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ABSTRACT
Many language implementations provide a me
hanism to

express 
on
urrent pro
esses, but few provide support for

terminating a pro
ess based on its resour
e 
onsumption.

Those implementations that do support termination gener-

ally 
harge the 
ost of a resour
e to the prin
ipal that al-

lo
ates the resour
e, rather than the prin
ipal that retains

the resour
e. The di�eren
e matters if prin
ipals represent

distin
t but 
ooperating pro
esses.

In this paper, we present preliminary results for a ver-

sion of MzS
heme that supports termination 
onditions for

resour
e-abusing pro
esses. Unlike the usual approa
h to

resour
e a

ounting, our approa
h assigns �ne-grained (per-

obje
t) allo
ation 
harges to the pro
ess that retains a re-

sour
e, instead of the pro
ess that allo
ates the resour
e.

1. MOTIVATION
Users of modern 
omputing environments expe
t appli
a-

tions to 
ooperate in sophisti
ated ways. For example, users

expe
t web browsers to laun
h external media players to

view 
ertain forms of data, and users expe
t a word pro
es-

sor to support a
tive spreadsheets embedded in other do
-

uments. In a 
onventional operating system, however, pro-

grammers must exert 
onsiderable e�ort to integrate appli-


ations. Indeed, few software developers have the resour
es

to integrate appli
ations together as well as, for example,

Adobe A
robat in Mi
rosoft's Internet Explorer.

Implementing 
ooperating appli
ations in a 
onventional

OS is diÆ
ult be
ause the OS isolates appli
ations to 
ontain

malfun
tions. Cooperating appli
ations must over
ome this

built-in isolation. In 
ontrast, language run-time systems

(a.k.a. \virtual ma
hines") typi
ally rely on language safety,

rather than isolation, to 
ontain malfun
tions. Sin
e VMs

otherwise play the same role as OSes, and sin
e they la
k a

bias towards isolation, safe VMs seem ideally suited as the

platform for a next generation of appli
ation software.

Mere safety, however, does not provide the level of prote
-

tion between appli
ations that 
onventional OSes provide.
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Although language-based safety 
an prevent a program from

trampling on another program's data stru
tures, it 
annot

prevent a program from starving another pro
ess or from

leaking resour
es. Regardless of the degree of 
ooperation,

a pra
ti
al OS/VM must tra
k ea
h appli
ation's resour
e


onsumption and prevent over-
onsuming appli
ations from

taking down the entire system.

A variation on 
onventional isolation 
an 
ertainly enable

resour
e tra
king in a VM. For example, the VM 
an restri
t

values passed from one pro
ess to another to those values

allo
ated within a 
ertain pool of memory [1℄. This 
om-

promise provides something better than a traditional OS, in

that a suitably allo
ated value 
an be passed dire
tly and

safely between appli
ations. Nevertheless, this kind of iso-

lation 
ontinues to interfere with 
ooperation: even if a pro-

gram 
an move values from one allo
ation pool to another,

expli
it a

ounting with allo
ation pools amounts to manual

memory management as in mallo
 and free. This manual

management en
ourages narrow 
ommuni
ation 
hannels; in

order to foster 
ommuni
ation, appli
ations must be free to

ex
hange arbitrary data with potentially 
omplex allo
ation

patterns.

We are investigating memory-management te
hniques that

pla
e the responsibility for a

ounting with the run-time sys-

tem, instead of the programmer, while still enabling 
ontrol

over an appli
ation's memory use. The essential idea is that

a garbage 
olle
tor 
an a

ount for memory use using rea
h-

ability from an appli
ation's roots. Thus, an appli
ation is


harged not for what it allo
ates, but for what it retains.

This di�erentiation is 
riti
al in systems where one appli-


ation may use memory allo
ated by another appli
ation.

The 
entral design problem is how to deal with these shared

values usefully and eÆ
iently.

We present preliminary results on our exploration, based

on a new garbage 
olle
tor for MzS
heme [7℄. Our results

suggest that a garbage 
olle
tor 
an maintain usefully pre-


ise a

ounting information with a low overhead, but that

the implementation of the rest of the VM requires extra 
are

to trigger reliable termination of over-
onsuming pro
esses.

This extra 
are is of the same 
avor as avoiding referen
es

in the VM that needlessly preserve values from 
olle
tion.

Se
tion 2 des
ribes the existing notion of \pro
ess" within

MzS
heme, and Se
tion 3 des
ribes our new API for resour
e

enfor
ement. Se
tion 4 des
ribes in more detail possible a
-


ounting poli
ies behind the API, in
luding the two that we

have implemented. Se
tion 5 reports on our implementa-

tions, and Se
tion 6 reports on our experien
e with them.

Se
tion 7 presents performan
e results.
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2. PROCESSES IN MZSCHEME
In MzS
heme, no single language 
onstru
t en
ompasses

all aspe
ts of a 
onventional pro
ess. Instead, various or-

thogonal 
onstru
ts implement di�erent aspe
ts of pro
esses:

� Threads implement the exe
ution aspe
t of a pro
ess.

The MzS
heme thread fun
tion takes a thunk and 
re-

ates a new thread to exe
ute the thunk.

