
1Tripakis

System Specification,
Verification, and Synthesis
CS 4830 / 7485

Stavros Tripakis

1. Introduction, Logistics

2Tripakis

This course in one slide

• Systems: what is a system? How to accurately
describe systems?

• Specification: what does it mean for a system to be
“correct”? How do we formally describe correctness?

• Verification: how do we check correctness?

• Synthesis: can we automatically generate systems
that are correct by construction, and how?

System Specification, Verification, and Synthesis, Fall 2019

3Tripakis

Today:

• Motivation: why this course?

• Introductions: me and you. Where are you in your
studies? Where are you heading towards? What are
you expecting to get out of this course?

• Logistics

• Systems: an introduction

System Specification, Verification, and Synthesis, Fall 2019

4Tripakis

THE SCIENCE OF SOFTWARE
AND SYSTEMS

5Tripakis

What is science?

science = knowledge that helps us make
predictions

System Specification, Verification, and Synthesis, Fall 2019

6Tripakis

Prometheus and Epimetheus

Epimetheus (/ɛpɪˈmiːθiəs/; Greek: Ἐπιμηθεύς, which might mean
"hindsight", literally "afterthinker")

Prometheus (/prəˈmiːθiːəs/ ; Greek: Προμηθεύς,
pronounced [promɛːtʰéu̯s], possibly meaning "forethought")

Quote: “It is hard to make predictions, especially about the future”

System Specification, Verification, and Synthesis, Fall 2019

7Tripakis

Think of some of the sciences you know
What predictions can they make?
• Physics
• Chemistry
• Biology
• Medicine
• Law
• Psychology
• Sociology
• Economics
• Theology
• …
• Mathematics: is it a science?

System Specification, Verification, and Synthesis, Fall 2019

8Tripakis

What is the science of software?

What predictions can we make about the programs we
write?

Can I predict that my program will:
 Terminate?
Never throw an exception?
 Produce the right result?
 Always?
 Sometimes?
…

System Specification, Verification, and Synthesis, Fall 2019

9Tripakis

Software science = formal methods

• Formal modeling
• Formal verification
• Model checking
• Theorem proving
• Static analysis
• Abstract interpretation
• Program synthesis
• SAT/SMT solving
• …

System Specification, Verification, and Synthesis, Fall 2019

10Tripakis

Formal methods focus: proving program
correctness

• Proofs => formal (mathematical) definitions

• Proofs => we know what we mean by “correct”
(specification)

• E.g., is termination included in correctness?

• Proofs are hard and often tedious => need automation
=> computer-aided verification

System Specification, Verification, and Synthesis, Fall 2019

11Tripakis

But what about testing?

Dijkstra [1930 – 2002]

“Program testing can be used to
show the presence of bugs, but
never to show their absence!”
[Dijkstra, 1970]

• Nevertheless, testing is fundamental, and a whole discipline by itself. It is
also the workhorse of industrial software engineering practice.

• We will explore several techniques in the space between random testing
and formal proofs: symbolic execution, concolic testing, … and incomplete
methods such as bounded model checking, big-state hashing, …

System Specification, Verification, and Synthesis, Fall 2019

12Tripakis

Is this just theoretical computer science?

• What about theory of computation, complexity,
algorithms, etc?

• Science of software ≠ science of computation
• Science of computation:

• What is computation? What is an algorithm?
• What can be computed? What cannot be computed?
• How hard/expensive is it to compute something?
• …

• Science of software:
• What can I say about the programs that I write?

System Specification, Verification, and Synthesis, Fall 2019

13Tripakis

Theoretical computer science has (at least) two parts:
(1) computability, complexity; (2) software science

Handbook of Theoretical
Computer Science – 1990

Volume A: Algorithms and Complexity

Volume B: Formal Models and Semantics
Automata, Languages, Logics, Temporal Logic,

Semantics, Concurrency, …

14Tripakis

Related topics and courses
• Logic, automated theorem proving, computer-aided deduction, …

• See Pete Manolios’ course Computer-Aided Reasoning

• Type theory
• Programming languages
• Software engineering

• Several courses on the above topics offered by the PL group

• Dependability, reliability, fault-tolerance, …
• See Thomas Wahl’s course on Reliability

• Computer-aided system design, system engineering, …

System Specification, Verification, and Synthesis, Fall 2019

15Tripakis

Conferences in the (broad) formal methods area
• CAV: Computer-Aided Verification (1989-)
• TACAS: Tools and Algorithms for the Construction and Analysis of Systems

