
41

Reachability-Based Memory Accounting

Adam Wick
awick@cs.utah.edu

Matthew Flatt
mflatt@cs.utah.edu

Wilson Hsieh
wilson@cs.utah.edu

University of Utah, School of Computing
50 South Central Campus Drive, Room 3190

Salt Lake City, Utah 84112–9205

ABSTRACT
Many language implementations provide a me
hanism to

express
on
urrent pro
esses, but few provide support for

terminating a pro
ess based on its resour
e
onsumption.

Those implementations that do support termination gener-

ally
harge the
ost of a resour
e to the prin
ipal that al-

lo
ates the resour
e, rather than the prin
ipal that retains

the resour
e. The di�eren
e matters if prin
ipals represent

distin
t but
ooperating pro
esses.

In this paper, we present preliminary results for a ver-

sion of MzS
heme that supports termination
onditions for

resour
e-abusing pro
esses. Unlike the usual approa
h to

resour
e a

ounting, our approa
h assigns �ne-grained (per-

obje
t) allo
ation
harges to the pro
ess that retains a re-

sour
e, instead of the pro
ess that allo
ates the resour
e.

1. MOTIVATION
Users of modern
omputing environments expe
t appli
a-

tions to
ooperate in sophisti
ated ways. For example, users

expe
t web browsers to laun
h external media players to

view
ertain forms of data, and users expe
t a word pro
es-

sor to support a
tive spreadsheets embedded in other do
-

uments. In a
onventional operating system, however, pro-

grammers must exert
onsiderable e�ort to integrate appli-

ations. Indeed, few software developers have the resour
es

to integrate appli
ations together as well as, for example,

Adobe A
robat in Mi
rosoft's Internet Explorer.

Implementing
ooperating appli
ations in a
onventional

OS is diÆ
ult be
ause the OS isolates appli
ations to
ontain

malfun
tions. Cooperating appli
ations must over
ome this

built-in isolation. In
ontrast, language run-time systems

(a.k.a. \virtual ma
hines") typi
ally rely on language safety,

rather than isolation, to
ontain malfun
tions. Sin
e VMs

otherwise play the same role as OSes, and sin
e they la
k a

bias towards isolation, safe VMs seem ideally suited as the

platform for a next generation of appli
ation software.

Mere safety, however, does not provide the level of prote
-

tion between appli
ations that
onventional OSes provide.

Permission to make digital or hard copies, to republish, to post on servers
or to redistribute to lists all or part of this work is grantedwithout fee
provided that copies are not made or distributed for profit orcommercial
advantage and that copies bear this notice and the full citation on the
first page. To otherwise copy or redistribute requires priorspecific
permission.
Third Workshop on Scheme and Functional Programming. October 3,
2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 Adam Wick, Matthew Flatt, Wilson Hsieh.

Although language-based safety
an prevent a program from

trampling on another program's data stru
tures, it
annot

prevent a program from starving another pro
ess or from

leaking resour
es. Regardless of the degree of
ooperation,

a pra
ti
al OS/VM must tra
k ea
h appli
ation's resour
e

onsumption and prevent over-
onsuming appli
ations from

taking down the entire system.

A variation on
onventional isolation
an
ertainly enable

resour
e tra
king in a VM. For example, the VM
an restri
t

values passed from one pro
ess to another to those values

allo
ated within a
ertain pool of memory [1℄. This
om-

promise provides something better than a traditional OS, in

that a suitably allo
ated value
an be passed dire
tly and

safely between appli
ations. Nevertheless, this kind of iso-

lation
ontinues to interfere with
ooperation: even if a pro-

gram
an move values from one allo
ation pool to another,

expli
it a

ounting with allo
ation pools amounts to manual

memory management as in mallo
 and free. This manual

management en
ourages narrow
ommuni
ation
hannels; in

order to foster
ommuni
ation, appli
ations must be free to

ex
hange arbitrary data with potentially
omplex allo
ation

patterns.

We are investigating memory-management te
hniques that

pla
e the responsibility for a

ounting with the run-time sys-

tem, instead of the programmer, while still enabling
ontrol

over an appli
ation's memory use. The essential idea is that

a garbage
olle
tor
an a

ount for memory use using rea
h-

ability from an appli
ation's roots. Thus, an appli
ation is

harged not for what it allo
ates, but for what it retains.

This di�erentiation is
riti
al in systems where one appli-

ation may use memory allo
ated by another appli
ation.

The
entral design problem is how to deal with these shared

values usefully and eÆ
iently.

We present preliminary results on our exploration, based

on a new garbage
olle
tor for MzS
heme [7℄. Our results

suggest that a garbage
olle
tor
an maintain usefully pre-

ise a

ounting information with a low overhead, but that

the implementation of the rest of the VM requires extra
are

to trigger reliable termination of over-
onsuming pro
esses.

This extra
are is of the same
avor as avoiding referen
es

in the VM that needlessly preserve values from
olle
tion.

Se
tion 2 des
ribes the existing notion of \pro
ess" within

MzS
heme, and Se
tion 3 des
ribes our new API for resour
e

enfor
ement. Se
tion 4 des
ribes in more detail possible a
-

ounting poli
ies behind the API, in
luding the two that we

have implemented. Se
tion 5 reports on our implementa-

tions, and Se
tion 6 reports on our experien
e with them.

Se
tion 7 presents performan
e results.

42

2. PROCESSES IN MZSCHEME
In MzS
heme, no single language
onstru
t en
ompasses

all aspe
ts of a
onventional pro
ess. Instead, various or-

thogonal
onstru
ts implement di�erent aspe
ts of pro
esses:

� Threads implement the exe
ution aspe
t of a pro
ess.

