A Gradual Typing Poem
Sam Tobin-Hochstadt & Robby Finder

The Problem

Write a function that accepts the specification of an
Infinite regular tree and turn it into a representation
of the tree

The Problem

Write a function that accepts the specification of an

Infinite regular tree and turn it into a representation
of the tree

Write a function that accepts a tree and finds its
period

An Example

An Example

(a (b b c)
(c (d dd
(e ec)))

An Example

How to Solve It

(a (b b c)
(c (d dd
(e ec)))

The Problem with the Solution

The Standard Solution
e exposes mutability
» exposes placeholders

e pushes the burden onto the client (the period
function)

The Problem with the Solution

data STree = STree String STree STree | Link String
data | Tree = I Tree String | Tree | Tree
link :: STree -> | Tree
link main = conv main
where conv :: STree -> | Tree
conv (STree str tl tr) =
ITree str (conv tl) (conv tr)
conv (Link str) =
find main str []
find :: STree -> String -> [STree] -> |Tree
find (STree str2 tl tr) str pending
| str2==str = conv (STree str2 tl tr)
| otherwise = find tl str (tr:pending)
find (Link strl) str2 (p:ps) =find p str2 ps
period :: I Tree -> Maybe Int
period (I Tree str tl tr) = bfs [(tl,1),(tr,2)] []
where bfs :: [(ITree,Int)] -> [String] -> Maybe Int

bfs [] visited = Nothing
bfs ((1Tree str2 tl tr,i)
| str2==str = Just i

| elemstr2 visited = bfs rest visited

rest) visited

| otherwise = bfs (rest ++ [(tl,i+1),(tr,i+1)])
(str2:visited)
left I Tree -> | Tree
left (1Tree str | r) =1
right |Tree -> | Tree
right (1 Tree str | r) =7r
at I Tree
at = link (STree "a" (STree "b" (Link "b") (Link "c"))
(STree "c" (STree "d" (Link "d") (Link "d"))
(STree "e" (Link "e") (Link "c"))))
bt | Tree
bt = left at
ct | Tree
ct = right at
main :: 10 ()
main = print [period at, period bt, period ct]

exi sts=List.exists
toString=Int.toString

val
val

dat at ype stree=STree of string *
datatype itree=ITree of string *

stree * stree | Link of string
(unit->itree) * (unit->itree)

(* link : stree -> itree *)
fun link main = let
fun conv (STree (str,tl,tr)) =
ITree (str,fn () => conv tl,fn ()
| conv (Link str) = find main str []
and find (STree (str2,tl,tr)) str pending =
if (str2=str)
then conv (STree (str2,tl,tr))
else find tl str (tr::pending)
| find (Link strl) str2 (p::ps) = find p str2 ps
in conv nain end

=> conv tr)

(* period : ITree -> int option *)
fun period (I Tree (str,tl,tr)) = let
fun elemn | = exists (fn x => (n =
fun bfs [] visited = NONE
| bfs ((I1Tree (str2,tl,tr),i)
if (str2=str) then SOME i else
if (elemstr2 visited) then bfs rest visited
el se bfs (rest @[(tl(),i+1),(tr(),i+1)]) (str2::visited)

x)) |

rest) visited =

inbfs [(t1(),1),(tr(),1)] [] end
val at = 1link (STree ("a", STree("b",Link "b", Link "c"),
STree("c", STree("d", Link "d", Link "d"),
STree("e",Link "e", Link "c")
fun left (1 Tree (st,tl,tr)) =tl()
fun right (1Tree (st,tl,tr)) = tr()
val bt = left at
val ct = right at
val answers = [period at, period bt, period ct]
val change_up = let
val r =ref O
fun f () = (r :=1!r+1; ITree (toString (!r),f,f))
in|Tree("a",f,f) end

))

val exists=List.exists

datatype stree = STree of string * stree * stree |

datatype itree = | Tree of string *

itree option ref *
itree option ref
(* link : stree -> itree *)
fun link main = let
val trees = ref [] val tolink = ref []

fun conv (STree (str,tl,tr)) = let
val t = | Tree (str,conv tl,conv tr)
intrees :=t Itrees; ref (SOVE t) end
| conv (Link str) = let
val r = ref NONE
intolink := (r,str)
val ans = conv main
inapp (fn (1 Tree (str,tl, tr))
app (fn (r,str2) =>
if str = str2
then r:=SOMVE (I Tree (str,tl,tr))
else ())
(!tolink))
(!trees);
case !ans of SOME x => x
end

I'tolink; r end

=>

(* period :
fun period (I Tree (str,ref

| Tree -> int option *)

(SOME t1),ref (SOME tr))) =
I

let

Link of stri

"Link "d

Li nk

fun elem (n:string) | = exists (fn x => (n = x))
fun help [] visited = NONE
| help ((ITree (str2,ref (SOMVE tl),ref (SOVE tr)),i)
visited =
if (str2=str) then SOVE i el se
if (elemstr2 visited) then help rest visited
else help (rest @[(tl,i+1),(tr,i+1)]) (str2::visited)
in
help [(t1,0),(tr,0)] []
end
val at = link (STree ("a", STree("b",Link "b", Link "c")
STree("c", STree("d", Link "d",
STree("e", Link "e",
fun left (1Tree (st,ref (SOME tl),ref (SOVE tr))) = tl
fun right (1Tree (st,ref (SOME tl),ref (SOVE tr))) = tr
val bt = left at
val ct = right at
val answers = [period at, period bt, period ct]

10

c

Problem Statement

» The Typed Scheme Advantage
An Intro to Typed Scheme
The First Solution
The Second Solution

The Moral

11

Where We're Going

Typed Scheme allows a simple implementation of
the problem where

© the complexity of the implementation is hidden

© the client has all the advantages of the original
code

12

Where We're Going

Typed Scheme allows a simple implementation of
the problem where

© the complexity of the implementation is hidden

© the client has all the advantages of the original
code

All because of gradual typing!

