System Specification, Verification and Synthesis
(SSVS) — CS 4830/7485, Fall 2019

4: Formal System Modeling:
Transition Systems

Stavros Tripakis

Northeastern University
Khoury College of
Computer Sciences

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 1/34

Outline

Transition systems

Fundamental concepts: reachable states, deadlocks, pre/post,
invariants, inductive invariants

Labeled transition systems and Kripke structures

Transition systems as the underlying semantics of many formalisms

Modeling transition systems in Spin/Promela

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 2/34

TRANSITION SYSTEMS

Stavros Tripakis, Northeastern University SSVS, Fall 2019

Transition Systems

@ The fundamental mathematical model in modern system theory
@ A very basic model, capturing the essence of systems
@ Reminder: System = state + dynamics

o Transition system = states + transitions

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 4/34

Transition Systems

@ The fundamental mathematical model in modern system theory
@ A very basic model, capturing the essence of systems
@ Reminder: System = state + dynamics

e Transition system = states + transitions (+ labels)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 4/34

Transition Systems: version 1 (without labels)

A tuple:
(S7 SO7R)

@ S: set of states (perhaps infinite)
@ Sy C S: set of initial states

@ R: transition relation
RCSxS

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 5/34

Example: from an FSM to a transition system

Let's build the transition system for this Mealy machine:

00/0 00/0

01/1 11/1 01/1
10/2 11/2 10/2
Main idea:

@ In an FSM, the next state depends on the input.

o For different inputs, different transitions = non-determinism!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 6/34

Transition Systems: crucial features

@ Sets of states/transitions possibly infinite:

» This allows to model everything! Finite-state systems, infinite-state
systems, discrete systems, continuous systems, hybrid systems, ...

o Non-determinism:

» This allows to avoid having to model everything!
» E.g., omit modeling the inputs (abstraction).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 7/34

Example: transition system for a digital circuit

Figure from [Baier and Katoen, 2008]:

Xx——2—XOR] NoTh—Y

OR

_‘Ili {r} fxry} ©

Figure 2.2: Transition system representation of a simple hardware circuit.

How would the transition system look if we didn't include the input x in the state?

Stavros Tripakis, Northeastern University SSVS, Fall 2019

Example: transition system for a program

var int x;

x :=0

while (x<100) {
X = x+1;

}

Stavros Tripakis, Northeastern University SSVS, Fall 2019

Example: transition system for a program

var int x;

x :=0

while (x<100) {
X = x+1;

}

What if the loop condition was true instead?

Stavros Tripakis, Northeastern University SSVS, Fall 2019

Example: transition system for a program

Figure from [Clarke et al., 2018]:

Var n:Integer initially n=10
lp : while (n>0) {
I n=n—1;

lz:}

Stavros Tripakis, Northeastern University SSVS, Fall 2019

What if the program was this one?

var int x;
x := read_input();
while (x>1) {
if (x % 2=0)
x = x/2;
else
x = 3xx+1;

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 11/34

What if the program was this one?

var int x;
x := read_input();
while (x>1) {

if (x % 2=0)

x = x/2;
else
x = 3xx+1;

Collatz conjecture: the above program terminates for every x.
Open problem in mathematics.
Nevertheless, the transition system is well-defined.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 11/34

What if we had a real program?

3 p————— o x

quarded_
Yo

malloc(sizeof (BOUND_TYPE *) * dimension;

) malloc(sizeof (BOUND_TYPE) * dimension);
i 3+

on(marx) = dime

t_trivial_matrix(mar:

Stavros Tripakis, Northeastern 81% Transition systems 12 /34

Transition systems: some fundamental concepts

Transition system: (.S, Sp, R), also called a state space (sometimes state
space refers only to .5).

@ We often write s — s instead of (s,s") € R.
Note that the notation s — s’ leaves R implicit.

e s’ is a successor of s, and s a predecessor of s'.

o A (finite or infinite) sequence of states/transitions:
$1 — S9 —» §3 — --- is called a trace.

@ A state s is reachable if there exists a trace
So — 81 — S9 — --- — &, such that sy € Sy.
Otherwise s is called unreachable.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 13 /34

Transition systems: some fundamental concepts

Transition system: (.S, Sp, R), also called a state space (sometimes state
space refers only to .5).

@ We often write s — s instead of (s,s") € R.
Note that the notation s — s’ leaves R implicit.

e s’ is a successor of s, and s a predecessor of s'.

o A (finite or infinite) sequence of states/transitions:
$1 — S9 —» §3 — --- is called a trace.

@ A state s is reachable if there exists a trace
So — 81 — S9 — --- — &, such that sy € Sy.
Otherwise s is called unreachable.

@ Note: every initial state is reachable by definition. Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 13 /34

Transition systems: some fundamental concepts

Transition system: (.S, Sp, R), also called a state space (sometimes state
space refers only to .5).