The MzS
heme thread fun
tion takes a thunk and
re-

ates a new thread to exe
ute the thunk.

The following example runs two
on
urrent loops, one

that prints \1"s and another that prints \2"s:

(letre
 ([loop (lambda (v)

(display v)

(loop v))℄)

(thread (lambda () (loop 1)))

(loop 2))

� Parameters implement pro
ess-spe
i�
 settings, su
h

as the
urrent working dire
tory. Ea
h parameter is

represented by a pro
edure, su
h as
urrent-dire
tory,

that gets and sets the parameter value. Every thread

has its own value for ea
h parameter, so that setting

a parameter value a�e
ts the value only in the
urrent

thread. Newly
reated threads inherit initial parame-

ter values based on the
urrent values in the
reating

thread.

The following example sets the
urrent dire
tory to

"/tmp" while running do-work , then restores the
ur-

rent dire
tory:

1

(let ([orig-dir (
urrent-dire
tory)℄)

(
urrent-dire
tory "/tmp")

(do-work)

(
urrent-dire
tory orig-dir))

Meanwhile, the
urrent-dire
tory setting of other exe-

uting threads is una�e
ted by the above
ode.

� Custodians implement the resour
e-management as-

pe
t of a pro
ess. Whenever a thread obje
t is
reated,

port obje
t opened, GUI obje
t displayed, or network-

listener obje
t started, the obje
t is assigned to the

urrent
ustodian, whi
h is determined by the
urrent-

ustodian parameter. The main operation on a
us-

todian is
ustodian-shutdown-all, whi
h terminates all

of the
ustodian's threads,
loses all of its ports, and

so on. In addition, every new
ustodian
reated with

make-
ustodian is
reated as a
hild of the
urrent
us-

todian. Shutting down a
ustodian also shuts down all

of its
hildren
ustodians.

The following example runs
hild-work-thunk in its

own thread, then terminates the thread after one se
-

ond (also shutting down any other resour
es used by

the
hild thread):

(let ([
hild-
ustodian (make-
ustodian)℄

[parent-
ustodian (
urrent-
ustodian)℄)

(
urrent-
ustodian
hild-
ustodian)

(thread
hild-work-thunk)

(
urrent-
ustodian parent-
ustodian)

(sleep 1)

(
ustodian-shutdown-all
hild-
ustodian))

1

Produ
tion
ode would use the parameterize form so that

the dire
tory is restored if do-work raises an ex
eption.

A thread's
urrent
ustodian is not the same as the

ustodian that manages the thread. The latter is de-

termined permanently when the thread is
reated. A

thread
an, however,
hange its
urrent
ustodian at

any time. In the above example, sin
e
hild-
ustodian

is
urrent when the
hild thread is
reated, the
hild is

pla
ed into the management of
hild-
ustodian. Thus,

(
ustodian-shutdown-all
hild-
ustodian) reliably termi-

nates the
hild thread. In addition, if
hild-
ustodian is

the only
ustodian a

essible in
hild-work-thunk , then

any
ustodian, thread, port, or network listener
re-

ated by the
hild is reliably shut down by (
ustodian-

shutdown-all
hild-
ustodian).

Evaluating (
urrent-
ustodian) immediately in
hild-

work-thunk would produ
e
hild-
ustodian, be
ause the

initial parameter values for the
hild thread are in-

herited at the point of thread
reation. The
hild

thread may then
hange its
urrent
ustodian at any

time, perhaps
reating a new
ustodian for a grand-

hild thread. Again, if
hild-
ustodian is the only
us-

todian a

essible in
hild-work-thunk , then newly
re-

ated
ustodians ne
essarily fall under the management

of
hild-
ustodian.

MzS
heme in
ludes additional
onstru
ts to handle other

pro
ess aspe
ts, su
h as
ode namespa
es and event queues,

but those
onstru
ts are irrelevant to a

ounting.

3. ACCOUNTING API
A

ounting information in MzS
heme depends only on

ustodians and threads. A

ounting depends on
ustodians

be
ause they a
t as a kind of pro
ess ID for termination pur-

poses. In parti
ular, sin
e the motivation for a

ounting is

to terminate over-
onsuming pro
esses, MzS
heme
harges

memory
onsumption at the granularity of
ustodians. A
-

ounting also depends on threads, be
ause threads en
om-

pass the exe
ution aspe
t of a pro
ess, and the exe
ution

ontext de�nes the set of rea
hable values. Thus, the mem-

ory
onsumption of a
ustodian is de�ned in terms of the

values rea
hable from the
ustodian's threads.

We defer dis
ussion of spe
i�
 a

ounting poli
ies until the

next se
tion. For now, given that a

ounting is atta
hed to

ustodians, we de�ne a resour
e-limiting API that is similar

to Unix pro
ess limits:

� (
ustodian-limit-memory
ust1 limit-k
ust2) installs a

limit of limit-k bytes on the memory
harged to the

ustodian
ust1 . If there
omes a time when
ust1

uses more than limit-k bytes, then
ust2 is shut down.

Typi
ally,
ust1 and
ust2 are the same
ustodian,

but distinguishing the a

ounting
enter from the
ost

enter
an be useful when
ust1 is the parent of
ust2

or vi
e-versa.

Although
ustodian-limit-memory is useful in simple settings,

it does not
ompose well. For example, if a parent pro
ess

has 100 MB to work with and its
hild pro
esses typi
ally use

1 MB but sometimes 20 MB, should the parent limit itself

to the worst
ase by running at most 5
hildren? And how

does the parent know that it has 100 MB to work with in the

ase of parent-siblings with varying memory
onsumption?

