
System Specification, Verification and Synthesis
(SSVS) – CS 4830/7485, Fall 2019

3: Formal System Modeling:
State Machines

Stavros Tripakis

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 1 / 31



Outline

Finite State Machines (FSMs)

Moore and Mealy machines

Modeling digital circuits as FSMs

State machines in nuXmv

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 2 / 31



Reminder: what is a system? (so far)

System: state + dynamics (+ inputs/outputs)

Dynamics: rules defining how state evolves in time

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 3 / 31



STATE MACHINES

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 4 / 31



Finite State Machines of type Moore and Mealy
A finite state machine (FSM) is a tuple

(I,O, S, s0, δ, λ)

I: finite set of inputs

O: finite set of outputs

S: finite set of states

s0 ∈ S: initial state

δ : S × I → S: transition function
λ: output function

I If the FSM is of type Moore:

λ : S → O

I If the FSM is of type Mealy:

λ : S × I → O

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 5 / 31



Finite State Machines of type Moore and Mealy
A finite state machine (FSM) is a tuple

(I,O, S, s0, δ, λ)

I: finite set of inputs

O: finite set of outputs

S: finite set of states

s0 ∈ S: initial state

δ : S × I → S: transition function
λ: output function

I If the FSM is of type Moore:

λ : S → O

I If the FSM is of type Mealy:

λ : S × I → O

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 5 / 31



Finite State Machines of type Moore and Mealy
A finite state machine (FSM) is a tuple

(I,O, S, s0, δ, λ)

I: finite set of inputs

O: finite set of outputs

S: finite set of states

s0 ∈ S: initial state

δ : S × I → S: transition function
λ: output function

I If the FSM is of type Moore:

λ : S → O

I If the FSM is of type Mealy:

λ : S × I → O

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 5 / 31



Parenthesis: Basic Logic and Math Notations
Sets: e.g., A = {1, 2, 3}, B = {0, 2, 4, ...}, C = {n | n is a non-negative even number}
Set membership: x ∈ A: x is an element of set A; x 6∈ A: x is not an element of A

x 6∈ A ≡ ¬(x ∈ A)
Boolean logic: φ1 ∧ φ2 (conjunction, “φ1 and φ2”), φ1 ∨ φ2 (disjunction, “φ1 or φ2”),
¬φ (negation, “not φ”), φ1 ⇒ φ2 (implication, “if φ1 then φ2”, also written φ1 → φ2),
≡ (equivalence, “φ1 iff φ2”, also written φ1 ⇔ φ2)

Subset: A ⊆ B: every element of A is also an element of B, i.e., ∀x : x ∈ A⇒ x ∈ B
First-order logic: ∀x : φ (universal quantification, “φ holds for any x”), ∃x : φ (existential
quantification, “φ holds for some x”)

Set equality: A = B iff A ⊆ B and B ⊆ A
Strict subset: A ⊂ B iff A ⊆ B and A 6= B

Set operations: A ∪B (union), A ∩B (intersection), A (complement), A−B or A \B
(set difference), A×B (cartesian product)

A ∪B = {x | x ∈ A ∨ x ∈ B}
A ∩B = {x | x ∈ A ∧ x ∈ B}
A = {x | x 6∈ A} = U −A (assuming some universe U)

A−B = {x | x ∈ A ∧ x ∈ B} = A ∩B
A×B = {(x, y) | x ∈ A ∧ y ∈ B}
(Binary) Relations: R ⊆ A×B
Functions: f : A→ B, a special kind of relation f ⊆ A×B such that for every x ∈ A
there is at most one y ∈ B such that (x, y) ∈ f ; this y is written f(x)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 6 / 31



Example: a Moore Machine

A Moore machine

States: {q0, q1, q2, q3}

Initial state: q0

Input symbols: {x,y,z}

Output symbols: {a,b,c}

How are the output and transition functions defined?

1

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 7 / 31



Example: a Mealy Machine

States = {s0, s1, s2}, initial state = s0
Inputs = Outputs = {0, 1}

s0

s1 s2

0/0 1/0

0/0

0/1
1/0 1/1

How are the transition and output functions defined?
Would it be OK to drop a few arrows in the diagram?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 8 / 31



Example: a Mealy Machine

States = {s0, s1, s2}, initial state = s0
Inputs = Outputs = {0, 1}

s0

s1 s2

0/0 1/0

0/0

0/1
1/0 1/1

How are the transition and output functions defined?