@ We often write s — s instead of (s,s") € R.
Note that the notation s — s’ leaves R implicit.

e s’ is a successor of s, and s a predecessor of s'.

o A (finite or infinite) sequence of states/transitions:
$1 — S9 —» §3 — --- is called a trace.

@ A state s is reachable if there exists a trace
So — 81 — S9 — --- — &, such that sy € Sy.
Otherwise s is called unreachable.

@ Note: every initial state is reachable by definition. Why?

Quiz: are all states in S reachable?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 13 /34

Transition systems: some fundamental concepts

Transition system: (S, Sp, R).

o A state s is a deadlock if As' € S:s— s (i.e, if s has no
successor). Deadlocks are sometimes called trap states or just traps.

o A cycle is a trace s; — s9 — -+ — s, such that s, = s7.

@ Alasso is a trace s1 — S9 — -+ — Sp —> Spt1 —> -+ — Sy such
that s, = Sp41 — -+ = sy is @ cycle.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 14 /34

Transition systems: some fundamental concepts

Transition system: (S, Sp, R).

@ The transition system is called deterministic if every state has at
most one successor:
Vs, s, s"€S:i(s—>sNns—=s)=s ="

@ Otherwise it is called non-deterministic.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 15 /34

Transition systems: some fundamental concepts

Transition system: (S, Sp, R).

@ The transition system is called deterministic if every state has at
most one successor:

Vs, s',s"€S:i(s—>sNns—=5")=8=4"

@ Otherwise it is called non-deterministic.

@ Quiz: can deadlocks introduce non-determinism?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 15 /34

Transition systems: some fundamental concepts

Transition system: (S, Sy, R).
Let X C S be a set of states.

@ One-step predecessors:
pre(X)={seS |3 € X:5—>5}
@ One-step successors:

post(X)={se€ S |3’ e X :5 — s}

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 16 /34

Transition systems: some fundamental concepts

Transition system: (S, Sp, R).
Let X C S be a set of states.

@ X is an invariant if every reachable state is in X

@ i.e,, an invariant is a superset of the set of reachable states

e X is inductive if post(X) C X

@ i.e.,, X is inductive if when starting at any state in X, we cannot
leave X

X is an inductive invariant if X is both an invariant and inductive

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 17 /34

Transition systems with labels

@ Kripke Structures: labels on states

@ Labeled Transition Systems: labels on transitions

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 18 /34

Kripke Structures
A Kripke structure is a tuple:

(AP, S, S0, L, R)

AP: set of atomic propositions (modeling state properties)
S: set of states (perhaps infinite)
So C S set of initial states

L: labeling function on states
L:S— 2%

2AP: the powerset (set of all subsets) of AP.
For p € AP and s € S: “s has property p" iff p € L(s).

@ R: transition relation
RCSxS

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 19 /34

Example: Kripke Structure

In a Kripke structure the labels are on the states. Each state is labeled with a set of
atomic propositions (those facts that are true when system is in that state).

In the example above, AP = {p, q}. Atomic proposition p holds at states s; and ss,
while atomic proposition ¢ holds at states s; and sa.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 20/34

Labeled Transition Systems

An LTS is a tuple:
(Z,S, SOvR)

Y. set of labels (modeling events, actions, ...)
S': set of states (perhaps infinite)
So C S: set of initial states

R: transition relation
RCSx(ZU{e}) xS

€ (sometimes 7): internal, unobservable action (used in composition,
simulation /bisimulation equivalences, ...).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 21/34

Example: LTS

In a LTS the labels are on the transitions:

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 22/34

TRANSITION SYSTEMS: SEMANTIC FOUNDATIONS
OF OTHER FORMALISMS

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 23/34

Transition systems of timed automata [Aiur and Dill, 1904]

Timed automaton = finite automaton + clocks
Clocks = continuous (real) variables measuring time

<
response, 5 < ¢ < 15 @

x > 15, error

request

z:=0
~(»)

cancel, x <5

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 24 /34

Transition systems of timed automata [Aur and Dill, 1994]

Timed automaton = finite automaton + clocks
Clocks = continuous (real) variables measuring time

<
response, 5 < ¢ < 15 @

x > 15, error

Transition system of timed automaton:

States: {(q1,2 =0),(q1,z =1),(q1,z =0.5),(q1,2 =0.1), ..., (g2, 2 = 0), ...}
Transitions: discrete (change ¢;) or continuous (change x, time elapses)

State space, transition space: infinite and uncountable!

request

z:=0
~(»)

cancel, x <5

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 24 /34

Transition systems of hybrid automata [aiur et al., 1905)

Hybrid automaton = finite automaton + continuous (real) variables
Continuous dynamics: differential equations
Example: thermostat:

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 25/34

Transition systems of hybrid automata [aiur et al., 1905)

Hybrid automaton = finite automaton + continuous (real) variables
Continuous dynamics: differential equations
Example: thermostat:

Transition system of hybrid automaton:

State space: {on, off} x R

Transitions: discrete or continuous

Both state and transition spaces: infinite and uncountable!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 25/34