In order to address the needs of a parent more dire
tly

and in a more easily
omposed form, we introdu
e a se
ond

interfa
e:

43

� (
ustodian-require-memory
ust1 need-k
ust2) installs

a request for need-k bytes to be available for
usto-

dian
ust1 . If there
omes a time when
ust1 would

be unable to allo
ate need-k bytes, then
ust2 is shut

down.

Using
ustodian-require-memory, a parent pro
ess
an de
lare

a safety
ushion for its own operation but otherwise allow

ea
h
hild pro
ess to
onsume as mu
h memory as is avail-

able. A parent
an also
ombine
ustodian-require-memory

and
ustodian-limit-memory to de
lare its own
ushion and

also prevent
hildren from using more than 20 MB without

limiting the total number of
hildren to 5.

In addition to the two memory-monitoring pro
edures,

MzS
heme provides a fun
tion that reports a given
usto-

dian's
urrent
harges:

� (
urrent-memory-use
ust) returns the number of allo-

ated bytes
urrently
harged to
ustodian
ust .

4. ACCOUNTING POLICIES

4.1 Reachability
As des
ribed in the previous se
tion, we de�ne a
usto-

dian's memory
onsumption in terms of the values rea
hable

from the
ustodian's threads, as opposed to the values orig-

inally allo
ated by the threads. In addition, we require that

the
ustodian hierar
hy propagates a

ounting
harges: if a

ustodian B is
harged for a value, then its parent
ustodian

is
harged for the value as well.

Generally, rea
hability for a

ounting
oin
ides with rea
h-

ability for garbage
olle
tion. In parti
ular, a value is not

harged to a
ustodian if it is a

essible through only weak

pointers. Finalization poses no problem for a

ounting, be-

ause every �nalizer in Mzs
heme is
reated with respe
t

to a will exe
utor. Running a �nalizer requires an expli
it

a
tion on the exe
utor, whi
h means that a �nalized obje
t

an be
harged to the holder of the �nalizer's exe
utor.

A

ounting rea
hability deviates from garbage-
olle
tion

rea
hability in one respe
t. If a value is rea
hable from

thread A only be
ause thread A holds a referen
e to thread

B, then B's
ustodian is
harged and not A's (unless A's
us-

todian is an an
estor of B's). Similarly, if a value is rea
hable

by A only through a
ustodian C, then C is
harged instead

of A's
ustodian.

This deviation makes intuitive sense, be
ause holding a

referen
e to another pro
ess does not provide any a

ess to

the pro
ess's values. Moreover, this deviation is ne
essary

for making a

ounting useful in our test programs, as we

explain in Se
tion 6.

4.2 Sharing
In a running system, some values may be rea
hable from

multiple
ustodians. Di�erent a

ounting poli
ies might al-

lo
ate
harges for shared values in di�erent ways, depending,

on the amount of sharing among
ustodians, the hierar
hi-

al relationship of the
ustodians, the original allo
ator for

a parti
ular value or other fa
tors. Among the poli
ies that

seem useful, we have implemented two:

� The pre
ise poli
y
harges every
ustodian for ea
h

value that it rea
hes. If two
ustodians share a value,

they are both
harged the full
ost of the value. For

example, in �gure 1, obje
ts w and z will be
harged

to both
ustodians A and B, obje
t x will be
harged

to both
ustodians B and C, and obje
t Y will be

harged only to
ustodian C.

� The blame-the-
hild poli
y
harges every value to at

least one
ustodian, but not every
ustodian that rea
hes

the value. The main guarantee for blame-the-
hild ap-

plies to
ustodians A and B when A is an an
estor of

B ; in that
ase, if A and B both rea
h some value,

then A is
harged if and only if B is
harged. Mean-

while, if B and C share a value but neither
ustodian

is an an
estor of the other, then at most one of them

will be
harged for the obje
t. For example, in �gure

1, obje
t Y will be
harged only to
ustodian C as in

the pre
ise poli
y. Also, sin
e
ustodian B is a
hild

of
ustodian A, B will ne
essarily be
harged for W

and Z. In the
ase of X, sin
e there is no an
estral

relationship between B and C, no guarantees are given

as to whi
h will be
harged.

The pre
ise poli
y is the most obvious one, and seems easi-

est to reason about. We have explored the blame-the-
hild

poli
y, in addition, be
ause it
an be implemented more ef-

�
iently than the pre
ise poli
y (at least in theory).

The blame-the-
hild poli
y, despite its impre
ision,
an

work with
ustodian-limit-memory to
ontrol the memory

onsumption of a single sand-boxed appli
ation. Sin
e the

sand-boxed appli
ation will share only with its parent, a
-

ounting will reliably tra
k
onsumption in the sand box.

Blame-the-
hild is less useful with
ustodian-limit-memory

in a setting of multiple
ooperating
hildren. In that
ase,

a well-behaved,
ooperating appli
ation might in
ur all of

the
ost of all shared values, triggering the termination of

the over-
harged
hild (possibly leaving the rest stu
k, lost

without a
ollaborator). However, blame-the-
hild always

works well with
ustodian-require-memory. With memory

requirements instead of memory limits, how memory
harges

are allo
ated among
hildren does not matter.

