans
byte ncrit; // nr of procs in critical section

active [2] proctype user() // two processes
{

assert(_pid == 0 || _pid == 1);
again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

ncrit++;
assert(ncrit == 1); // critical section
ncrit--;

flag[_pid]l = 0;
goto again
}
// analysis:
// $ spin -run peterson.pml
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Summary

@ Transition systems = our first formal model for systems!

» FSMs can be seen as special cases
» We will see later that transition systems cannot capture everything we
want (e.g., composition, fairness), but OK for now

e Many kinds of TSs: finite/infinite, discrete/continuous, labeled in
various ways, ...

@ Serve as the semantic foundation of many higher-level formalisms
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Notes

@ State machines, transition systems, nuXmv models, Spin models, ...:
these are not the same like your typical Java or Python programs!

o Why?
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Notes

@ State machines, transition systems, nuXmv models, Spin models, ...:
these are not the same like your typical Java or Python programs!

o Why?

@ The former are declarative and formal models of systems: they have
formal semantics, and they represent sets or trees of behaviors.

@ So what can | do with a model like the one above?

» Right now: simulation! E.g.:

* Load a model (in nuXmv, Spin, ...)

Set the initial state

Print the current state

Print the set of successor states

Choose a successor and move on step forward
* Repeat

* o % %

» You are “unfolding” paths in the transition system of the model: like
debugging your program with a debugger!

» Do this also by hand (paper and pencil)! You might get this in
homeworks, exams, etc.

» Later, we will also do: model-checking (verification), synthesis, ...
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