13

Problem Statement

The Typed Scheme Advantage
» An Intro to Typed Scheme

The First Solution

The Second Solution

The Moral

14

Typed Scheme

#|l ang typed-schene

(: X Nunber)
(define x 1)

15

Typed Structs

#|l ang typed-schene

(define-struct: [npTree

([name : Synbol]

left : (U IlnpTree Synbol)]
‘right : (U IlnpTree Synbol)]))

16

Occurrence Typing

#|l ang typed-schene

(1f (InpTree? t)
(display (I npTree-nane t))
(di splay "no nane"))

17

Modules

#|l ang typed-schene

(: t InpTree)
(define t (make-InpTree
(provide t)

"a

D¢

"Y))

18

Typed/Untyped Integration

#|l ang schene

(provide t)
(define t (nmake-InpTree))

contract boundary

#|l ang typed-schene

(require/typed "x.ss" [t InpTree])
(InmpTree-left t)

19

Problem Statement
The Typed Scheme Advantage
An Intro to Typed Scheme
» The First Solution
The Second Solution

The Moral

20

Specification

(define-type-alias SpecTree
(Rec ST (U Synbol (List Synbol

ST ST))))

21

Specification

(define-type-alias SpecTree
(Rec ST (U Synbol (List Synbol ST ST))))
(define-struct: [npTree
([name : Synbol]
[left : (U IlnpTree Synbol)]
‘right : (U IlnpTree Synbol)])
#. mut abl e)

(:

Client Code

period (InmpTree -> (U Nunber #f)))

(define (period it))

23

Client Code

(: period (InmpTree -> (U Nunber #f)))
(define (period it)
(: bfs)
(define (bfs s v))
(let ([I (InpTree-left it)]
[r (I nmpTree-right i1t)])
(1f (and (I nmpTree? |) (I npTree? r))
(bfs (list (cons | 1) (cons r 1))

(1))
(error '"fail))))

Client Code

(: period (InmpTree -> (U Nunber #f)))
(define (period it)
(: bfs)
(define (bfs s v))
(let ([I (InpTree-left it)]
[r (I nmpTree-right i1t)])
(1f (and (I nmpTree? |) (I npTree? r))
(bfs (list (cons | 1) (cons r 1))

()
(error "fail))))

25

Client Code

(: bfs ((Listof (Pair |InpTree Nunber))
(Li stof Synbol)
-> (U Nunber #f)))
(define (bfs stack visited)
(mat ch st ack
[" () #f]
[(cons (cons (struct InpTree (str2 tl tr)) 1)
rest)
(cond
' (eqg? str2 (InpTree-nane it)) 1]
(meng str2 visited) (bfs rest visited)]
(and (I npTree? tl) (I npTree? tr))
(bfs (append rest (list (cons tl (addl i))
(cons tr (addl i))))
(cons str2 visited))]
[else (error "fail)])]))

26

Client Code

Exactly the problem we thought we’d have

27

Problem Statement
The Typed Scheme Advantage
An Intro to Typed Scheme
The First Solution

» The Second Solution
The Moral

28

Better Specification

(define-type-alias SpecTree

(Rec ST (U Synbol (List Symbol ST ST))))
(define-struct: | npTree

([name : Synbol |
left : InpTree]
‘right : InpTree]))

Gradual Typing to the Rescue

(require/typed "itree.ss”

[struct InpTree ([nane : Synbol |
left : InpTree]
‘right : InpTree])]
[l1nk (SpecTree -> InpTree)])

30

(:

Client Code

period (I npTree -> (U Nunber #f)))

(define (period it))

31

Client Code

(: period (InmpTree -> (U Nunber #f)))
(define (period it)
(let ([I (InpTree-left i1t)]
[r (InmpTree-right 1t)])
(bfs (list (cons | 1) (cons r 1))
())))

32

Client Code

(: bfs ((Listof (Pair |InpTree Nunber))
(Li stof Synbol)
-> (U Nunmber #f)))
(define (bfs stack visited)
(mat ch st ack
[" () #f]
[(cons (cons (struct InpTree (str2 tl tr)) 1)
rest)
(cond
' (eqg? str2 (InpTree-nane it)) 1]
(meng str2 visited) (bfs rest visited)]
el se
(bfs (append rest
(litst (cons tl (addl i))
(cons tr (addl i))))
(cons str2 visited))])]))

33

What Happened?

Typed Scheme automatically synthesized contracts

Mutation is hidden

34

Problem Statement

The Typed Scheme Advantage
An Intro to Typed Scheme
The First Solution

The Second Solution

» The Moral

35

Moral

Gradual Typing adds expressiveness to typed
languages

36

Thank You

37