One poli
y that we have not explored is a variant of pre
ise

that splits
harges among sharing
ustodians. For example,

suppose that x
ustodians share a value of size y. With split-

ting, ea
h of the x
ustodians would be
harged y=x. This

poli
y is normally
onsidered troublesome, be
ause termi-

nating one of the x
ustodians triggers a sudden jump in

the
ost of the other x � 1. Like blame-the-
hild, though,

this poli
y might be useful with
ustodian-require-memory.

We have not explored the
ost-splitting poli
y be
ause it

seems expensive to implement, and it does not appear to

o�er any advantage over blame-the-
hild.

4.3 Timing
Ideally, a poli
y should guarantee the termination of a
us-

todian immediately after it violates a limit or requirement.

A naive implementation of this guarantee obviously
annot

work, as it amounts to a full
olle
tion for every allo
ation.

The poli
ies that we have implemented enfor
e limits and

requirements only after a full
olle
tion. Consequently, a

ustodian
an overrun its limit temporarily. This tempo-

rary overrun seems to
ause no problems in pra
ti
e, be-

ause a
ustodian that allo
ates lots of memory (and thus

might violate limits or requirements) tends to trigger fre-

quent
olle
tions. Furthermore, a failure in allo
ation for

any
ustodian triggers a garbage
olle
tion whi
h will then

terminate usage o�enders to satisfy the allo
ation.

44

A W

X

Y

Z

B

C

Custodians Roots Heap

Figure 1: An example set of
ustodians and roots with a small heap

One potential problem is that a
hild overrun
ould push

its parent past a limit, where terminating the
hild earlier

might have saved the parent. Another problem is that a

hild overrun may o

ur at a time when
ustodians
annot

be safely terminated. These potential problems have not ap-

peared in pra
ti
e, primarily be
ause programmers
annot

know the exa
t
ost of values and must in
lude signi�
ant

safety margins. Nevertheless, the problems merit further

investigation.

5. IMPLEMENTATION
The implementation of both the pre
ise and blame-the-

hild poli
ies pro
eeds roughly as follows:

2

1. When a thread is
reated, the
reating thread's
urrent

ustodian is re
orded in the new thread.

2. The
olle
tor's mark pro
edure treats thread obje
ts

as roots and as it marks from ea
h thread, it
harges

the thread's
ustodian.

3. After
olle
tion, the
olle
tor
he
ks the a

umulated

harges against registered memory limits and require-

ments. The
olle
tor s
hedules
ustodians for destru
-

tion (on the next thread-s
heduling boundary) a

ord-

ing to the
omparison results.

Our two implementations di�er only in the details of step

2. We �rst des
ribe the implementation of pre
ise a

ount-

ing, then the implementation of blame-the-
hild a

ounting.

Finally, we dis
uss the impa
t of generational garbage
ol-

le
tion on the algorithms.

5.1 Precise Accounting
For pre
ise a

ounting, the
olle
tor reserves spa
e in the

header of ea
h obje
t to re
ord the obje
t's set of
harged

2

The algorithms des
ribed should work in any
olle
tion sys-

tem. We use the terminology of a mark/sweep style
olle
tor

to simplify the des
ription.

oObject CS

CSm CSm CSmCSm CSm

Figure 2: Mark queue with an obje
t

ustodians (CS

o

in �gure 2). During
olle
tion, the mark

queue
ontains obje
ts paired with the
ustodian set to be

harged for the obje
t. Initially, the
harged set for all ob-

je
ts is the empty set. The initial mark queue
ontains all

thread obje
ts, where ea
h thread is paired to the
harged

set
ontaining only the thread's
ustodian.

When mark propagation rea
hes an obje
t (see �gure 2),

the
harged set in the obje
t's header (CS

o

) is
ompared

to the
harge used in marking (CS

m

). If the
harge set

for marking is a subset of the
harged set CS

o

in the obje
t

header, no further work is performed for the obje
t.

3

Other-

wise, the union of the sets is
omputed and installed into the

obje
t's header, and
harges for the obje
t are shifted from

the old set (if it is non-empty) to the unioned set. Mark-

ing
ontinues with the obje
t's
ontent using the unioned

set. After marking is
omplete, all garbage obje
ts have an

empty
harged set, and the
harges a

umulated for ea
h

set
an be relayed ba
k to the set members.

3

If the obje
t
ontains a
harge set, then it has been marked,

and the mark propagation has either already been done or

is queued. Sin
e the item's
harged set is a superset of the

mark's
harge set, then no additional information is avail-

able and no further work needs to be done.

45

In the
ase of a single
ustodian, the above algorithm de-

generates to plain garbage
olle
tion, sin
e the only possible

harge sets are the empty set and the set
ontaining the one

ustodian. In the
ase of

ustodians,
olle
tion potentially

requires
 revisions to the
harged set of every obje
t. Thus,

in the worst
ase,
olle
tion requires O(
 � r) time, where r

is the size of rea
hable memory and
 is the size of the set

of all
ustodians. An entire heap
ontaining only a single

linked list with every thread pointing to the head of the list

is an example of this worst
ase.

5.2 Blame-the-child
Unlike pre
ise a

ounting, blame-the-
hild a

ounting re-

quires only linear time in the amount of live memory. Roughly,

the blame-the-
hild implementation works in the same way

as the pre
ise implementation, ex
ept that obje
ts with non-

empty
harge sets are never re-marked. This
hange is

enough to a
hieve linear time
olle
tion.

To
ompletely implement the blame-the-
hild poli
y, the

olle
tor sorts the set of
ustodians before
olle
tion so that

des
endents pre
ede an
estors. Then, the threads of ea
h

ustodians are taken individually. Ea
h thread is marked

and the marks are propagated as far as possible before
on-

tinuing with the next threads. Due to this ordering, obje
ts

rea
hable from both a parent and
hild will be �rst rea
hed

by tra
ing from the
hild's threads, and thus
harged to the

hild. On
e
olle
tion is
omplete,
harges to
hild
ustodi-

ans are propagated ba
k to their parents.