The following example runs two 
on
urrent loops, one

that prints \1"s and another that prints \2"s:

(letre
 ([loop (lambda (v)

(display v)

(loop v))℄)

(thread (lambda () (loop 1)))

(loop 2))

� Parameters implement pro
ess-spe
i�
 settings, su
h

as the 
urrent working dire
tory. Ea
h parameter is

represented by a pro
edure, su
h as 
urrent-dire
tory,

that gets and sets the parameter value. Every thread

has its own value for ea
h parameter, so that setting

a parameter value a�e
ts the value only in the 
urrent

thread. Newly 
reated threads inherit initial parame-

ter values based on the 
urrent values in the 
reating

thread.

The following example sets the 
urrent dire
tory to

"/tmp" while running do-work , then restores the 
ur-

rent dire
tory:

1

(let ([orig-dir (
urrent-dire
tory)℄)

(
urrent-dire
tory "/tmp")

(do-work)

(
urrent-dire
tory orig-dir))

Meanwhile, the 
urrent-dire
tory setting of other exe-


uting threads is una�e
ted by the above 
ode.

� Custodians implement the resour
e-management as-

pe
t of a pro
ess. Whenever a thread obje
t is 
reated,

port obje
t opened, GUI obje
t displayed, or network-

listener obje
t started, the obje
t is assigned to the


urrent 
ustodian, whi
h is determined by the 
urrent-


ustodian parameter. The main operation on a 
us-

todian is 
ustodian-shutdown-all, whi
h terminates all

of the 
ustodian's threads, 
loses all of its ports, and

so on. In addition, every new 
ustodian 
reated with

make-
ustodian is 
reated as a 
hild of the 
urrent 
us-

todian. Shutting down a 
ustodian also shuts down all

of its 
hildren 
ustodians.

The following example runs 
hild-work-thunk in its

own thread, then terminates the thread after one se
-

ond (also shutting down any other resour
es used by

the 
hild thread):

(let ([
hild-
ustodian (make-
ustodian)℄

[parent-
ustodian (
urrent-
ustodian)℄)

(
urrent-
ustodian 
hild-
ustodian)

(thread 
hild-work-thunk)

(
urrent-
ustodian parent-
ustodian)

(sleep 1)

(
ustodian-shutdown-all 
hild-
ustodian))

1

Produ
tion 
ode would use the parameterize form so that

the dire
tory is restored if do-work raises an ex
eption.

A thread's 
urrent 
ustodian is not the same as the


ustodian that manages the thread. The latter is de-

termined permanently when the thread is 
reated. A

thread 
an, however, 
hange its 
urrent 
ustodian at

any time. In the above example, sin
e 
hild-
ustodian

is 
urrent when the 
hild thread is 
reated, the 
hild is

pla
ed into the management of 
hild-
ustodian. Thus,

(
ustodian-shutdown-all 
hild-
ustodian) reliably termi-

nates the 
hild thread. In addition, if 
hild-
ustodian is

the only 
ustodian a

essible in 
hild-work-thunk , then

any 
ustodian, thread, port, or network listener 
re-

ated by the 
hild is reliably shut down by (
ustodian-

shutdown-all 
hild-
ustodian).

Evaluating (
urrent-
ustodian) immediately in 
hild-

work-thunk would produ
e 
hild-
ustodian, be
ause the

initial parameter values for the 
hild thread are in-

herited at the point of thread 
reation. The 
hild

thread may then 
hange its 
urrent 
ustodian at any

time, perhaps 
reating a new 
ustodian for a grand-


hild thread. Again, if 
hild-
ustodian is the only 
us-

todian a

essible in 
hild-work-thunk , then newly 
re-

ated 
ustodians ne
essarily fall under the management

of 
hild-
ustodian.

MzS
heme in
ludes additional 
onstru
ts to handle other

pro
ess aspe
ts, su
h as 
ode namespa
es and event queues,

but those 
onstru
ts are irrelevant to a

ounting.

3. ACCOUNTING API
A

ounting information in MzS
heme depends only on


ustodians and threads. A

ounting depends on 
ustodians

be
ause they a
t as a kind of pro
ess ID for termination pur-

poses. In parti
ular, sin
e the motivation for a

ounting is

to terminate over-
onsuming pro
esses, MzS
heme 
harges

memory 
onsumption at the granularity of 
ustodians. A
-


ounting also depends on threads, be
ause threads en
om-

pass the exe
ution aspe
t of a pro
ess, and the exe
ution


ontext de�nes the set of rea
hable values. Thus, the mem-

ory 
onsumption of a 
ustodian is de�ned in terms of the

values rea
hable from the 
ustodian's threads.

We defer dis
ussion of spe
i�
 a

ounting poli
ies until the

next se
tion. For now, given that a

ounting is atta
hed to


ustodians, we de�ne a resour
e-limiting API that is similar

to Unix pro
ess limits:

� (
ustodian-limit-memory 
ust1 limit-k 
ust2 ) installs a

limit of limit-k bytes on the memory 
harged to the


ustodian 
ust1 . If there 
omes a time when 
ust1

uses more than limit-k bytes, then 
ust2 is shut down.

Typi
ally, 
ust1 and 
ust2 are the same 
ustodian,

but distinguishing the a

ounting 
enter from the 
ost


enter 
an be useful when 
ust1 is the parent of 
ust2

or vi
e-versa.

Although 
ustodian-limit-memory is useful in simple settings,

it does not 
ompose well. For example, if a parent pro
ess

has 100 MB to work with and its 
hild pro
esses typi
ally use

1 MB but sometimes 20 MB, should the parent limit itself

to the worst 
ase by running at most 5 
hildren? And how

does the parent know that it has 100 MB to work with in the


ase of parent-siblings with varying memory 
onsumption?