Would it be OK to drop a few arrows in the diagram?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 8 / 31



Example: a Mealy Machine

States = {s0, s1, s2}, initial state = s0
Inputs = Outputs = {0, 1}

s0

s1 s2

0/0 1/0

0/0

0/1
1/0 1/1

How are the transition and output functions defined?
Would it be OK to drop a few arrows in the diagram?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 8 / 31



Example: another Mealy Machine

structure:

arbiter

in1∈ {0, 1}

in2∈ {0, 1}
out ∈ {0, 1, 2}

behavior:

s0 s1

00/0 00/0

01/1

10/2

11/1 01/1

10/211/2

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 9 / 31



DIGITAL CIRCUITS

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 10 / 31



Synchronous Circuits – Generic structural view:

Combinational logic part: a network of logical gates (AND, OR, NOT, XOR, ...).

Memory/state of the circuit: some type of digital memory element (e.g., D-type
flip-flop).

Synchronous: clock arriving conceptually synchronously (simultaneously) at all
flip-flops.

Circuit: a network of connected gates and flip-flops (“netlist”).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 11 / 31



Memory element: D flip-flop

D (input)

clock
output

Behavior (simplified):

Clock input defines a set of times t1, t2, t3, ... (e.g., up-edges of a
periodic pulse).

The value of output remains constant during the interval [tk, tk+1)
and equal to the value of the input D at tk.

“Door-opening” metaphor.

In real life memory elements often have more inputs (e.g., resets to
initialize state).

Is the D flip-flop a state machine?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 12 / 31



Memory element: D flip-flop

D (input)

clock
output

Behavior (simplified):

Clock input defines a set of times t1, t2, t3, ... (e.g., up-edges of a
periodic pulse).

The value of output remains constant during the interval [tk, tk+1)
and equal to the value of the input D at tk.

“Door-opening” metaphor.

In real life memory elements often have more inputs (e.g., resets to
initialize state).

Is the D flip-flop a state machine?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 12 / 31



Memory element: D flip-flop

D (input)

clock
output

Behavior (simplified):

Clock input defines a set of times t1, t2, t3, ... (e.g., up-edges of a
periodic pulse).

The value of output remains constant during the interval [tk, tk+1)
and equal to the value of the input D at tk.

“Door-opening” metaphor.

In real life memory elements often have more inputs (e.g., resets to
initialize state).

Is the D flip-flop a state machine?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 12 / 31



Combinational logic gates

Are combinational logic gates state machines?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 13 / 31



Combinational logic gates

Are combinational logic gates state machines?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 13 / 31



Digital Circuits: Networks of Flip-Flops and Logic Gates

For now, we consider acyclic circuits: they can have feedback, but any
feedback loops are “broken” by flip-flops:

Are the dynamics of such circuits well-defined? How?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 14 / 31



Modeling Circuits as State Machines

Is this a state machine?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 15 / 31



Modeling Circuits as State Machines

Is this a state machine? Is it a Mealy or Moore machine?
How are (I,O, S, s0, δ, λ) defined?

What would a Moore Machine look like?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 16 / 31



Modeling Circuits as State Machines

Is this a state machine? Is it a Mealy or Moore machine?
How are (I,O, S, s0, δ, λ) defined?
What would a Moore Machine look like?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 16 / 31



Moore and Mealy machines viewed as digital circuits

Moore machine:

Mealy machine:

Moore and Mealy machines 
viewed as digital circuits

next out

clock

x(n)

y(n)

s(n)

1

next out

clock

x(n)

y(n)

s(n)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 17 / 31



State Machines and Synchronous Circuits

Is this a good drawing?

00/0 00/0

01/1

10/2

11/1 01/1

10/211/2

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 18 / 31



Drawing Mealy Machines Correctly
Traditional drawing mixes transition and output functions, although these are
independent (this matters in the case of circuits, for instance, where outputs
might change multiple times before stabilizing – c.f. discussion on circuits that
follows):

arbiter

in1∈ {0, 1}

in2∈ {0, 1}
out ∈ {0, 1, 2}

00/0 00/0

01/1

10/2

11/1 01/1

10/211/2

Better drawing:

out := case in1
in2 do

00 : 0;
01 : 1;
10 : 2;
11 : 1;

end

out := case in1
in2 do

00 : 0;
01 : 1;
10 : 2;
11 : 2;

end

00 00

01

10

11

01

10

11

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 19 / 31



Modeling vs Implementation (Logic Synthesis)

We have done the “modeling” part:

Circuit FSM

modeling

implementation

The “implementation” part: logic synthesis (part of EDA).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 20 / 31



The synchronous language Lustre [Halbwachs et al., 1991]

An elegant way to model state machines.
A simple program in Lustre:

node Edge (X : bool) returns (E : bool);

let

E = false -> X and not pre X ;

tel

Can you guess its meaning?

E0 = false

Ek+1 = Xk+1 ∧ ¬Xk

Quiz: draw the corresponding state machine.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 21 / 31



The synchronous language Lustre [Halbwachs et al., 1991]

An elegant way to model state machines.
A simple program in Lustre:

node Edge (X : bool) returns (E : bool);

let

E = false -> X and not pre X ;

tel

Can you guess its meaning?

