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Outline

Transition systems

Fundamental concepts: reachable states, deadlocks, pre/post,
invariants, inductive invariants

Labeled transition systems and Kripke structures

Transition systems as the underlying semantics of many formalisms

Modeling transition systems in Spin/Promela
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TRANSITION SYSTEMS
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Transition Systems

The fundamental mathematical model in modern system theory

A very basic model, capturing the essence of systems

Reminder: System = state + dynamics

Transition system = states + transitions

(+ labels)
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Transition Systems: version 1 (without labels)

A tuple:
(S, S0, R)

S: set of states (perhaps infinite)

S0 ⊆ S: set of initial states

R: transition relation
R ⊆ S × S
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Example: from an FSM to a transition system

Let’s build the transition system for this Mealy machine:

s0 s1

00/0 00/0

01/1

10/2

11/1 01/1

10/211/2

Main idea:

In an FSM, the next state depends on the input.

For different inputs, different transitions ⇒ non-determinism!
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Transition Systems: crucial features

Sets of states/transitions possibly infinite:
I This allows to model everything! Finite-state systems, infinite-state

systems, discrete systems, continuous systems, hybrid systems, ...

Non-determinism:
I This allows to avoid having to model everything!
I E.g., omit modeling the inputs (abstraction).
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Example: transition system for a digital circuit

Figure from [Baier and Katoen, 2008]:Transition Systems 27
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Figure 2.2: Transition system representation of a simple hardware circuit.

where ⊕ stands for exclusive or (XOR, or parity function). The register evaluation changes
according to the circuit function

δr = x ∨ r .
Note that once the register evaluation is [r = 1], r keeps that value. Under the initial
register evaluation [r = 0], the circuit behavior is modeled by the transition system TS
with state space

S = Eval(x, r)

where Eval(x, r) stands for the set of evaluations of input variable x and register variable
r. The initial states of TS are I = { 〈x = 0, r = 0〉, 〈x = 1, r = 0〉 }. Note that there are
two initial states as we do not make any assumption about the initial value of the input
bit x.

The set of actions is irrelevant and omitted here. The transitions result directly from the
functions λy and δr. For instance, 〈x = 0, r = 1〉−→〈x = 0, r = 1〉 if the next input bit
equals 0, and 〈x = 0, r = 1〉−→〈x = 1, r = 1〉 if the next input bit is 1.

It remains to consider the labeling L. Using the set of atomic propositions AP = {x, y, r },
then, e.g., the state 〈x = 0, r = 1〉 is labeled with { r }. It is not labeled with y since the
circuit function ¬(x⊕ r) results in the value 0 for this state. For state 〈x = 1, r = 1〉 we
obtain L(〈x = 1, r = 1〉) = {x, r, y }, as λy yields the value 1. Accordingly, we obtain:
L(〈x = 0, r = 0〉) = { y }, and L(〈x = 1, r = 0〉) = {x }. The resulting transition system
(with this labeling) is depicted in the right part of Figure 2.2.

Alternatively, using the set of propositions AP′ = {x, y } – the register evaluations are
assumed to be “invisible” – one obtains:

L′(〈x = 0, r = 0〉) = { y } L′(〈x = 0, r = 1〉) = ∅
L′(〈x = 1, r = 0〉) = {x } L′(〈x = 1, r = 1〉) = {x, y }

The propositions in AP′ suffice to formalize, e.g., the property “the output bit y is set
infinitely often”. Properties that refer to the register r are not expressible.

How would the transition system look if we didn’t include the input x in the state?
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Example: transition system for a program

var int x;

x := 0

while (x<100) {

x := x+1;

}

What if the loop condition was true instead?
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Example: transition system for a program

Figure from [Clarke et al., 2018]:
Temporal Logic and Fair Discrete Systems 7

Var n:Integer initially n = 10
l0 : while (n> 0) {
l1 : n = n−1;
l2 : }
l3 :

Fig. 1 A simple loop.

Lemma 2. A sequence σ ∈ (ΣV1∪V2)
ω is a computation of D1 |||D2 iff σ ⇓V1 is a

computation of D1 and σ ⇓V2 is a computation of D2.