In our implementation, the blame-the-
hild implementa-

tion also in
urs a smaller per-obje
t overhead, sin
e obje
t

headers need not
ontain a
harge set. During marking, ex-

a
tly one
ustodian is
harged at a time, so that
harges

an be a

umulated dire
tly to the
ustodian. Ea
h obje
t

needs only a mark bit, as in a normal
olle
tor.

A naive implementation of blame-the-
hild allows an ob-

vious se
urity hole. By
reating sa
ri�
ial
hildren, a malev-

olent
ustodian may arbitrarily delay its destru
tion when

it uses too mu
h memory. Su
h
hildren would have point-

ers ba
k into the malevolent
ustodian's spa
e so that they

would be blamed for its bad behavior. These, then, would

be killed instead of the parent.

Several possible me
hanisms
an be used to keep this from

happening, and we simply
hose the easiest one from an

implementation perspe
tive. They are:

1. Pla
e an order on the list of limits and requirements so

that older
ustodians are killed �rst. In this
ase, the

parent will be killed before the
hildren, so
reating

sa
ri�
ial
hildren is useless.

2. Kill every
ustodian that breaks a limit or requirement,

rather than just one. Sin
e a
hild's usage is in
luded

in the parent's usage, both will be killed.

3. Choose a random ordering. In this way, a malevolent

program would have no guarantee that the above ta
ti

would work.

Our implementation
hooses the se
ond ta
ti
.

5.3 Generational Collection
After a full
olle
tion is �nished and a

ounting is
om-

plete,
omparing
harges to registered limits and require-

ments is simple. Therefore, the
olle
tor
an guarantee that

a
ustodian is terminated after the �rst garbage
olle
tion

y
le after whi
h a limit or requirement is violated. This

implies that there may be some delay between the dete
-

tion of a violation and the a
tual violation. However, if the

program is allo
ating this delay will be small, as frequent

allo
ation will qui
kly trigger a garbage
olle
tion.

A

ounting information after a minor
olle
tion is ne
es-

sarily impre
ise, however, sin
e the minor
olle
tion does not

examine the entire heap. Previously
omputed sets of
usto-

dians for older obje
ts might be used regardless of
hanges

sin
e their promotion to an older generation. This old in-

formation may arbitrarily skew a

ounting. Worse, in the

blame-the-
hild implementation des
ribed above, the
olle
-

tor does not preserve
harges in obje
t headers, so there

is no information for older generations available to partial

olle
tions (ex
ept those that re
laim only the nursery).

Our implementation therefore enfor
es limits and require-

ments only after a full
olle
tion. This
hoi
e
an delay

enfor
ement by several
olle
tions, but should not introdu
e

any new inherent potential for limit overruns, sin
e overruns

must lead to a full
olle
tion eventually.

6. EXPERIENCE
To determine the usefulness of our a

ounting poli
ies in

realisti
 environments, we wrote and modi�ed several pro-

grams to take advantage of a

ounting. One program simply

tests the ability of a parent to kill an easily sand-boxed
hild.

A se
ond program, DrS
heme, tests
hild
ontrol where the

parent and
hild work
losely together. A third program,

a web server allowing arbitrary servlet plug-ins, tests
hild

ontrol with some
ooperation among the
hildren.

6.1 Simple Kill Test
In the simple kill test, the main pro
ess
reates a single

sub-
ustodian, pla
es a 64 MB limit on the sub-
ustodian's

memory use, and
reates a single thread in the sub-
ustodian

that allo
ates an unbounded amount of memory:

(let ([
hild-
ustodian (make-
ustodian)℄)

(
ustodian-limit-memory
hild-
ustodian

(� 64 1024 1024)
hild-
ustodian)

(
urrent-
ustodian
hild-
ustodian)

(thread-wait ; blo
ks until the thread
ompletes

(thread (lambda ()

(let loop ()

(+ 1 (loop)))))))

Sin
e a

ounting works, the
hild
ustodian is destroyed,

whi
h in turn halts the
hild thread, and the entire program

ompletes. If a

ounting were not su

essful, then the pro-

gram would not terminate. Under both of our a

ounting

system implementations, we �nd this program terminates.

Unfortunately, it terminates several garbage
olle
tion
y-

les after the limit is a
tually violated.

Although simple, this program presents two items of in-

terest. First, it shows that the blame-the-
hild poli
y
an

work, and that it allows the natural
reation of parent/
hild

pairs where the parent wishes to limit its
hildren. Se
ond,

the program shows that generational
olle
tion does delay

the dete
tion of resour
e overruns.

Safety nets in our garbage
olle
tor assure that a program

does not run out of available memory before its limit is no-

ti
ed, but in systems with tight memory requirements, our

te
hnique may not be a

eptable. We are investigating ways

46

to dete
t overruns more qui
kly.

6.2 DrScheme
The DrS
heme programming environment
onsists of one

or more windows, where ea
h window is split into two parts.

The top part of the window is used to edit programs. The

bottom part is an intera
tive S
heme interpreter loop where

the program
an be tested. Ea
h interpreter (one per win-

dow frame) is run under its own
ustodian. With a single

line of
ode, we modi�ed DrS
heme to
onstrain ea
h inter-

preter to 16 MB of memory.

