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Finite State Machines (FSMs)

Moore and Mealy machines

Modeling digital circuits as FSMs

State machines in nuXmv

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 2 / 31



Reminder: what is a system? (so far)

System: state + dynamics (+ inputs/outputs)

Dynamics: rules defining how state evolves in time
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STATE MACHINES
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Finite State Machines of type Moore and Mealy
A finite state machine (FSM) is a tuple

(I,O, S, s0, δ, λ)

I: finite set of inputs

O: finite set of outputs

S: finite set of states

s0 ∈ S: initial state

δ : S × I → S: transition function
λ: output function

I If the FSM is of type Moore:

λ : S → O

I If the FSM is of type Mealy:

λ : S × I → O
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Parenthesis: Basic Logic and Math Notations
Sets: e.g., A = {1, 2, 3}, B = {0, 2, 4, ...}, C = {n | n is a non-negative even number}
Set membership: x ∈ A: x is an element of set A; x 6∈ A: x is not an element of A

x 6∈ A ≡ ¬(x ∈ A)
Boolean logic: φ1 ∧ φ2 (conjunction, “φ1 and φ2”), φ1 ∨ φ2 (disjunction, “φ1 or φ2”),
¬φ (negation, “not φ”), φ1 ⇒ φ2 (implication, “if φ1 then φ2”, also written φ1 → φ2),
≡ (equivalence, “φ1 iff φ2”, also written φ1 ⇔ φ2)

Subset: A ⊆ B: every element of A is also an element of B, i.e., ∀x : x ∈ A⇒ x ∈ B
First-order logic: ∀x : φ (universal quantification, “φ holds for any x”), ∃x : φ (existential
quantification, “φ holds for some x”)

Set equality: A = B iff A ⊆ B and B ⊆ A
Strict subset: A ⊂ B iff A ⊆ B and A 6= B

Set operations: A ∪B (union), A ∩B (intersection), A (complement), A−B or A \B
(set difference), A×B (cartesian product)

A ∪B = {x | x ∈ A ∨ x ∈ B}
A ∩B = {x | x ∈ A ∧ x ∈ B}
A = {x | x 6∈ A} = U −A (assuming some universe U)

A−B = {x | x ∈ A ∧ x ∈ B} = A ∩B
A×B = {(x, y) | x ∈ A ∧ y ∈ B}
(Binary) Relations: R ⊆ A×B
Functions: f : A→ B, a special kind of relation f ⊆ A×B such that for every x ∈ A
there is at most one y ∈ B such that (x, y) ∈ f ; this y is written f(x)
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Example: a Moore Machine

A Moore machine

States: {q0, q1, q2, q3}

Initial state: q0

Input symbols: {x,y,z}

Output symbols: {a,b,c}

How are the output and transition functions defined?

1
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Example: a Mealy Machine

States = {s0, s1, s2}, initial state = s0
Inputs = Outputs = {0, 1}

s0

s1 s2

0/0 1/0

0/0

0/1
1/0 1/1

How are the transition and output functions defined?
Would it be OK to drop a few arrows in the diagram?
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Example: another Mealy Machine

structure:

arbiter

in1∈ {0, 1}

in2∈ {0, 1}
out ∈ {0, 1, 2}

behavior:

s0 s1

00/0 00/0

01/1

10/2

11/1 01/1

10/211/2
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DIGITAL CIRCUITS

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 10 / 31



Synchronous Circuits – Generic structural view:

Combinational logic part: a network of logical gates (AND, OR, NOT, XOR, ...).

Memory/state of the circuit: some type of digital memory element (e.g., D-type
flip-flop).

Synchronous: clock arriving conceptually synchronously (simultaneously) at all
flip-flops.

Circuit: a network of connected gates and flip-flops (“netlist”).
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Memory element: D flip-flop

D (input)

clock
output

Behavior (simplified):

Clock input defines a set of times t1, t2, t3, ... (e.g., up-edges of a
periodic pulse).

The value of output remains constant during the interval [tk, tk+1)
and equal to the value of the input D at tk.

“Door-opening” metaphor.

In real life memory elements often have more inputs (e.g., resets to
initialize state).