(1995-)
• …
• POPL: Principles of Programming Languages (1973?)
• PLDI: Programming Language Design and Implementation (1979?)
• ASE: Automated Software Engineering (1990-)
• ESEC/FSE: … Foundations of Software Engineering (1993-)
• …
• LICS: Logic in Computer Science (1988-)
• ICALP: International Colloquium on Automata, Languages and Programming

(1972-)
• …

System Specification, Verification, and Synthesis, Fall 2019

16Tripakis

Turing awards in the FM area

Robin Milner – 1991
Theorem proving, type

theory, concurrency

Clarke, Emerson, Sifakis – 2007
Model checkingAmir Pnueli – 1996

Temporal logic, verification

Leslie Lamport – 2013
Distributed systems,
Safety and liveness

Dijkstra – 1972
Foundations of
program design
& correctness Tony Hoare – 1980

Program semantics
& correctness

17Tripakis

Can I make money from all this?

18Tripakis

Thesis: Formal methods = modern system theory
• System modeling: states + transitions
• System composition
• System equivalence
• System abstraction
• System specification
• System semantics (behavior)
• Safety/liveness (qualitative) and quantitative properties
• State space, reachability, (inductive) invariants, deadlocks, …
• …
• Safety-critical systems, distributed systems, real-time systems,

hybrid systems, embedded systems, cyber-physical systems,
…

• Other theories (e.g., linear differential equations) are (very
useful) special cases

System Specification, Verification, and Synthesis, Fall 2019

19Tripakis

Some industrial application domains other
than “pure” software

Aerospace/defense

Electronics Design
Automation/EDA

(chip design)

Automotive Medical

Nuclear energy “Smart” infrastructure

20Tripakis

Cyber-physical systems: present

Autonomous car driving through red light

System Specification, Verification, and Synthesis, Fall 2019

21Tripakis

‘Cyber-physical’ systems: future
Courtesy https://vimeo.com/bsfilms
Thanks to Christos Cassandras for recommending this video

System Specification, Verification, and Synthesis, Fall 2019

22Tripakis

Some more claims
1. None of these systems could be imagined, let alone built, without

software

2. Everything, or almost, is software
• When you design traditional software you program in C, Java, Python, …
• When you design hardware you write Verilog code: Verilog programs are

software
• When you design embedded controllers you write Matlab/Simulink code: this

too is software
• When you design a robot?
• When you design a self-driving car?
• When you design a market trading algorithm?
• When you design a drug?
• …

3. Software is the most complex artifact ever built by humans

System Specification, Verification, and Synthesis, Fall 2019

23Tripakis

A simple program: what does it do?

 int x := input an integer number > 1;

 while x > 1 {
 if x is even
 x := x / 2;
 else
 x := 3*x + 1;
 }

Collatz conjecture:
The program terminates for every input.

Open problem in mathematics.

Run starting at 31: 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466
233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425
1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077
9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20
10 5 16 8 4 2

System Specification, Verification, and Synthesis, Fall 2019

24Tripakis

What is the mathematics of the science of
software?

Language
Truth
…

logic

System Specification, Verification, and Synthesis, Fall 2019

25Tripakis

Logic in this course

• We will use logic as a communication language:
definitions, proofs, etc.

• We will also study non-traditional logics developed
specifically for model checking (temporal logic)

• Courses focusing on logic and theorem proving:
• CS 2800 Logic and Computation
• CS 4820 Computer-Aided Reasoning
• Software Foundations: online book series/course based

on the Coq theorem prover

System Specification, Verification, and Synthesis, Fall 2019

Quiz (not graded)

Express the following statements in your favorite
mathematical formalism:

– You can fool some people sometimes
– You can fool some of the people all of the time
– You can fool some people sometimes but you can't

fool all the people all the time [Bob Marley]
– You can fool some of the people all of the time, and

all of the people some of the time, but you can not
fool all of the people all of the time [Abraham
Lincoln]

System Specification, Verification, and Synthesis, Fall 2019Tripakis

System Specification, Verification, and
Synthesis, Fall 2019

System Specification, Verification, and
Synthesis, Fall 2019

System Specification, Verification, and
Synthesis, Fall 2019

30Tripakis

In the end, is it worth it?