Initial experiments with the single-line
hange did not pro-

du
e the desired result, even with pre
ise a

ounting. After

opening several windows, and after making one interpreter

allo
ate an unbounded amount of memory, every interpreter

ustodian in DrS
heme terminated. Investigation revealed

the problem:

� Ea
h interpreter holds a referen
e into the DrS
heme

GUI. For example, the value of the parameter
urrent-

output-port is a port that writes to the text widget for

the intera
tion half of the window. The text widget

holds a referen
e to the whole window, and all open

Drs
heme windows are
hained together.

� Ea
h window maintains a referen
e to the interpreter

thread,
ustodian, and other interpreter-spe
i�
 val-

ues, in
luding the interpreter's top-level environment.

Due to these referen
es, every interpreter thread rea
hes ev-

ery other interpreter's data through opaque
losures and ob-

je
ts, even though programs running in di�erent interpreters

annot interfere with ea
h other. Hen
e, in the pre
ise a
-

ounting system, every thread was
harged for every value

in the system, whi
h obviously defeats the purpose of a
-

ounting.

Corre
ting the problem required only a slight modi�
ation

to DrS
heme. We modi�ed it so that a window retains only

weak links to interpreter-spe
i�
 values. In other words, we

disallow dire
t referen
es from the parent to the
hild. Thus

a
hild may tra
e referen
es ba
k to the parent's values, but

will never tra
e these referen
es ba
k down to another
hild.

Finding the parent-to-
hild referen
es in DrS
heme|a fairly

large and
omplex system|required only a
ouple of hours

with garbage-
olle
tor instrumentation. The a
tual
hanges

required only a half hour. In all, �ve referen
es were
hanged:

two were
onverted into weak links, two were extraneous and

simply removed, and one was removed by pushing the value

into a parameter within the
hild's thread.

Breaking links from parent to
hild may seem ba
kward,

but breaking links in the other dire
tion would have required

far too mu
h work to be pra
ti
al. For example, we
ould not

easily modify the interpreter-owned port to weakly referen
e

the DrS
heme window. The port requires a

ess to many in-

ternal stru
tures within the GUI widget. Indeed, su
h a
on-

version would amount to the �le-des
riptor/handle approa
h

of
onventional operating systems|pre
isely the kind of de-

sign that we are trying to es
ape when implementing
oop-

eration.

6.3 Web Server
In the DrS
heme ar
hite
ture,
hildren never
ooperate

and share data. In the web server, however,
onsiderable

sharing exists between
hild pro
esses. Whenever a server

onne
tion is established, the server
reates a fresh
usto-

dian to take
harge of the
onne
tion. If the
onne
tion

requires the invo
ation of a servlet, then another fresh
us-

todian is
reated for the servlet's exe
ution. However, the

servlet
ustodian is
reated with the same parent as the

onne
tion
ustodian, not as a
hild of the
onne
tion
usto-

dian, be
ause a servlet session may span
onne
tions. Thus,

a
onne
tion
ustodian and a servlet
ustodian are siblings,

and they share data be
ause both work to satisfy the same

request.

The pre
ise a

ounting system performs well when a servlet

allo
ates an unbounded amount of memory. The o�ending

servlet is killed right after allo
ating too mu
h memory, and

the web server
ontinues normally.

The blame-the-
hild system performs less well, in that

the servlet kill is sometimes delayed, but works a

eptably

well for our purposes. The delayed kill with blame-the-
hild

arises from the sibling relationship between the
onne
tion

ustodian and the servlet
ustodian. When the servlet runs,

the
onne
tion is sometimes blamed for the servlet's memory

use. In pra
ti
e, this happens often. The result is that

the
onne
tion is killed, and then the still-live memory is

not
harged to the servlet until the next garbage
olle
tion.

This example points again to the need for better guarantees

in terms of the time at whi
h a

ounting
harges trigger

termination, whi
h is one subje
t of our ongoing work.

7. PERFORMANCE EVALUATION
Memory a

ounting in
urs some
ost, with trade-o�s in

terms of speed, spa
e usage, and a

ounting a

ura
y. To

measure these
osts, we have implemented these two mem-

ory a

ounting systems within MzS
heme.

4

Our
olle
tor is

a generational,
opying
olle
tor[8℄ implemented in C. This

olle
tor is designed for produ
tion-level systems; it
an han-

dle all situations that the default MzS
heme garbage
olle
-

tor handles, in
luding �nalizers whi
h may resurre
t dying

obje
ts. For analysis purposes, the
olle
tor
an be tuned

stati
ally to behave as one the following:

� NoA

nt: The base-line
olle
tor. No memory a
-

ounting fun
tionality is in
luded in this
olle
tor.

� Pre
ise: The base-line
olle
tor plus the memory a
-

ounting system des
ribed in se
tion 5.1.

� BTC: The base-line
olle
tor plus the memory blame-

the-
hild a

ounting system des
ribed in se
tion 5.2.

We evaluate the spa
e usage, a

ura
y and time penalty of

the BTC and Pre
ise
olle
tors on the following ben
h-

mark programs:

� Prod: An implementation of a produ
er/
onsumer

system, with �ve produ
ers and �ve
onsumers paired

o�. A di�erent
ustodian is used for ea
h produ
ing or

onsuming thread. This
ase
overs situations wherein

sibling
ustodians share a large pie
e of
ommon data;

in this
ase, they share a
ommon queue.

� Kill: A basi
 kill test for a

ounting. A
hild
usto-

dian is
reated and a limit is pla
ed on its memory use.

4

A

ounting builds on the \pre
isely"
olle
ted variant of

MzS
heme, instead of the \
onservatively"
olle
ted variant.