In order to address the needs of a parent more dire
tly

and in a more easily 
omposed form, we introdu
e a se
ond

interfa
e:
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� (
ustodian-require-memory 
ust1 need-k 
ust2 ) installs

a request for need-k bytes to be available for 
usto-

dian 
ust1 . If there 
omes a time when 
ust1 would

be unable to allo
ate need-k bytes, then 
ust2 is shut

down.

Using 
ustodian-require-memory, a parent pro
ess 
an de
lare

a safety 
ushion for its own operation but otherwise allow

ea
h 
hild pro
ess to 
onsume as mu
h memory as is avail-

able. A parent 
an also 
ombine 
ustodian-require-memory

and 
ustodian-limit-memory to de
lare its own 
ushion and

also prevent 
hildren from using more than 20 MB without

limiting the total number of 
hildren to 5.

In addition to the two memory-monitoring pro
edures,

MzS
heme provides a fun
tion that reports a given 
usto-

dian's 
urrent 
harges:

� (
urrent-memory-use 
ust) returns the number of allo-


ated bytes 
urrently 
harged to 
ustodian 
ust .

4. ACCOUNTING POLICIES

4.1 Reachability
As des
ribed in the previous se
tion, we de�ne a 
usto-

dian's memory 
onsumption in terms of the values rea
hable

from the 
ustodian's threads, as opposed to the values orig-

inally allo
ated by the threads. In addition, we require that

the 
ustodian hierar
hy propagates a

ounting 
harges: if a


ustodian B is 
harged for a value, then its parent 
ustodian

is 
harged for the value as well.

Generally, rea
hability for a

ounting 
oin
ides with rea
h-

ability for garbage 
olle
tion. In parti
ular, a value is not


harged to a 
ustodian if it is a

essible through only weak

pointers. Finalization poses no problem for a

ounting, be-


ause every �nalizer in Mzs
heme is 
reated with respe
t

to a will exe
utor. Running a �nalizer requires an expli
it

a
tion on the exe
utor, whi
h means that a �nalized obje
t


an be 
harged to the holder of the �nalizer's exe
utor.

A

ounting rea
hability deviates from garbage-
olle
tion

rea
hability in one respe
t. If a value is rea
hable from

thread A only be
ause thread A holds a referen
e to thread

B, then B's 
ustodian is 
harged and not A's (unless A's 
us-

todian is an an
estor of B's). Similarly, if a value is rea
hable

by A only through a 
ustodian C, then C is 
harged instead

of A's 
ustodian.

This deviation makes intuitive sense, be
ause holding a

referen
e to another pro
ess does not provide any a

ess to

the pro
ess's values. Moreover, this deviation is ne
essary

for making a

ounting useful in our test programs, as we

explain in Se
tion 6.

4.2 Sharing
In a running system, some values may be rea
hable from

multiple 
ustodians. Di�erent a

ounting poli
ies might al-

lo
ate 
harges for shared values in di�erent ways, depending,

on the amount of sharing among 
ustodians, the hierar
hi-


al relationship of the 
ustodians, the original allo
ator for

a parti
ular value or other fa
tors. Among the poli
ies that

seem useful, we have implemented two:

� The pre
ise poli
y 
harges every 
ustodian for ea
h

value that it rea
hes. If two 
ustodians share a value,

they are both 
harged the full 
ost of the value. For

example, in �gure 1, obje
ts w and z will be 
harged

to both 
ustodians A and B, obje
t x will be 
harged

to both 
ustodians B and C, and obje
t Y will be


harged only to 
ustodian C.

� The blame-the-
hild poli
y 
harges every value to at

least one 
ustodian, but not every 
ustodian that rea
hes

the value. The main guarantee for blame-the-
hild ap-

plies to 
ustodians A and B when A is an an
estor of

B ; in that 
ase, if A and B both rea
h some value,

then A is 
harged if and only if B is 
harged. Mean-

while, if B and C share a value but neither 
ustodian

is an an
estor of the other, then at most one of them

will be 
harged for the obje
t. For example, in �gure

1, obje
t Y will be 
harged only to 
ustodian C as in

the pre
ise poli
y. Also, sin
e 
ustodian B is a 
hild

of 
ustodian A, B will ne
essarily be 
harged for W

and Z. In the 
ase of X, sin
e there is no an
estral

relationship between B and C, no guarantees are given

as to whi
h will be 
harged.

The pre
ise poli
y is the most obvious one, and seems easi-

est to reason about. We have explored the blame-the-
hild

poli
y, in addition, be
ause it 
an be implemented more ef-

�
iently than the pre
ise poli
y (at least in theory).

The blame-the-
hild poli
y, despite its impre
ision, 
an

work with 
ustodian-limit-memory to 
ontrol the memory


onsumption of a single sand-boxed appli
ation. Sin
e the

sand-boxed appli
ation will share only with its parent, a
-


ounting will reliably tra
k 
onsumption in the sand box.

Blame-the-
hild is less useful with 
ustodian-limit-memory

in a setting of multiple 
ooperating 
hildren. In that 
ase,

a well-behaved, 
ooperating appli
ation might in
ur all of

the 
ost of all shared values, triggering the termination of

the over-
harged 
hild (possibly leaving the rest stu
k, lost

without a 
ollaborator). However, blame-the-
hild always

works well with 
ustodian-require-memory. With memory

requirements instead of memory limits, how memory 
harges

are allo
ated among 
hildren does not matter.