• Isn’t it too hard to do formal modeling and proofs?
• It depends on what you compare it to
• Testing becoming more and more expensive
• C.f. CACM Amazon Web Services article

• Why bother? Isn’t testing enough?
• No

System Specification, Verification, and Synthesis, Fall 2019

31Tripakis

Boeing 737 Max 8 accidents

• 2 accidents within 5 months – 346 deaths
• 737 Max 8 planes grounded world-wide since March 2019
• Control system rather than pilot errors
• Dubious business and certification practices

System Specification, Verification, and Synthesis, Fall 2019

32Tripakis

ROUND OF INTRODUCTIONS

Stavros Tripakis
Associate Professor, Northeastern University (since 2018)

• Past:

• Full Prof., Aalto University, Helsinki, Finland, 2012 ‐ 2018
• Adjunct Assoc. Prof., UC Berkeley, 2009 ‐ 2018
• Research Scientist: Cadence Design Systems, Berkeley, 2006 ‐ 2008
• Postdoc: Berkeley, 1999 – 2001
• Research Scientist: CNRS, Verimag, France, 2001 – 2006
• PhD: Verimag Laboratory, Grenoble, France, 1998
• Undergrad: University of Crete, Greece, 1992

• Research interests

• Formal methods, model checking, conformance testing, controller/program
synthesis

• Compositionality, contracts, interfaces
• Embedded and cyber‐physical systems
• Security
• Formal methods and AI/machine learning

Round of introductions

• Your name
• Your degree and year
• If you are a graduate student, who are you working

with / what topic
• Your interests / goals for this course
• Your interests / goals after graduation
• Anything else (e.g., fun things I do outside school /

did this summer / …)

System Specification, Verification, and
Synthesis, Fall 2019

35Tripakis

LOGISTICS

36Tripakis

Syllabus
• Week 1: Introduction, motivation, logistics, systems
• Week 2: Formal system modeling:

• State machines, automata, transition systems, state spaces
• Examples: circuits, software, embedded systems, bio systems, AI
• The model checkers Spin and NuXMV

• Weeks 3-4: Formal specification:
• Invariants, assertions, regular properties (finite behaviors), infinite behaviors, safety, liveness
• Temporal logics: LTL, CTL, linear/branching time
• LTL and CTL in Spin and NuXMV

• Week 5-7: Model checking:
• State-space exploration, reachability analysis, state explosion
• Symbolic methods, BDDs
• CTL model checking, fixpoints
• LTL model checking, omega automata, Buchi automata, the automata-theoretic method

• Week 8: Incomplete methods:
• Bounded model checking using SAT/SMT solvers
• Symbolic execution, concolic testing, …

• Week 9: Compositional verification, assume/guarantee methods, contracts
• Weeks 10-11: Synthesis: controller and program synthesis
• Weeks 12-13: Project presentations / final exam / further topics:

• Software verification, abstract interpretation, theorem proving, AI verification, …
• Timed automata, hybrid automata, …

System Specification, Verification, and Synthesis, Fall 2019

37Tripakis

Not covered (partial list)

• Type theory, PL, etc (as mentioned earlier)
• Theorem proving, SAT/SMT, etc (as mentioned earlier)
• Static analysis
• Abstract interpretation (although we will talk about abstraction)
• Software verification in-depth (although we will talk about

invariants, inductive invariants, maybe Hoare triples time
permitting)

• Concurrency theory, Petri nets, process algebra, …
• Theory of formal languages and automata in-depth

System Specification, Verification, and Synthesis, Fall 2019

38Tripakis

Lectures and questions

I like my lectures to be interactive:
 I depend on you to make this happen

Ask questions if you don’t understand something
OK to interrupt me
OK to object to something I say

Remember: there are no stupid questions
Mistakes are the only way to learn
 Learning theory confirms this (learning from positive and

negative examples)
System Specification, Verification, and Synthesis, Fall 2019

39Tripakis

Reading

• Textbooks:
• Principles of Model Checking, by Baier and Katoen
• Model Checking, by Clarke, Grumberg and Peled
• Books on Spin by Gerard Holzmann (hands-on)
• Logic in Computer Science, by Huth and Ryan (has chapter on TL)

• Going deeper:
• Handbook of Model Checking, by Clarke, Henzinger, Veith, Bloem
• Papers in conferences like CAV, TACAS, POPL, …
• Various tool competitions:

• SAT (http://www.satcompetition.org/) since 2002, SMT (https://smt-
comp.github.io/) since 2005, SV-COMP (https://sv-comp.sosy-lab.org/) since
2012, hardware model checking (http://fmv.jku.at/hwmcc17/) since 2007,
reactive synthesis (http://www.syntcomp.org/) since 2014, syntax-guided
synthesis (https://sygus.org/) since 2014, …

System Specification, Verification, and Synthesis, Fall 2019

40Tripakis

Tools

• The NuXMV model checker:
• https://nuxmv.fbk.eu/

• The Spin model checker:
• http://spinroot.com/

• Install and familiarize yourselves with these tools ASAP

System Specification, Verification, and Synthesis, Fall 2019

41Tripakis

Web page

• http://www.ccs.neu.edu/~stavros/ssvs19.html

• Go over web page

System Specification, Verification, and Synthesis, Fall 2019