Proof is omitted.
The asynchronous parallel composition D1‖D2 of D1 and D2 is the FDS defined

as follows.
D1‖D2 = 〈V1∪V2,θ1∧θ2,ρ,J1∪J2,C1∪C2〉,

where ρ = (ρ1 ∧ keep(V2 \V1))∨ (ρ2 ∧ keep(V1 \V2)). A transition of the asyn-
chronous parallel composition is a transition of one of the systems preserving un-
changed the variables of the other. A computation of the asynchronous parallel com-
position, when restricted to the variables in one of the systems is not necessarily a
computation of that system. For example, if the sets of variables of the two systems
intersect and system one modifies the variables of system two, the projection of the
computation on the variables of system two could include changes not allowed by
the transition of system two.

2.3 Representing Programs

We show how FDS can represent programs. We do not formally define a program-
ming language, however, the meaning of commands and constructs will be clear
from the translation to FDS. A more thorough discussion of representation of pro-
grams is given in Chap. 3. FDSs are a simple variant of the State Transition Systems
(STS) defined in that chapter.

Consider for example the program in Fig. 1. It can be represented as an FDS
with the variables π and n, where π is the program location variable ranging over
{l0, . . . , l3} and n is an integer that starts as 10. Formally, D = 〈{π,n},θ ,ρ,J ,C 〉,
where J = /0, C = /0, and θ and ρ are as follows.

θ : π = l0∧n = 10
ρ : (π = l0∧n> 0∧π ′ = l1∧n′ = n) ∨ (π = l0∧n≤ 0∧π ′ = l3∧n′ = n) ∨

(π = l1∧π ′ = l2∧n′ = n−1) ∨ (π = l2∧π ′ = l0∧n′ = n) ∨
(π ′ = π ∧n′ = n)

For software programs, we always assume that the transition relation ρ includes
as a disjunct the option to stutter, that is, do nothing. This allows modeling the
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What if the program was this one?

var int x;

x := read_input();

while (x>1) {

if (x % 2 = 0)

x := x/2;

else

x := 3*x+1;

}

Collatz conjecture: the above program terminates for every x.
Open problem in mathematics.
Nevertheless, the transition system is well-defined.
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What if we had a real program?
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Transition systems: some fundamental concepts

Transition system: (S, S0, R), also called a state space (sometimes state
space refers only to S).

We often write s→ s′ instead of (s, s′) ∈ R.
Note that the notation s→ s′ leaves R implicit.

s′ is a successor of s, and s a predecessor of s′.

A (finite or infinite) sequence of states/transitions:
s1 → s2 → s3 → · · · is called a trace.

A state s is reachable if there exists a trace
s0 → s1 → s2 → · · · → s, such that s0 ∈ S0.
Otherwise s is called unreachable.

Note: every initial state is reachable by definition. Why?

Quiz: are all states in S reachable?
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Transition systems: some fundamental concepts

Transition system: (S, S0, R).

A state s is a deadlock if 6 ∃s′ ∈ S : s→ s′ (i.e., if s has no
successor). Deadlocks are sometimes called trap states or just traps.

A cycle is a trace s1 → s2 → · · · → sn such that sn = s1.

A lasso is a trace s1 → s2 → · · · → sn → sn+1 → · · · → sm such
that sn → sn+1 → · · · → sm is a cycle.
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Transition systems: some fundamental concepts

Transition system: (S, S0, R).

The transition system is called deterministic if every state has at
most one successor:

∀s, s′, s′′ ∈ S : (s→ s′ ∧ s→ s′′)⇒ s′ = s′′

Otherwise it is called non-deterministic.

Quiz: can deadlocks introduce non-determinism?
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Transition systems: some fundamental concepts

Transition system: (S, S0, R).
Let X ⊆ S be a set of states.

One-step predecessors:

pre(X) = {s ∈ S | ∃s′ ∈ X : s→ s′}

One-step successors:

post(X) = {s ∈ S | ∃s′ ∈ X : s′ → s}
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Transition systems: some fundamental concepts

Transition system: (S, S0, R).
Let X ⊆ S be a set of states.