One poli
y that we have not explored is a variant of pre
ise

that splits 
harges among sharing 
ustodians. For example,

suppose that x 
ustodians share a value of size y. With split-

ting, ea
h of the x 
ustodians would be 
harged y=x. This

poli
y is normally 
onsidered troublesome, be
ause termi-

nating one of the x 
ustodians triggers a sudden jump in

the 
ost of the other x � 1. Like blame-the-
hild, though,

this poli
y might be useful with 
ustodian-require-memory.

We have not explored the 
ost-splitting poli
y be
ause it

seems expensive to implement, and it does not appear to

o�er any advantage over blame-the-
hild.

4.3 Timing
Ideally, a poli
y should guarantee the termination of a 
us-

todian immediately after it violates a limit or requirement.

A naive implementation of this guarantee obviously 
annot

work, as it amounts to a full 
olle
tion for every allo
ation.

The poli
ies that we have implemented enfor
e limits and

requirements only after a full 
olle
tion. Consequently, a


ustodian 
an overrun its limit temporarily. This tempo-

rary overrun seems to 
ause no problems in pra
ti
e, be-


ause a 
ustodian that allo
ates lots of memory (and thus

might violate limits or requirements) tends to trigger fre-

quent 
olle
tions. Furthermore, a failure in allo
ation for

any 
ustodian triggers a garbage 
olle
tion whi
h will then

terminate usage o�enders to satisfy the allo
ation.
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Figure 1: An example set of 
ustodians and roots with a small heap

One potential problem is that a 
hild overrun 
ould push

its parent past a limit, where terminating the 
hild earlier

might have saved the parent. Another problem is that a


hild overrun may o

ur at a time when 
ustodians 
annot

be safely terminated. These potential problems have not ap-

peared in pra
ti
e, primarily be
ause programmers 
annot

know the exa
t 
ost of values and must in
lude signi�
ant

safety margins. Nevertheless, the problems merit further

investigation.

5. IMPLEMENTATION
The implementation of both the pre
ise and blame-the-


hild poli
ies pro
eeds roughly as follows:

2

1. When a thread is 
reated, the 
reating thread's 
urrent


ustodian is re
orded in the new thread.

2. The 
olle
tor's mark pro
edure treats thread obje
ts

as roots and as it marks from ea
h thread, it 
harges

the thread's 
ustodian.

3. After 
olle
tion, the 
olle
tor 
he
ks the a

umulated


harges against registered memory limits and require-

ments. The 
olle
tor s
hedules 
ustodians for destru
-

tion (on the next thread-s
heduling boundary) a

ord-

ing to the 
omparison results.

Our two implementations di�er only in the details of step

2. We �rst des
ribe the implementation of pre
ise a

ount-

ing, then the implementation of blame-the-
hild a

ounting.

Finally, we dis
uss the impa
t of generational garbage 
ol-

le
tion on the algorithms.

5.1 Precise Accounting
For pre
ise a

ounting, the 
olle
tor reserves spa
e in the

header of ea
h obje
t to re
ord the obje
t's set of 
harged

2

The algorithms des
ribed should work in any 
olle
tion sys-

tem. We use the terminology of a mark/sweep style 
olle
tor

to simplify the des
ription.

oObject    CS

CSm CSm CSmCSm CSm

Figure 2: Mark queue with an obje
t


ustodians (CS

o

in �gure 2). During 
olle
tion, the mark

queue 
ontains obje
ts paired with the 
ustodian set to be


harged for the obje
t. Initially, the 
harged set for all ob-

je
ts is the empty set. The initial mark queue 
ontains all

thread obje
ts, where ea
h thread is paired to the 
harged

set 
ontaining only the thread's 
ustodian.

When mark propagation rea
hes an obje
t (see �gure 2),

the 
harged set in the obje
t's header (CS

o

) is 
ompared

to the 
harge used in marking (CS

m

). If the 
harge set

for marking is a subset of the 
harged set CS

o

in the obje
t

header, no further work is performed for the obje
t.

3

Other-

wise, the union of the sets is 
omputed and installed into the

obje
t's header, and 
harges for the obje
t are shifted from

the old set (if it is non-empty) to the unioned set. Mark-

ing 
ontinues with the obje
t's 
ontent using the unioned

set. After marking is 
omplete, all garbage obje
ts have an

empty 
harged set, and the 
harges a

umulated for ea
h

set 
an be relayed ba
k to the set members.

3

If the obje
t 
ontains a 
harge set, then it has been marked,

and the mark propagation has either already been done or

is queued. Sin
e the item's 
harged set is a superset of the

mark's 
harge set, then no additional information is avail-

able and no further work needs to be done.
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In the 
ase of a single 
ustodian, the above algorithm de-

generates to plain garbage 
olle
tion, sin
e the only possible


harge sets are the empty set and the set 
ontaining the one


ustodian. In the 
ase of 
 
ustodians, 
olle
tion potentially

requires 
 revisions to the 
harged set of every obje
t. Thus,

in the worst 
ase, 
olle
tion requires O(
 � r) time, where r

is the size of rea
hable memory and 
 is the size of the set

of all 
ustodians. An entire heap 
ontaining only a single

linked list with every thread pointing to the head of the list

is an example of this worst 
ase.