Is the D flip-flop a state machine?
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Combinational logic gates

Are combinational logic gates state machines?
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Digital Circuits: Networks of Flip-Flops and Logic Gates

For now, we consider acyclic circuits: they can have feedback, but any
feedback loops are “broken” by flip-flops:

Are the dynamics of such circuits well-defined? How?
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Modeling Circuits as State Machines

Is this a state machine?
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Modeling Circuits as State Machines

Is this a state machine? Is it a Mealy or Moore machine?
How are (I,O, S, s0, δ, λ) defined?

What would a Moore Machine look like?
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Moore and Mealy machines viewed as digital circuits

Moore machine:

Mealy machine:

Moore and Mealy machines 
viewed as digital circuits

next out

clock

x(n)

y(n)

s(n)

1

next out

clock

x(n)

y(n)

s(n)
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State Machines and Synchronous Circuits

Is this a good drawing?

00/0 00/0

01/1

10/2

11/1 01/1

10/211/2
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Drawing Mealy Machines Correctly
Traditional drawing mixes transition and output functions, although these are
independent (this matters in the case of circuits, for instance, where outputs
might change multiple times before stabilizing – c.f. discussion on circuits that
follows):

arbiter

in1∈ {0, 1}

in2∈ {0, 1}
out ∈ {0, 1, 2}

00/0 00/0

01/1

10/2

11/1 01/1

10/211/2

Better drawing:

out := case in1
in2 do

00 : 0;
01 : 1;
10 : 2;
11 : 1;

end

out := case in1
in2 do

00 : 0;
01 : 1;
10 : 2;
11 : 2;

end

00 00

01

10

11

01

10

11
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Modeling vs Implementation (Logic Synthesis)

We have done the “modeling” part:

Circuit FSM

modeling

implementation

The “implementation” part: logic synthesis (part of EDA).
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The synchronous language Lustre [Halbwachs et al., 1991]

An elegant way to model state machines.
A simple program in Lustre:

node Edge (X : bool) returns (E : bool);

let

E = false -> X and not pre X ;

tel

Can you guess its meaning?

E0 = false

Ek+1 = Xk+1 ∧ ¬Xk

Quiz: draw the corresponding state machine.
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Infinite state machines

In the program below, all variables are Boolean, therefore range over a
finite domain:

node Edge (X : bool) returns (E : bool);

let

E = false -> X and not pre X ;

tel

This need not be the case: in Lustre, we can have variables of type
integer, real, etc.

Formally, the tuple (I,O, S, s0, δ, λ) can model also infinite state
machines, by allowing sets I,O, S to be infinite.

Quiz: write a counter in Lustre.
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A counter in Lustre
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Extended state machines

State machines + additional state variables

State variables can be of infinite type (integers, reals, lists, ...).

Transitions can have guards (conditions on state variables which specify when can
a certain transition occur) and updates of state variables.

Such ESMs generally have an infinite number of states ⇒ problems such as
reachability, termination, ..., are usually undecidable.

Can also have other features, such as message receptions/transmissions, for
communication with other machines.

Can also be hierarchical.

Widely used in the industry: Stateflow, UML/SysML, ...
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Example: a hierarchical extended state machine in
Stateflow
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nuXmv
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The model-checker nuXmv

Widespread symbolic model checker

Long history, starting from SMV (Symbolic Model Verifier) by Ken
McMillan [McMillan, 1993]

Synchronous systems (mostly)
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Modeling FSMs in nuXmv

MODULE main

VAR

b : boolean;

ASSIGN

init(b) := TRUE;

next(b) := !b;

INVARSPEC

b;

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 28 / 31



Modeling FSMs in nuXmv

MODULE main

VAR

i : {0, 1, 2, 3};

ASSIGN

init(i) := 0;

next(i) := case

i<3 : i+1;

TRUE : 0;

esac;

INVARSPEC

i>=0 & i<=3;
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Modeling FSMs in nuXmv

MODULE main

VAR

bit0 : counter_cell(TRUE);

bit1 : counter_cell(bit0.carry_out);

bit2 : counter_cell(bit1.carry_out);

SPEC

AG AF bit2.carry_out

MODULE counter_cell(carry_in)

VAR

value : boolean;

ASSIGN

init(value) := FALSE;

next(value) := value xor carry_in;

DEFINE

carry_out := value & carry_in;

SMV model counter.smv taken from http://nusmv.fbk.eu/examples/examples.html
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