E0 = false

Ek+1 = Xk+1 ∧ ¬Xk

Quiz: draw the corresponding state machine.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 21 / 31



The synchronous language Lustre [Halbwachs et al., 1991]

An elegant way to model state machines.
A simple program in Lustre:

node Edge (X : bool) returns (E : bool);

let

E = false -> X and not pre X ;

tel

Can you guess its meaning?

E0 = false

Ek+1 = Xk+1 ∧ ¬Xk

Quiz: draw the corresponding state machine.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 21 / 31



Infinite state machines

In the program below, all variables are Boolean, therefore range over a
finite domain:

node Edge (X : bool) returns (E : bool);

let

E = false -> X and not pre X ;

tel

This need not be the case: in Lustre, we can have variables of type
integer, real, etc.

Formally, the tuple (I,O, S, s0, δ, λ) can model also infinite state
machines, by allowing sets I,O, S to be infinite.

Quiz: write a counter in Lustre.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 22 / 31



Infinite state machines

In the program below, all variables are Boolean, therefore range over a
finite domain:

node Edge (X : bool) returns (E : bool);

let

E = false -> X and not pre X ;

tel

This need not be the case: in Lustre, we can have variables of type
integer, real, etc.

Formally, the tuple (I,O, S, s0, δ, λ) can model also infinite state
machines, by allowing sets I,O, S to be infinite.

Quiz: write a counter in Lustre.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 22 / 31



Infinite state machines

In the program below, all variables are Boolean, therefore range over a
finite domain:

node Edge (X : bool) returns (E : bool);

let

E = false -> X and not pre X ;

tel

This need not be the case: in Lustre, we can have variables of type
integer, real, etc.

Formally, the tuple (I,O, S, s0, δ, λ) can model also infinite state
machines, by allowing sets I,O, S to be infinite.

Quiz: write a counter in Lustre.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 22 / 31



A counter in Lustre

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 23 / 31



Extended state machines

State machines + additional state variables

State variables can be of infinite type (integers, reals, lists, ...).

Transitions can have guards (conditions on state variables which specify when can
a certain transition occur) and updates of state variables.

Such ESMs generally have an infinite number of states ⇒ problems such as
reachability, termination, ..., are usually undecidable.

Can also have other features, such as message receptions/transmissions, for
communication with other machines.

Can also be hierarchical.

Widely used in the industry: Stateflow, UML/SysML, ...

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 24 / 31



Example: a hierarchical extended state machine in
Stateflow

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 25 / 31



nuXmv

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 26 / 31



The model-checker nuXmv

Widespread symbolic model checker

Long history, starting from SMV (Symbolic Model Verifier) by Ken
McMillan [McMillan, 1993]

Synchronous systems (mostly)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 27 / 31



Modeling FSMs in nuXmv

MODULE main

VAR

b : boolean;

ASSIGN

init(b) := TRUE;

next(b) := !b;

INVARSPEC

b;

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 28 / 31



Modeling FSMs in nuXmv

MODULE main

VAR

i : {0, 1, 2, 3};

ASSIGN

init(i) := 0;

next(i) := case

i<3 : i+1;

TRUE : 0;

esac;

INVARSPEC

i>=0 & i<=3;

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 29 / 31



Modeling FSMs in nuXmv

MODULE main

VAR

bit0 : counter_cell(TRUE);

bit1 : counter_cell(bit0.carry_out);

bit2 : counter_cell(bit1.carry_out);

SPEC

AG AF bit2.carry_out

MODULE counter_cell(carry_in)

VAR

value : boolean;

ASSIGN

init(value) := FALSE;

next(value) := value xor carry_in;

DEFINE

carry_out := value & carry_in;

SMV model counter.smv taken from http://nusmv.fbk.eu/examples/examples.html

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 30 / 31

http://nusmv.fbk.eu/examples/examples.html


Bibliography

Baier, C. and Katoen, J.-P. (2008).

Principles of Model Checking.
MIT Press.

Bozzano, M., Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S., Roveri, M., and

Tonetta, S.
nuXmv 1.1.1 User Manual.

Clarke, E., Grumberg, O., and Peled, D. (2000).

Model Checking.
MIT Press.

Hachtel, G. D. and Somenzi, F. (1996).

Logic Synthesis and Verification Algorithms.
Kluwer.

Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. (1991).

The synchronous dataflow programming language Lustre.
Proceedings of the IEEE, 79(9):1305–1320.

Kohavi, Z. (1978).

Switching and finite automata theory.
McGraw-Hill, 2 edition.

McMillan, K. (1993).

Symbolic model checking: an approach to the state-explosion problem.
Kluwer.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 State machines, circuits 31 / 31