5.2 Blame-the-child
Unlike pre
ise a

ounting, blame-the-
hild a

ounting re-

quires only linear time in the amount of live memory. Roughly,

the blame-the-
hild implementation works in the same way

as the pre
ise implementation, ex
ept that obje
ts with non-

empty 
harge sets are never re-marked. This 
hange is

enough to a
hieve linear time 
olle
tion.

To 
ompletely implement the blame-the-
hild poli
y, the


olle
tor sorts the set of 
ustodians before 
olle
tion so that

des
endents pre
ede an
estors. Then, the threads of ea
h


ustodians are taken individually. Ea
h thread is marked

and the marks are propagated as far as possible before 
on-

tinuing with the next threads. Due to this ordering, obje
ts

rea
hable from both a parent and 
hild will be �rst rea
hed

by tra
ing from the 
hild's threads, and thus 
harged to the


hild. On
e 
olle
tion is 
omplete, 
harges to 
hild 
ustodi-

ans are propagated ba
k to their parents.

In our implementation, the blame-the-
hild implementa-

tion also in
urs a smaller per-obje
t overhead, sin
e obje
t

headers need not 
ontain a 
harge set. During marking, ex-

a
tly one 
ustodian is 
harged at a time, so that 
harges


an be a

umulated dire
tly to the 
ustodian. Ea
h obje
t

needs only a mark bit, as in a normal 
olle
tor.

A naive implementation of blame-the-
hild allows an ob-

vious se
urity hole. By 
reating sa
ri�
ial 
hildren, a malev-

olent 
ustodian may arbitrarily delay its destru
tion when

it uses too mu
h memory. Su
h 
hildren would have point-

ers ba
k into the malevolent 
ustodian's spa
e so that they

would be blamed for its bad behavior. These, then, would

be killed instead of the parent.

Several possible me
hanisms 
an be used to keep this from

happening, and we simply 
hose the easiest one from an

implementation perspe
tive. They are:

1. Pla
e an order on the list of limits and requirements so

that older 
ustodians are killed �rst. In this 
ase, the

parent will be killed before the 
hildren, so 
reating

sa
ri�
ial 
hildren is useless.

2. Kill every 
ustodian that breaks a limit or requirement,

rather than just one. Sin
e a 
hild's usage is in
luded

in the parent's usage, both will be killed.

3. Choose a random ordering. In this way, a malevolent

program would have no guarantee that the above ta
ti


would work.

Our implementation 
hooses the se
ond ta
ti
.

5.3 Generational Collection
After a full 
olle
tion is �nished and a

ounting is 
om-

plete, 
omparing 
harges to registered limits and require-

ments is simple. Therefore, the 
olle
tor 
an guarantee that

a 
ustodian is terminated after the �rst garbage 
olle
tion


y
le after whi
h a limit or requirement is violated. This

implies that there may be some delay between the dete
-

tion of a violation and the a
tual violation. However, if the

program is allo
ating this delay will be small, as frequent

allo
ation will qui
kly trigger a garbage 
olle
tion.

A

ounting information after a minor 
olle
tion is ne
es-

sarily impre
ise, however, sin
e the minor 
olle
tion does not

examine the entire heap. Previously 
omputed sets of 
usto-

dians for older obje
ts might be used regardless of 
hanges

sin
e their promotion to an older generation. This old in-

formation may arbitrarily skew a

ounting. Worse, in the

blame-the-
hild implementation des
ribed above, the 
olle
-

tor does not preserve 
harges in obje
t headers, so there

is no information for older generations available to partial


olle
tions (ex
ept those that re
laim only the nursery).

Our implementation therefore enfor
es limits and require-

ments only after a full 
olle
tion. This 
hoi
e 
an delay

enfor
ement by several 
olle
tions, but should not introdu
e

any new inherent potential for limit overruns, sin
e overruns

must lead to a full 
olle
tion eventually.

6. EXPERIENCE
To determine the usefulness of our a

ounting poli
ies in

realisti
 environments, we wrote and modi�ed several pro-

grams to take advantage of a

ounting. One program simply

tests the ability of a parent to kill an easily sand-boxed 
hild.

A se
ond program, DrS
heme, tests 
hild 
ontrol where the

parent and 
hild work 
losely together. A third program,

a web server allowing arbitrary servlet plug-ins, tests 
hild


ontrol with some 
ooperation among the 
hildren.

6.1 Simple Kill Test
In the simple kill test, the main pro
ess 
reates a single

sub-
ustodian, pla
es a 64 MB limit on the sub-
ustodian's

memory use, and 
reates a single thread in the sub-
ustodian

that allo
ates an unbounded amount of memory:

(let ([
hild-
ustodian (make-
ustodian)℄)

(
ustodian-limit-memory 
hild-
ustodian

(� 64 1024 1024) 
hild-
ustodian)

(
urrent-
ustodian 
hild-
ustodian)

(thread-wait ; blo
ks until the thread 
ompletes

(thread (lambda ()

(let loop ()

(+ 1 (loop)))))))

Sin
e a

ounting works, the 
hild 
ustodian is destroyed,

whi
h in turn halts the 
hild thread, and the entire program


ompletes. If a

ounting were not su

essful, then the pro-

gram would not terminate. Under both of our a

ounting

system implementations, we �nd this program terminates.