47

Pre
ise BTC

Test # of owner sets Additional required spa
e # of owner sets Additional required spa
e

Web 360 60,054 bytes 360 30,570 bytes

Prod 35 3,842 bytes 21 1,130 bytes

DrS
heme 15 6100 bytes 9 5076 bytes

PSear
h 4 266 bytes 3 186 bytes

Kill 2 146 bytes 2 146 bytes

Figure 3: Additional spa
e requirements for a

ounting.

NoA

nt BTC Pre
ise

Time S.D. Time S.D. % slowdown Time S.D. % slowdown

Web 1.30 0.05 1.77 0.06 36.2% 1.80 0.06 38.5%

Prod 2.60 0.05 1.31 0.04 n/a 1.41 0.04 n/a

DrS
heme 23.10 0.14 23.55 0.11 1.7% 43.19 1.73 87.0%

PSear
h 2.33 0.12 2.41 0.12 3.4% 2.42 0.13 3.9%

Kill n/a n/a 1.74 0.03 n/a 1.76 0.04 n/a

Figure 4: Timing results in se
onds of user time with standard deviations. Where appli
able, the table

provides a per
entage slowdown relative to the NoA

nt
olle
tor. All ben
hmark programs were run on

a 1.8Ghz Pentium IV with 256MB of memory, running under FreeBSD 4.3 and MzS
heme (or DrS
heme)

version 200pre19.

Under the
hild
ustodian, memory is then allo
ated

until the limit is rea
hed. This
ase
overs the situ-

ation wherein proper a

ounting is ne
essary for the

proper fun
tioning of a program.

� PSear
h: A sear
h program that seeks its target us-

ing both breadth-�rst and depth-�rst sear
h and uses

whi
hever it �nds �rst. This
ase is in
luded to
on-

sider situations where there are a small number of

ustodians, but those
ustodians have large, unshared

memory use.

� Web: A web server using
ustodians. This test was

in
luded as a realisti
 example where
ustodians may

be ne
essary. The server is initialized, and then three

threads ea
h request a page 200 times. Every thread

on the server side whi
h answers a query is run in its

own
ustodian.

� DrS
heme: A program, run inside DrS
heme, that

reates three
ustodian/thread pairs and starts a new

DrS
heme pro
ess in ea
h.

7.1 Space Usage
Regardless of the implemented poli
y, some additional

spa
e is required for memory a

ounting. Spa
e is required

internally to tra
k the
ustodian of registered roots, and to

tra
k owner sets. In the
ase of Pre
ise, additional spa
e

may be required for obje
ts whose headers do not
ontain

suÆ
ient unused spa
e to hold the owner set information for

the obje
t.

In our tests, the spa
e requirements usually depend on the

number of owner sets. Figure 3 shows the amount of spa
e

required for ea
h of our test
ases. These numbers show the

additional spa
e overhead tra
king, roughly, the number of

owner sets in the system. The numbers for DrS
heme do

not s
ale with the others be
ause the start-up pro
ess for

the underlying GUI system installs a large number of roots.

As expe
ted, the additional spa
e needed for pre
ise a
-

ounting is somewhat larger than the spa
e required for

blame-the-
hild a

ounting. This spa
e is used for union

sets (owner sets whi
h are derived as the union of two owner

sets), and the blame-the-
hild implementation never per-

forms a set union. The di�eren
e thus depends entirely upon

the number of
ustodians and the sharing involved.

The MzS
heme distribution in
ludes a garbage
olle
tor

that is tuned for spa
e. In parti
ular, it shrinks the headers

of one
ommon type of obje
t, but this shrinking leaves no

room for owner set information. Compared to the spa
e-

tuned
olle
tor, the NoA

nt and the a

ounting
olle
tors

require between 15% and 35% more memory overall.

7.2 Accuracy
To
he
k the a

ura
y of memory a

ounting for di�erent

olle
tors, we tested ea
h program under the pre
ise sys-

tem and
ompared the results to the blame-the-
hild sys-

tem. The results were exa
tly as expe
ted: the blame-the-

hild algorithm a

ounts all the shared memory to one ran-

dom
hild. For example, in DrS
heme, pre
ise a

ounting

showed that around 49 MB of data was shared among the

hildren. Under BTC, one of the
ustodians (and not ne
es-

sarily the same one every time) and its parent were
harged

49 MB, but the other two
hild
ustodians were
harged only

for lo
al data (around 80 KB ea
h).

7.3 Time efficiency
To measure the trade-o� between the a

ura
y of a

ount-

ing information and the exe
ution speed of the
olle
tor (and

hen
e the program as a whole), we re
orded the total run-

ning time of the test programs. Figure 4 shows the results

of these ben
hmarks.

In every
ase, pre
ise a

ounting takes additional time.

The amount of additional time depends on the number of

ustodians, the amount of sharing among the
ustodians,

and the size of the data set. In Web, Prod, PSear
h,

and Kill, the
ustodians and heap are arranged so that the

additional penalty of pre
ise a

ounting (that is, the penalty

beyond that of BTC a

ounting) is minimal. The greatest

slowdown in those
ases, around two per
ent, is forWeb. In

48

ontrast, for
ases where there is
onsiderable sharing and

the heap is large, the penalty for pre
ise a

ounting
an be

quite large. DrS
heme �ts this pro�le, and the slowdown

for pre
ise a

ounting is predi
tably quite high.

Blame-the-
hild a

ounting also in
urs a performan
e penalty.