Transition system of a biological system
Modeling biological networks with Petri nets:

a p2 c T T

o 4, 2 t ext lext
- / o3 A//‘12 I Ix
\ 2 3 t = =
i——Q@—Hi 4 5 t t 5 A
2
2,
b TpE | _TipE Tip Tip
TP, TrpR 5 2
2
1(JZ)1 B B B B B
1 w
—_
™. TE —
1 TroR TroR

(a) A simple, standard Petri net. The circles denote places, whereas the boxes denote transitions. The distribution of tokens
(black dots) in the places at a given time defines a marking. Transitions change the marking by removing a token from each
incoming arrow and adding a token to each outgoing arrow. (b) Simplified logical regulatory graph for the biosynthesis of
tryptophan in E. coli. Each node of the regulatory graph represents an active component: tryptophan (Trp), the active enzyme
(TrpE) and the active repressor (TrpR). The node marked by a rectangle accounts for the import of Trp from external medium.
All nodes are binary (that is, can take the value 0 or 1), except Trp, which is represented by a ternary variable (taking the values
0, 1, 2). Arrows represent activation and bars denote inhibition. (c) Petri net of the Trp regulatory network. Each of the four
components of b is represented by two complementary places and all the different situations that lead to a change of the state of
the system are modeled by one of the nine transitions.

Figure and text taken from [Fisher and Henzinger, 2007]. For more info on Petri nets, see [Petri and Reisig, 2008].

SSVS, Fall 20

Stavros Tripakis, Nol Transition systems 26 /34

Challenge — Extra credit!

Can you think of a system that cannot be modeled as a transition system?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 27 /34

Spin

Stavros Tripakis, Northeastern University SSVS, Fall 2019

The model-checker Spin

Widespread explicit-state (enumerative) model checker
Created by Gerard J. Holzmann at Bell Labs in the 1980s
Open source, numerous extensions, continuously evolving
Two books [Holzmann, 1991, Holzmann, 2003], online course
ACM System Software Award 2001

Asynchronous systems (mostly)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 29/34

Modeling discrete transition systems in Spin

// a small example spin model
// Peterson’s solution to the mutual exclusion problem (1981)

bool turn, flag[2]; // the shared variables, booleans
byte ncrit; // nr of procs in critical section

active [2] proctype user() // two processes
{

assert(_pid == 0 || _pid == 1);
again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

ncrit++;
assert(ncrit == 1); // critical section
ncrit--;

flag[_pid]l = 0;
goto again
}
// analysis:
// $ spin -run peterson.pml

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 30/34

Summary

@ Transition systems = our first formal model for systems!

» FSMs can be seen as special cases
» We will see later that transition systems cannot capture everything we
want (e.g., composition, fairness), but OK for now

e Many kinds of TSs: finite/infinite, discrete/continuous, labeled in
various ways, ...

@ Serve as the semantic foundation of many higher-level formalisms

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 31/34

Notes

@ State machines, transition systems, nuXmv models, Spin models, ...:
these are not the same like your typical Java or Python programs!

o Why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 32/34

Notes

@ State machines, transition systems, nuXmv models, Spin models, ...:
these are not the same like your typical Java or Python programs!

o Why?

@ The former are declarative and formal models of systems: they have
formal semantics, and they represent sets or trees of behaviors.

@ So what can | do with a model like the one above?

» Right now: simulation! E.g.:

* Load a model (in nuXmv, Spin, ...)

Set the initial state

Print the current state

Print the set of successor states

Choose a successor and move on step forward
* Repeat

* o % %

» You are “unfolding” paths in the transition system of the model: like
debugging your program with a debugger!

» Do this also by hand (paper and pencil)! You might get this in
homeworks, exams, etc.

» Later, we will also do: model-checking (verification), synthesis, ...

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 32/34

Bibliography |

@ Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P., Nicollin, X., Olivero, A.,
Sifakis, J., and Yovine, S. (1995).
The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3-34.

Alur, R. and Dill, D. (1994).
A theory of timed automata.
Theoretical Computer Science, 126:183-235.

Baier, C. and Katoen, J.-P. (2008).
Principles of Model Checking.
MIT Press.

Clarke, E., Grumberg, O., and Peled, D. (2000).
Model Checking.
MIT Press.

Clarke, E. M., Henzinger, T. A., Veith, H., and Bloem, R. (2018).
Handbook of Model Checking.
Springer.

B B = =

Fisher, J. and Henzinger, T. A. (2007).
Executable cell biology.
Nature Biotechnology, 25(11).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Transition systems 33/34

Bibliography Il

Holzmann, G. (1991).
Design and Validation of Computer Protocols.
Prentice Hall.

Holzmann, G. (2003).
The Spin Model Checker.
Addison-Wesley.

Petri, C. A. and Reisig, W. (2008).
Petri net.
Scholarpedia, 3(4).

Stavros Tripakis, Northeastern University SSVS, Fall 2019