Unfortunately, it terminates several garbage 
olle
tion 
y-


les after the limit is a
tually violated.

Although simple, this program presents two items of in-

terest. First, it shows that the blame-the-
hild poli
y 
an

work, and that it allows the natural 
reation of parent/
hild

pairs where the parent wishes to limit its 
hildren. Se
ond,

the program shows that generational 
olle
tion does delay

the dete
tion of resour
e overruns.

Safety nets in our garbage 
olle
tor assure that a program

does not run out of available memory before its limit is no-

ti
ed, but in systems with tight memory requirements, our

te
hnique may not be a

eptable. We are investigating ways
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to dete
t overruns more qui
kly.

6.2 DrScheme
The DrS
heme programming environment 
onsists of one

or more windows, where ea
h window is split into two parts.

The top part of the window is used to edit programs. The

bottom part is an intera
tive S
heme interpreter loop where

the program 
an be tested. Ea
h interpreter (one per win-

dow frame) is run under its own 
ustodian. With a single

line of 
ode, we modi�ed DrS
heme to 
onstrain ea
h inter-

preter to 16 MB of memory.

Initial experiments with the single-line 
hange did not pro-

du
e the desired result, even with pre
ise a

ounting. After

opening several windows, and after making one interpreter

allo
ate an unbounded amount of memory, every interpreter


ustodian in DrS
heme terminated. Investigation revealed

the problem:

� Ea
h interpreter holds a referen
e into the DrS
heme

GUI. For example, the value of the parameter 
urrent-

output-port is a port that writes to the text widget for

the intera
tion half of the window. The text widget

holds a referen
e to the whole window, and all open

Drs
heme windows are 
hained together.

� Ea
h window maintains a referen
e to the interpreter

thread, 
ustodian, and other interpreter-spe
i�
 val-

ues, in
luding the interpreter's top-level environment.

Due to these referen
es, every interpreter thread rea
hes ev-

ery other interpreter's data through opaque 
losures and ob-

je
ts, even though programs running in di�erent interpreters


annot interfere with ea
h other. Hen
e, in the pre
ise a
-


ounting system, every thread was 
harged for every value

in the system, whi
h obviously defeats the purpose of a
-


ounting.

Corre
ting the problem required only a slight modi�
ation

to DrS
heme. We modi�ed it so that a window retains only

weak links to interpreter-spe
i�
 values. In other words, we

disallow dire
t referen
es from the parent to the 
hild. Thus

a 
hild may tra
e referen
es ba
k to the parent's values, but

will never tra
e these referen
es ba
k down to another 
hild.

Finding the parent-to-
hild referen
es in DrS
heme|a fairly

large and 
omplex system|required only a 
ouple of hours

with garbage-
olle
tor instrumentation. The a
tual 
hanges

required only a half hour. In all, �ve referen
es were 
hanged:

two were 
onverted into weak links, two were extraneous and

simply removed, and one was removed by pushing the value

into a parameter within the 
hild's thread.

Breaking links from parent to 
hild may seem ba
kward,

but breaking links in the other dire
tion would have required

far too mu
h work to be pra
ti
al. For example, we 
ould not

easily modify the interpreter-owned port to weakly referen
e

the DrS
heme window. The port requires a

ess to many in-

ternal stru
tures within the GUI widget. Indeed, su
h a 
on-

version would amount to the �le-des
riptor/handle approa
h

of 
onventional operating systems|pre
isely the kind of de-

sign that we are trying to es
ape when implementing 
oop-

eration.

6.3 Web Server
In the DrS
heme ar
hite
ture, 
hildren never 
ooperate

and share data. In the web server, however, 
onsiderable

sharing exists between 
hild pro
esses. Whenever a server


onne
tion is established, the server 
reates a fresh 
usto-

dian to take 
harge of the 
onne
tion. If the 
onne
tion

requires the invo
ation of a servlet, then another fresh 
us-

todian is 
reated for the servlet's exe
ution. However, the

servlet 
ustodian is 
reated with the same parent as the


onne
tion 
ustodian, not as a 
hild of the 
onne
tion 
usto-

dian, be
ause a servlet session may span 
onne
tions. Thus,

a 
onne
tion 
ustodian and a servlet 
ustodian are siblings,

and they share data be
ause both work to satisfy the same

request.

The pre
ise a

ounting system performs well when a servlet

allo
ates an unbounded amount of memory. The o�ending

servlet is killed right after allo
ating too mu
h memory, and

the web server 
ontinues normally.

The blame-the-
hild system performs less well, in that

the servlet kill is sometimes delayed, but works a

eptably

well for our purposes. The delayed kill with blame-the-
hild

arises from the sibling relationship between the 
onne
tion


ustodian and the servlet 
ustodian. When the servlet runs,

the 
onne
tion is sometimes blamed for the servlet's memory

use. In pra
ti
e, this happens often. The result is that

the 
onne
tion is killed, and then the still-live memory is

not 
harged to the servlet until the next garbage 
olle
tion.

This example points again to the need for better guarantees

in terms of the time at whi
h a

ounting 
harges trigger

termination, whi
h is one subje
t of our ongoing work.

7. PERFORMANCE EVALUATION
Memory a

ounting in
urs some 
ost, with trade-o�s in

terms of speed, spa
e usage, and a

ounting a

ura
y. To

measure these 
osts, we have implemented these two mem-

ory a

ounting systems within MzS
heme.