In both DrS
heme and PSear
h, the penalty is small. In

Web, the penalty is signi�
ant. The di�eren
e between the

former two tests and the latter one is primarily in the num-

ber of owner sets they use. The penalty di�eren
e, then, may

result from
a
he e�e
ts during a

ounting. Sin
e owner-

set spa
e usage is kept in a table, this table may be
ome

large enough that it no longer �ts in
a
he. By reading

and writing to this table on every mark, a large number

of owner sets imply
onsiderably more
a
he pressure and

hen
e
a
he misses. In ongoing work, we are investigating

this possibility.

The strange
ase in our results is Prod. In this
ase,

the work of a

ounting a
tually speeds up the program. In

ongoing work we are trying to determine the
ause of the

speed-up.

8. RELATED WORK
Re
ent resear
h has fo
used on providing hard resour
e

boundaries between appli
ations to prevent denial-of-servi
e.

For example, the Ka�eOS virtual ma
hine [1℄ for Java pro-

vides the ability to pre
isely a

ount for memory
onsump-

tion by appli
ations. Similar systems in
lude MVM [5℄,

Alta [2℄, and J-SEAL2 [4℄. This line of work is limited in that

it
onstrains sharing between appli
ations to provide tight

resour
e
ontrols. Su
h restri
tions are ne
essary to exe
ute

untrusted
ode safely, but they are not
exible enough to

support high levels of
ooperation between appli
ations.

More generally, the existing work on resour
e
ontrols|

in
luding JRes [6℄ and resear
h on a

ounting prin
ipals in

operating systems, su
h as the work on resour
e
ontain-

ers [3℄|addresses only resour
e allo
ation, and does not

tra
k a
tual resour
e usage.

9. CONCLUSIONS
We have presented preliminary results on our memory-

a

ounting garbage
olle
tion system for MzS
heme. Our

approa
h
harges for resour
e
onsumption based on the re-

tention of values, as opposed to allo
ation, and it requires

no expli
it de
laration of sharing by the programmer. Our

poli
y de�nitions apply to any runtime system that in
ludes

a notion of a

ounting prin
iples that is tied to threads,

In the long run, we expe
t our blame-the-
hild a

ount-

ing poli
y to be
ome the default a

ounting me
hanism in

MzS
heme. It provides a

ounting information that seems

pre
ise enough for many appli
ations, and it
an be imple-

mented with a minimal overhead.

The main question for ongoing work
on
erns the timing

of a

ounting
he
ks. Our
urrent implementation
he
ks for

limit violations only during full
olle
tions, and the
harges

for a terminated
ustodian are not transferred until the fol-

lowing full
olle
tion. Both of these e�e
ts delay the en-

for
ement of resour
e limits in a way that is diÆ
ult for

programmers to reason about, and we expe
t that mu
h

better guarantees
an be provided to programmers.

A se
ond question
on
erns the suitability of weak links

for breaking a

ounted sharing between a parent and
hild,

and perhaps between peers. The
urrent approa
h of weak-

ening the parent-to-
hild links worked well for our test pro-

grams, but we need more experien
e with
ooperating ap-

pli
ations.

The
olle
tors des
ribed in this paper are distributed with

versions 200 and above of the PLT distribution of S
heme for

Unix.

5

Intera
tive performan
e of the a

ounting
olle
tors

is
omparable to the performan
e of the default
olle
tor,

although some pause times (parti
ularly when doing pre
ise

a

ounting) are noti
eably longer.

10. REFERENCES
[1℄ G. Ba
k, W. C. Hsieh, and J. Lepreau. Pro
esses in

Ka�eOS: Isolation, resour
e management, and sharing

in Java. In Pro
eedings of the 4th Symposium on

Operating Systems Design and Implementation, San

Diego, CA, O
t. 2000. USENIX.

[2℄ G. Ba
k, P. Tullmann, L. Stoller, W. C. Hsieh, and

J. Lepreau. Java operating systems: Design and

implementation. In Pro
eedings of the USENIX 2000

Te
hni
al Conferen
e, pages 197{210, San Diego, CA,

June 2000.

[3℄ G. Banga, P. Drus
hel, and J. C. Mogul. Resour
e

ontainers: A new fa
ility for resour
e management in

server systems. In Pro
. ACM Symposium on Operating

System Design and Implementation, Feb. 1999.

[4℄ W. Binder, J. G. Hulaas, and A. Villaz�on. Portable

resour
e
ontrol in java: The J-SEAL2 approa
h. In

Pro
. ACM Conferen
e on Obje
t-Oriented

Programming, Systems, Languages, and Appli
ations,

pages 139{155, 2001.

[5℄ G. Czajkowski and L. Dayn�es. Multitasking without

ompromise: a virtual ma
hine evolution. In Pro
.

ACM Conferen
e on Obje
t-Oriented Programming,

Systems, Languages, and Appli
ations, pages 125{138,

2001.

[6℄ G. Czajkowski and T. von Ei
ken. JRes: A resour
e

a

ounting interfa
e for Java. In Pro
. ACM

Conferen
e on Obje
t-Oriented Programming, Systems,

Languages, and Appli
ations, pages 21{35, 1998.

[7℄ M. Flatt. PLT MzS
heme: Language manual. Te
hni
al

Report TR97-280, Ri
e University, 1997.

http://download.plt-s
heme.org/do
/.

[8℄ P. R. Wilson. Unipro
essor garbage
olle
tion

te
hniques. In Pro
. Int. Workshop on Memory

Management, number 637, Saint-Malo (Fran
e), 1992.

Springer-Verlag.

5

Con�gure with --enable-a

ount and make the 3m target.