X is an invariant if every reachable state is in X

i.e., an invariant is a superset of the set of reachable states

X is inductive if post(X) ⊆ X
i.e., X is inductive if when starting at any state in X, we cannot
leave X

X is an inductive invariant if X is both an invariant and inductive
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Transition systems with labels

Kripke Structures: labels on states

Labeled Transition Systems: labels on transitions
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Kripke Structures

A Kripke structure is a tuple:

(AP, S, S0, L,R)

AP: set of atomic propositions (modeling state properties)

S: set of states (perhaps infinite)

S0 ⊆ S: set of initial states

L: labeling function on states

L : S → 2AP

2AP: the powerset (set of all subsets) of AP.
For p ∈ AP and s ∈ S: “s has property p” iff p ∈ L(s).

R: transition relation
R ⊆ S × S
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Example: Kripke Structure

In a Kripke structure the labels are on the states. Each state is labeled with a set of
atomic propositions (those facts that are true when system is in that state).

In the example above, AP = {p, q}. Atomic proposition p holds at states s1 and s3,
while atomic proposition q holds at states s1 and s2.
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Labeled Transition Systems

An LTS is a tuple:
(Σ, S, S0, R)

Σ: set of labels (modeling events, actions, ...)

S: set of states (perhaps infinite)

S0 ⊆ S: set of initial states

R: transition relation

R ⊆ S × (Σ ∪ {ε})× S

ε (sometimes τ): internal, unobservable action (used in composition,
simulation/bisimulation equivalences, ...).
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Example: LTS
In a LTS the labels are on the transitions:
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TRANSITION SYSTEMS: SEMANTIC FOUNDATIONS
OF OTHER FORMALISMS
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Transition systems of timed automata [Alur and Dill, 1994]

Timed automaton = finite automaton + clocks
Clocks = continuous (real) variables measuring time

q0 q1 q2

q3

request
x := 0

cancel, x ≤ 5

response, 5 < x ≤ 15

x > 15, error

Transition system of timed automaton:
States: {(q1, x = 0), (q1, x = 1), (q1, x = 0.5), (q1, x = 0.1), ..., (q2, x = 0), ...}
Transitions: discrete (change qi) or continuous (change x, time elapses)
State space, transition space: infinite and uncountable!
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Transition systems of hybrid automata [Alur et al., 1995]

Hybrid automaton = finite automaton + continuous (real) variables
Continuous dynamics: differential equations
Example: thermostat:

off

ẋ = −0.1x

on

ẋ = 5− 0.1x

x ≤ 19

x ≥ 21

Transition system of hybrid automaton:
State space: {on, off} × R
Transitions: discrete or continuous
Both state and transition spaces: infinite and uncountable!
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Transition system of a biological system

Modeling biological networks with Petri nets:

NATURE BIOTECHNOLOGY  VOLUME 25   NUMBER 11   NOVEMBER 2007 1243

A hierarchical structure allows one to view a system at different levels 
of detail (e.g., whole organism, tissues, cells; Fig. 4a). Models of this 
kind have been used to model T-cell activation and differentiation8,9, 
as well as C. elegans development10,11,13,14.

Interacting state machine models are particularly suitable for 
describing mechanistic models of biological systems that are well 
understood qualitatively. Such models do not require quantitative data 
relating to the number of molecules and reaction rates. They allow the 
creation of abstract high-level models and the application of strong 
analysis tools such as model checking. The possibility of hierarchical 
structuring is extremely useful in cases where the behavior is distrib-
uted over many cells and where multiple copies of the same process 
are executed in parallel.

There are many different languages to express interacting state 
machine models. Using the visual language (Box 2) of Statecharts15, 