4

Our 
olle
tor is

a generational, 
opying 
olle
tor[8℄ implemented in C. This


olle
tor is designed for produ
tion-level systems; it 
an han-

dle all situations that the default MzS
heme garbage 
olle
-

tor handles, in
luding �nalizers whi
h may resurre
t dying

obje
ts. For analysis purposes, the 
olle
tor 
an be tuned

stati
ally to behave as one the following:

� NoA

nt: The base-line 
olle
tor. No memory a
-


ounting fun
tionality is in
luded in this 
olle
tor.

� Pre
ise: The base-line 
olle
tor plus the memory a
-


ounting system des
ribed in se
tion 5.1.

� BTC: The base-line 
olle
tor plus the memory blame-

the-
hild a

ounting system des
ribed in se
tion 5.2.

We evaluate the spa
e usage, a

ura
y and time penalty of

the BTC and Pre
ise 
olle
tors on the following ben
h-

mark programs:

� Prod: An implementation of a produ
er/
onsumer

system, with �ve produ
ers and �ve 
onsumers paired

o�. A di�erent 
ustodian is used for ea
h produ
ing or


onsuming thread. This 
ase 
overs situations wherein

sibling 
ustodians share a large pie
e of 
ommon data;

in this 
ase, they share a 
ommon queue.

� Kill: A basi
 kill test for a

ounting. A 
hild 
usto-

dian is 
reated and a limit is pla
ed on its memory use.

4

A

ounting builds on the \pre
isely" 
olle
ted variant of

MzS
heme, instead of the \
onservatively" 
olle
ted variant.
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Pre
ise BTC

Test # of owner sets Additional required spa
e # of owner sets Additional required spa
e

Web 360 60,054 bytes 360 30,570 bytes

Prod 35 3,842 bytes 21 1,130 bytes

DrS
heme 15 6100 bytes 9 5076 bytes

PSear
h 4 266 bytes 3 186 bytes

Kill 2 146 bytes 2 146 bytes

Figure 3: Additional spa
e requirements for a

ounting.

NoA

nt BTC Pre
ise

Time S.D. Time S.D. % slowdown Time S.D. % slowdown

Web 1.30 0.05 1.77 0.06 36.2% 1.80 0.06 38.5%

Prod 2.60 0.05 1.31 0.04 n/a 1.41 0.04 n/a

DrS
heme 23.10 0.14 23.55 0.11 1.7% 43.19 1.73 87.0%

PSear
h 2.33 0.12 2.41 0.12 3.4% 2.42 0.13 3.9%

Kill n/a n/a 1.74 0.03 n/a 1.76 0.04 n/a

Figure 4: Timing results in se
onds of user time with standard deviations. Where appli
able, the table

provides a per
entage slowdown relative to the NoA

nt 
olle
tor. All ben
hmark programs were run on

a 1.8Ghz Pentium IV with 256MB of memory, running under FreeBSD 4.3 and MzS
heme (or DrS
heme)

version 200pre19.

Under the 
hild 
ustodian, memory is then allo
ated

until the limit is rea
hed. This 
ase 
overs the situ-

ation wherein proper a

ounting is ne
essary for the

proper fun
tioning of a program.

� PSear
h: A sear
h program that seeks its target us-

ing both breadth-�rst and depth-�rst sear
h and uses

whi
hever it �nds �rst. This 
ase is in
luded to 
on-

sider situations where there are a small number of


ustodians, but those 
ustodians have large, unshared

memory use.

� Web: A web server using 
ustodians. This test was

in
luded as a realisti
 example where 
ustodians may

be ne
essary. The server is initialized, and then three

threads ea
h request a page 200 times. Every thread

on the server side whi
h answers a query is run in its

own 
ustodian.

� DrS
heme: A program, run inside DrS
heme, that


reates three 
ustodian/thread pairs and starts a new

DrS
heme pro
ess in ea
h.

7.1 Space Usage
Regardless of the implemented poli
y, some additional

spa
e is required for memory a

ounting. Spa
e is required

internally to tra
k the 
ustodian of registered roots, and to

tra
k owner sets. In the 
ase of Pre
ise, additional spa
e

may be required for obje
ts whose headers do not 
ontain

suÆ
ient unused spa
e to hold the owner set information for

the obje
t.

In our tests, the spa
e requirements usually depend on the

number of owner sets. Figure 3 shows the amount of spa
e

required for ea
h of our test 
ases. These numbers show the

additional spa
e overhead tra
king, roughly, the number of

owner sets in the system. The numbers for DrS
heme do

not s
ale with the others be
ause the start-up pro
ess for

the underlying GUI system installs a large number of roots.

As expe
ted, the additional spa
e needed for pre
ise a
-


ounting is somewhat larger than the spa
e required for

blame-the-
hild a

ounting. This spa
e is used for union

sets (owner sets whi
h are derived as the union of two owner

sets), and the blame-the-
hild implementation never per-

forms a set union. The di�eren
e thus depends entirely upon

the number of 
ustodians and the sharing involved.

The MzS
heme distribution in
ludes a garbage 
olle
tor

that is tuned for spa
e. In parti
ular, it shrinks the headers

of one 
ommon type of obje
t, but this shrinking leaves no

room for owner set information. Compared to the spa
e-

tuned 
olle
tor, the NoA

nt and the a

ounting 
olle
tors

require between 15% and 35% more memory overall.