Kam et al. developed a model that described the various stages in 
the life span of a T-cell and the transitions between these stages8. 
The initial T-cell model was followed by a more extensive animated 
model of T-cell differentiation in the thymus9. A major advantage of 
Statecharts compared to other state-based formalisms, such as Reactive 
Modules16, is the fact that this language is visual. The user can draw 
states and state changes and the tool automatically creates an execut-
able model, enabling relatively easy and intuitive programming even 
for nonspecialists. Efroni et al. used reactive animation (Box 2)9,53, 
where a reactive system drives the display of animation software to 
visualize the model. These studies were followed by ongoing efforts to 
model C. elegans development10,11,13,14, which used Statecharts and a 
visual language called Live Sequence Charts54 and more recently a lan-
guage called Reactive Modules16 that supports compositional analysis 
techniques (Box 2).
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Figure 2  Boolean networks. (a) An isolated part of a Boolean network representing the behavior of one substance. Arrows indicates activation and bars 
denote inhibition. The next value of the substance is determined by the sum of activations minus the sum of inhibitions. In this example, if we denote the 
values of a1, a2, a3 and a4 at time t by a1, a2, a3 and a4, then the value of substance b at time t + 1 will be 1 if a1 + a2 – (a3 + a4) is positive and 0 otherwise. 
Sometimes arrows are given strengths and then we take the sum of strengths of activation arrows whose source is active (that is, set to 1) minus the sum of 
strengths of inhibition arrows whose source is active. (b) Simplified cell-cycle network of the budding yeast. (c) Analysis of the yeast cell-cycle network using 
Boolean networks. Each dot represents a state of the proteins in the system, where each of the proteins is either active or inactive. Each arrow represents 
a transition from one state to another. The blue transitions correspond to the cell-cycle sequence. Starting from any point in the graph, in order to avoid 
reaching the stable state at the bottom of the diagram, one would have to continuously perturb the system. Hence, the normal behavior converges fast to the 
stable state at the bottom of the diagram, corresponding to the G1 stationary state in which the cell awaits a signal that will start another round of division. 
This demonstrates that the yeast cell-cycle regulatory network is stable and robust for its function. Figures reproduced with permission from ref. 34.
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(a) A simple, standard Petri net. The circles denote places, whereas the boxes denote transitions. The distribution of tokens
(black dots) in the places at a given time defines a marking. Transitions change the marking by removing a token from each
incoming arrow and adding a token to each outgoing arrow. (b) Simplified logical regulatory graph for the biosynthesis of
tryptophan in E. coli. Each node of the regulatory graph represents an active component: tryptophan (Trp), the active enzyme
(TrpE) and the active repressor (TrpR). The node marked by a rectangle accounts for the import of Trp from external medium.
All nodes are binary (that is, can take the value 0 or 1), except Trp, which is represented by a ternary variable (taking the values
0, 1, 2). Arrows represent activation and bars denote inhibition. (c) Petri net of the Trp regulatory network. Each of the four
components of b is represented by two complementary places and all the different situations that lead to a change of the state of
the system are modeled by one of the nine transitions.
Figure and text taken from [Fisher and Henzinger, 2007]. For more info on Petri nets, see [Petri and Reisig, 2008].
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Challenge – Extra credit!

Can you think of a system that cannot be modeled as a transition system?
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Spin
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The model-checker Spin

Widespread explicit-state (enumerative) model checker

Created by Gerard J. Holzmann at Bell Labs in the 1980s

Open source, numerous extensions, continuously evolving

Two books [Holzmann, 1991, Holzmann, 2003], online course

ACM System Software Award 2001

Asynchronous systems (mostly)
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Modeling discrete transition systems in Spin

// a small example spin model

// Peterson’s solution to the mutual exclusion problem (1981)

bool turn, flag[2]; // the shared variables, booleans

byte ncrit; // nr of procs in critical section

active [2] proctype user() // two processes

{

assert(_pid == 0 || _pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

ncrit++;

assert(ncrit == 1); // critical section

ncrit--;

flag[_pid] = 0;

goto again

}

// analysis:

// $ spin -run peterson.pml
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Summary

Transition systems = our first formal model for systems!
I FSMs can be seen as special cases
I We will see later that transition systems cannot capture everything we

want (e.g., composition, fairness), but OK for now

Many kinds of TSs: finite/infinite, discrete/continuous, labeled in
various ways, ...

Serve as the semantic foundation of many higher-level formalisms
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Notes
State machines, transition systems, nuXmv models, Spin models, ...:
these are not the same like your typical Java or Python programs!

Why?

The former are declarative and formal models of systems: they have
formal semantics, and they represent sets or trees of behaviors.

So what can I do with a model like the one above?
I Right now: simulation! E.g.:

F Load a model (in nuXmv, Spin, ...)
F Set the initial state
F Print the current state
F Print the set of successor states
F Choose a successor and move on step forward
F Repeat

I You are “unfolding” paths in the transition system of the model: like
debugging your program with a debugger!

I Do this also by hand (paper and pencil)! You might get this in
homeworks, exams, etc.

I Later, we will also do: model-checking (verification), synthesis, ...
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