7.2 Accuracy
To 
he
k the a

ura
y of memory a

ounting for di�erent


olle
tors, we tested ea
h program under the pre
ise sys-

tem and 
ompared the results to the blame-the-
hild sys-

tem. The results were exa
tly as expe
ted: the blame-the-


hild algorithm a

ounts all the shared memory to one ran-

dom 
hild. For example, in DrS
heme, pre
ise a

ounting

showed that around 49 MB of data was shared among the


hildren. Under BTC, one of the 
ustodians (and not ne
es-

sarily the same one every time) and its parent were 
harged

49 MB, but the other two 
hild 
ustodians were 
harged only

for lo
al data (around 80 KB ea
h).

7.3 Time efficiency
To measure the trade-o� between the a

ura
y of a

ount-

ing information and the exe
ution speed of the 
olle
tor (and

hen
e the program as a whole), we re
orded the total run-

ning time of the test programs. Figure 4 shows the results

of these ben
hmarks.

In every 
ase, pre
ise a

ounting takes additional time.

The amount of additional time depends on the number of


ustodians, the amount of sharing among the 
ustodians,

and the size of the data set. In Web, Prod, PSear
h,

and Kill, the 
ustodians and heap are arranged so that the

additional penalty of pre
ise a

ounting (that is, the penalty

beyond that of BTC a

ounting) is minimal. The greatest

slowdown in those 
ases, around two per
ent, is forWeb. In
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ontrast, for 
ases where there is 
onsiderable sharing and

the heap is large, the penalty for pre
ise a

ounting 
an be

quite large. DrS
heme �ts this pro�le, and the slowdown

for pre
ise a

ounting is predi
tably quite high.

Blame-the-
hild a

ounting also in
urs a performan
e penalty.

In both DrS
heme and PSear
h, the penalty is small. In

Web, the penalty is signi�
ant. The di�eren
e between the

former two tests and the latter one is primarily in the num-

ber of owner sets they use. The penalty di�eren
e, then, may

result from 
a
he e�e
ts during a

ounting. Sin
e owner-

set spa
e usage is kept in a table, this table may be
ome

large enough that it no longer �ts in 
a
he. By reading

and writing to this table on every mark, a large number

of owner sets imply 
onsiderably more 
a
he pressure and

hen
e 
a
he misses. In ongoing work, we are investigating

this possibility.

The strange 
ase in our results is Prod. In this 
ase,

the work of a

ounting a
tually speeds up the program. In

ongoing work we are trying to determine the 
ause of the

speed-up.

8. RELATED WORK
Re
ent resear
h has fo
used on providing hard resour
e

boundaries between appli
ations to prevent denial-of-servi
e.

For example, the Ka�eOS virtual ma
hine [1℄ for Java pro-

vides the ability to pre
isely a

ount for memory 
onsump-

tion by appli
ations. Similar systems in
lude MVM [5℄,

Alta [2℄, and J-SEAL2 [4℄. This line of work is limited in that

it 
onstrains sharing between appli
ations to provide tight

resour
e 
ontrols. Su
h restri
tions are ne
essary to exe
ute

untrusted 
ode safely, but they are not 
exible enough to

support high levels of 
ooperation between appli
ations.

More generally, the existing work on resour
e 
ontrols|

in
luding JRes [6℄ and resear
h on a

ounting prin
ipals in

operating systems, su
h as the work on resour
e 
ontain-

ers [3℄|addresses only resour
e allo
ation, and does not

tra
k a
tual resour
e usage.

9. CONCLUSIONS
We have presented preliminary results on our memory-

a

ounting garbage 
olle
tion system for MzS
heme. Our

approa
h 
harges for resour
e 
onsumption based on the re-

tention of values, as opposed to allo
ation, and it requires

no expli
it de
laration of sharing by the programmer. Our

poli
y de�nitions apply to any runtime system that in
ludes

a notion of a

ounting prin
iples that is tied to threads,

In the long run, we expe
t our blame-the-
hild a

ount-

ing poli
y to be
ome the default a

ounting me
hanism in

MzS
heme. It provides a

ounting information that seems

pre
ise enough for many appli
ations, and it 
an be imple-

mented with a minimal overhead.

The main question for ongoing work 
on
erns the timing

of a

ounting 
he
ks. Our 
urrent implementation 
he
ks for

limit violations only during full 
olle
tions, and the 
harges

for a terminated 
ustodian are not transferred until the fol-

lowing full 
olle
tion. Both of these e�e
ts delay the en-

for
ement of resour
e limits in a way that is diÆ
ult for

programmers to reason about, and we expe
t that mu
h

better guarantees 
an be provided to programmers.

A se
ond question 
on
erns the suitability of weak links

for breaking a

ounted sharing between a parent and 
hild,

and perhaps between peers. The 
urrent approa
h of weak-

ening the parent-to-
hild links worked well for our test pro-

grams, but we need more experien
e with 
ooperating ap-

pli
ations.

The 
olle
tors des
ribed in this paper are distributed with

versions 200 and above of the PLT distribution of S
heme for

Unix.

5

Intera
tive performan
e of the a

ounting 
olle
tors

is 
omparable to the performan
e of the default 
olle
tor,

although some pause times (parti
ularly when doing pre
ise

a

ounting) are noti
eably longer.
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Con�gure with --enable-a

ount and make the 3m target.


